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Preface

The significant research in adsorption in the 70s through the 90s could be
attributed to the discovery of many new porous materials, such as carbon molecular
sieve, and the invention of many new clever processes, notably Pressure Swing
Adsorption (PSA) processes. This evolution in adsorption research is reflected in
many books on adsorption, such as the ones by Ruthven (1984), Yang (1987, 1997),
Jaroniec and Madey (1988), Suzuki (1990), Karger and Ruthven (1992) and
Rudzinski and Everett (1992). Conferences on adsorption are organized more often
than before, such as the Fundamentals of Adsorption, the conference on
Characterization of Porous Solids, the Gas Separation Technology symposium, the
Symposium in Surface Heterogeneity, and the Pacific Rim workshop in Adsorption
Science and Technology. The common denominator of these books and
proceedings is the research on porous media since it is the heart for the
understanding of diffusion and adsorption. Since porous media are very complex,
the understanding of many practical solids is still far from complete, except solids
exhibiting well defined structure such as synthetic zeolites. It is the complex
interplay between the solid structure, diffusion and adsorption that makes the
analysis of adsorption more complicated than any other traditional unit operations
process such as distillation, etc.

Engineers dealing with adsorption processes, therefore, need to deal with model
equations usually in the form of partial differential equation, because adsorption
processes are inherently transient. To account for the details of the system,
phenomena such as film diffusion, interparticle diffusion, intragrain diffusion,
surface barrier and adsorption in addition to the complexities of solid structure must
be allowed for. The books of Ruthven, Yang, and Suzuki provide excellent sources
for engineers to fulfill this task. However, missing in these books are many recent
results in studying heterogeneous solids, the mathematics in dealing with differential
equations, the wider tabulation of adsorption solutions, and the many methods of
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measuring diffusivity. This present book will attempt to fill this gap. It starts with
five chapters covering adsorption equilibria, from fundamental to practical
approaches. Multicomponent equilibria of homogeneous as well as heterogeneous
solids are also dealt with, since they are the cornerstone in designing separation
systems.

After the few chapters on equilibria, we deal with kinetics of the various mass
transport processes inside a porous particle. Conventional approaches as well as the
new approach using Maxwell-Stefan equations are presented. Then the analysis of
adsorption in a single particle is considered with emphasis on the role of solid
structure. Next we cover the various methods to measure diffusivity, such as the
Differential Adsorption Bed (DAB), the time lag, the diffusion cell,
chromatography, and the batch adsorber methods.

It is our hope that this book will be used as a teaching book as well as a book
for engineers who wish to carry out research in the adsorption area. To fulfill this
niche, we have provided with the book many programming codes written in MatLab
language so that readers can use them directly to understand the behaviour of single
and multicomponent adsorption systems

Duong D. Do
University of Queensland

January 1998
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Introduction

1.1 Introduction

This book deals with the analysis of equilibria and kinetics of adsorption in a
porous medium. Although gas phase systems are particularly considered in the
book, the principles and concepts are applicable to liquid phase systems as well.

Adsorption phenomena have been known to mankind for a very long time, and
they are increasingly utilised to perform desired bulk separation or purification
purposes. The heart of an adsorption process is usually a porous solid medium. The
use of porous solid is simply that it provides a very high surface area or high
micropore volume and it is this high surface area or micropore volume that high
adsorptive capacity can be achieved. But the porous medium is usually associated
with very small pores and adsorbate molecules have to find their way to the interior
surface area or micropore volume. This "finding the way" does give rise to the so-
called diffusional resistance towards molecular flow. Understanding of the
adsorptive capacity is within the domain of equilibria, and understanding of the
diffusional resistance is within the domain of kinetics. To properly understand an
adsorption process, we must understand these two basic ingredients: equilibria and
kinetics, the analysis of which is the main theme of this book.

1.2 Basis of Separation

The adsorption separation is based on three distinct mechanisms: steric, equilibrium,
and kinetic mechanisms. In the steric separation mechanism, the porous solid has
pores having dimension such that it allows small molecules to enter while excluding
large molecules from entry. The equilibrium mechanism is based on the solid
having different abilities to accommodate different species, that is the stronger
adsorbing species is preferentially removed by the solid. The kinetic mechanism is



2 Equilibria

based on the different rates of diffusion of different species into the pore; thus by
controlling the time of exposure the faster diffusing species is preferentially
removed by the solid.

1.3 Adsorbents

The porous solid of a given adsorption process is a critical variable. The
success or failure of the process depends on how the solid performs in both
equilibria and kinetics. A solid with good capacity but slow kinetics is not a good
choice as it takes adsorbate molecules too long a time to reach the particle interior.
This means long gas residence time in a column, hence a low throughput. On the
other hand, a solid with fast kinetics but low capacity is not good either as a large
amount of solid is required for a given throughput. Thus, a good solid is the one
that provides good adsorptive capacity as well as good kinetics. To satisfy these
two requirements, the following aspects must be satisfied:
(a) the solid must have reasonably high surface area or micropore volume
(b) the solid must have relatively large pore network for the transport of molecules

to the interior
To satisfy the first requirement, the porous solid must have small pore size with

a reasonable porosity. This suggests that a good solid must have a combination of
two pore ranges: the micropore range and the macropore range. The classification
of pore size as recommended by IUPAC (Sing et al., 1985) is often used to delineate
the range of pore size

Micropores d < 2 nm
Mesopores 2 < d < 50 nm
Macropores d > 50 nm

This classification is arbitrary and was developed based on the adsorption of
nitrogen at its normal boiling point on a wide range of porous solids. Most practical
solids commonly used in industries do satisfy these two criteria, with solids such as
activated carbon, zeolite, alumina and silica gel. The industries using these solids
are diversified, with industries such as chemical, petrochemical, biochemical,
biological, and biomedical industries.

What to follow in this section are the brief description and characterisation of
some important adsorbents commonly used in various industries.
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1.3.1 Alumina

Alumina adsorbent is normally used in industries requiring the removal of water
from gas stream. This is due to the high functional group density on the surface,
and it is those functional groups that provide active sites for polar molecules (such
as water) adsorption. There are a variety of alumina available, but the common
solid used in drying is y-alumina. The characteristic of a typical y-alumina is given
below (Biswas et al., 1987).

Table 1.2-1: Typical characteristics of y-alumina

True density 2.9 - 3.3 g/cc

Particle density 0.65 - 1.0 g/cc

Total porosity 0.7 - 0.77

Macropore porosity 0.15 - 0.35

Micropore porosity 0.4 - 0.5

Macropore volume 0.4 - 0.55 cc/g

Micropore volume 0.5 - 0.6 cc/g

Specific surface area 200 - 300 m2/g

Mean macropore radius 100 - 300 nm

Mean micropore radius 1.8 - 3 nm

As seen in the above table, y-alumina has a good surface area for adsorption and a

good macropore volume and mean pore size for fast transport of molecules from the

surrounding to the interior.

13.2 Silica gel

Silica gel is made from the coagulation of a colloidal solution of silicic acid.
The term gel simply reflects the conditions of the material during the preparation
step, not the nature of the final product. Silica gel is a hard glassy substance and is
milky white in colour. This adsorbent is used in most industries for water removal
due to its strong hydrophilicity of the silica gel surface towards water. Some of the
applications of silica gel are
(a) water removal from air
(b) drying of non-reactive gases
(c) drying of reactive gases
(d) adsorption of hydrogen sulfide
(e) oil vapour adsorption
(f) adsorption of alcohols
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The following table shows the typical characteristics of silica gel.

Table 1.2-2: Typical characteristics of silica gel

Particle density 0.7 - 1.0 g/cc
Total porosity 0.5 - 0.65
Pore volume 0.45 - 1.0 cc/g
Specific surface area 250 - 900 m2/g
Range of pore radii 1 to 12 nm

Depending on the conditions of preparation, silica gel can have a range of surface
area ranging from about 200 m2/g to as high as 900 m2/g. The high end of surface
area is achievable but the pore size is very small. For example, the silica gel used
by Cerro and Smith (1970) is a high surface area Davison silica gel having a specific
surface area of 832 m2/g and a mean pore radius of 11 Angstrom.

1.3.3 Activated Carbon

Among the practical solids used in industries, activated carbon is one of the
most complex solids but it is the most versatile because of its extremely high surface
area and micropore volume. Moreover, its bimodal (sometimes trimodal) pore size
distribution provides good access of sorbate molecules to the interior. The structure
of activated carbon is complex and it is basically composed of an amorphous
structure and a graphite-like microcrystalline structure. Of the two, the graphitic
structure is important from the capacity point of view as it provides "space" in the
form of slit-shaped channel to accommodate molecules. Because of the slit shape
the micropore size for activated carbon is reported as the micropore half-width
rather than radius as in the case of alumina or silica gel. The arrangement of carbon
atoms in the graphitic structure is similar to that of pure graphite. The layers are
composed of condensed regular hexagonal rings and two adjacent layers are
separated with a spacing of 0.335nm. The distance between two adjacent carbon
atoms on a layer is 0.142nm. Although the basic configuration of the graphitic layer
in activated carbon is similar to that of pure graphite, there are some deviations, for
example the interlayer spacing ranges from 0.34nm to 0.35nm. The orientation of
the layers in activated carbon is such that the turbostratic structure is resulted.
Furthermore, there are crystal lattice defect and the presence of built-in hetero-
atoms.

The graphitic unit in activated carbon usually is composed of about 6-7 layers
and the average diameter of each unit is about lOnm. The size of the unit can
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increase under the action of graphitization and this is usually done at very high
temperature (>1000°C) and in an inert atmosphere.

The linkage between graphite units is possible with strong cross linking. The
interspace between those graphite units will form pore network and its size is
usually in the range of mesopore and macropore.

Typical characteristics of activated carbon are listed below.

Table 1.2-3: Typical characteristics of activated carbon

True density
Particle density
Total porosity
Macropore porosity
Micropore porosity
Macropore volume
Micropore volume
Specific surface area
Mean macropore radius
Mean micropore half width

2.2 g/cc
0.73 g/cc
0.71
0.31
0.40
0.47 cc/g
0.44 cc/g
1200 m2/g
800 nm
1 -2nm

Macropore having a size range of greater than 100 nm is normally not filled with
adsorbate by capillary condensation (except when the reduced pressure is
approaching unity). The volume of macropore is usually in the order of 0.2-0.5 cc/g
and the area contributed by the macropore is usually very small, of the order of 0.5
m2/g, which is negligible compared to the area contributed by the micropore.
Macropores, therefore, are of no significance in terms of adsorption capacity but
they act as transport pores to allow adsorbate molecules to diffuse from the bulk into
the particle interior.

Mesopore has a size range from 2 nm to 100 nm, and it is readily filled during
the region of capillary condensation (P/Po > 0.3). The volume of mesopore is
usually in the range of 0.1 to 0.4 cc/g and the surface area is in the range of 10-100
m2/g. Mesopore contributes marginally to the capacity at low pressure and
significantly in the region of capillary condensation. Like macropores, mesopores
act as transport pore when capillary condensation is absent and they act as conduit
for condensate flow in the capillary condensation region.

Micropores are pores having size less than 2 nm. These pores are slit-shaped
and because of their high dispersive force acting on adsorbate molecule they provide
space for storing most of adsorbed molecules and the mechanism of adsorption is
via the process of volume filling.
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Chemical nature of the surface of activated carbon is more complex than the
pore network. This property depends on many factors, for example the source of
carbon as well as the way how the carbon is activated. Activated carbon is made
from raw materials which are usually rich in oxygen and therefore many functional
groups on activated carbon have oxygen atom. Moreover, oxygen also is introduced
during the course of preparation, for example coal activation by air or gasified by
water vapor. Oxygen carrying functional groups can be classified into two main
types: acidic group and basic group. The functional groups of an activated carbon
can be increased by treating it with some oxidizing agents or decreased by exposing
it to a vacuum environment at very high temperature.

Commercial activated carbon has a very wide range of properties depending on
the application. If the application is for gas phase separation, then the
characteristics given in Table 1.2-3 is typical. For liquid phase applications,
however, due to the large molecular size of adsorbate activated carbon used in such
applications will possess larger mesopore volume and larger average pore radius for
the ease of diffusion of molecules to the interior.

1.3.4 Zeolite

Another important class of solid used as widely as activated carbon is zeolite.
Zeolite can be found naturally or made synthetically. Application of natural zeolite
is not as widely as that of synthetic zeolite because of the more specificity of the
synthetic zeolite. There are many types of synthetic zeolite, such as type A, X, Y,
mordenite, ZSM, etc. The book by Ruthven (1984) provides a good overview of
these zeolites. The typical characteristics of the zeolite A are listed below.

Table 1.2-3: Typical characteristics of zeolite 5A

Crystal density* 1.57 g/cc
Particle density 1.1 g/cc
Macropore porosity 0.31
Macropore volume 0.28 cc/g
Micropore volume 0.3 cc/g
Exterior surface area 1 -20 m2/g
Mean macropore radius 30-1000 nm
Mean micropore radius 0.5 nm

* mass/volume of crystal
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1.4 Adsorption Processes

With many solids available to the industries, there are many important processes
which currently enjoy their applications. In general, we can classify adsorption
processes into two classes. The first is the bulk separation and the other is the
purification. Some important processes are listed in the following table.

Table 1.3-1: Typical processes using adsorption technology

Normal paraffins, iso-paraffins Zeolite 5A

Nitrogen/ Oxygen Zeolite 5 A

Oxygen/ Nitrogen Carbon molecular sieve

Carbon oxides/Methane Zeolite, activated carbon

Ethylene/vent stream Activated carbon

VOCs removal from air Activated carbon

Carbon dioxide, ethylene from natural gas Zeolite

Sulfur compound from natural gas Zeolite

Drying of reactive gases Zeolite 3 A, silica gel, alumina

Solvent removal from air Activated carbon

Ordors from air Activated carbon

NOX, SO2 from flue gas Zeolite, activated carbon

1.5 The Structure of the Book

This book will address the various fundamental aspects of adsorption equilibria
and dynamics in microporous solids such as activated carbon and zeolite. The
treatment of equilibria and kinetics, when properly applied, can be used for solids
other than microporous solid, such as alumina, silica gel, etc. Recognizing that
practical solids are far from homogeneous, this book will also cover many recent
results in dealing with heterogeneous media.

We start this book with a chapter (Chapter 2) on the fundamentals of pure
component equilibria. Results of this chapter are mainly applicable to ideal solids or
surfaces, and rarely applied to real solids. Langmuir equation is the most celebrated
equation, and therefore is the cornerstone of all theories of adsorption and is dealt
with first. To generalise the fundamental theory for ideal solids, the Gibbs approach
is introduced, and from which many fundamental isotherm equations, such as
Volmer, Fowler-Guggenheim, Hill-de Boer, Jura-Harkins can be derived. A recent
equation introduced by Nitta and co-workers is presented to allow for the multi-site
adsorption. We finally close this chapter by presenting the vacancy solution theory
of Danner and co-workers. The results of Chapter 2 are used as a basis for the
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development of equilibria theory in dealing with practical solids, and we do this in
Chapter 3 by presenting a number of useful empirical as well as semi-empirical
equations for describing adsorption equilibria. Some equations are useful to
describe adsorption of gases and vapors below the capillary condensation region,
equations such as Freundlich, Langmuir-Freundlich (Sips), Toth, Unilan, and
Dubinin-Radushkevich. To describe equilibrium data in the region of multilayering
adsorption, the classical equation BET is presented in Chapter 3. Various
modifications of the BET equation are also presented to account for the various
features inherent with real solids. Other semi-empirical equations, such as Harkins-
Jura, FHH are also discussed. Finally, we close this chapter with a section on pore
volume and pore size distribution.

Chapter 4 particularly deals with microporous solids, and for these solids the
most celebrated equation for adsorption equilibrium is the Dubinin-Radushkevich
equation. Since its publication, there are many versions of such equation to deal
with a variety of cases, equations such as Dubinin-Astakhov equation to allow for
solid heterogeneity, and Dubinin-Stoeckli equation to account for the structure
heterogeneity. Although the Dubinin equations are popular in describing adsorption
isotherm for activated carbon as well as zeolite, they have a serious limitation which
is the zero slope of the isotherm equation at zero loading. To remedy this, various
approaches have been attempted, and we have presented those approaches in this
chapter. We finally close this chapter by discussing micropore size distribution and
the various versions of the Dubinin equations in dealing with heterogeneous
microporous solids.

Chapters 2 to 4 deal with pure component adsorption equilibria. Chapter 5 will
deal with multicomponent adsorption equilibria. Like Chapter 2 for pure component
systems, we start this chapter with the now classical theory of Langmuir for
multicomponent systems. This extended Langmuir equation applies only to ideal
solids, and therefore in general fails to describe experimental data. To account for
this deficiency, the Ideal Adsorption Solution Theory (IAST) put forward by Myers
and Prausnitz is one of the practical approaches, and is presented in some details in
Chapter 5. Because of the reasonable success of the IAS, various versions have
been proposed, such as the FastlAS theory and the Real Adsorption Solution Theory
(RAST), the latter of which accounts for the non-ideality of the adsorbed phase.
Application of the RAST is still very limited because of the uncertainty in the
calculation of activity coefficients of the adsorbed phase. There are other factors
such as the geometrical heterogeneity other than the adsorbed phase nonideality that
cause the deviation of the IAS theory from experimental data. This is the area
which requires more research.
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Practical solids are generally heterogeneous, and this subject of heterogeneity is
the topic of Chapter 6, where the concept of distribution of the interaction energy
between adsorbate molecules and solid atoms is discussed. For systems, such as
non-polar hydrocarbons on activated carbon, where the adsorption force is
dispersive by nature, the role of micropore size distribution is important in the
description of solid heterogeneity. The concept of distribution is not restricted to
the interaction energy between adsorbate molecules and solid atoms, it can be
applied to the Henry constant, the approach of which has been used by Sircar, and it
can be applied to free energy, which was put forward by Aharoni and Evans.

The rest of the book is dedicated to adsorption kinetics. We start with the
detailed description of diffusion and adsorption in porous solids, and this is done in
Chapter 7. Various simple devices used to measure diffusivity are presented, and
the various modes of transport of molecules in porous media are described. The
simplest transport is the Knudsen flow, where the transport is dictated by the
collision between molecules and surfaces of the pore wall. Other transports are
viscous flow, continuum diffusion and surface diffusion. The combination of these
transports is possible for a given system, and this chapter will address this in some
detail.

The same set of transport mechanisms learnt in Chapter 7 is again considered in
Chapter 8, but is dealt with in the framework of Maxwell-Stefan. This is the
cornerstone in dealing with multicomponent diffusion in homogeneous media as
well as heterogeneous media. We first address this framework to a homogeneous
medium so that readers can grasp the concept of friction put forwards by Maxwell
and Stefan in dealing with multicomponent systems. Next, we deal with diffusion
of a multicomponent mixture in a capillary and a porous medium where continuum
diffusion, Knudsen diffusion as well as viscous flow can all play an important role
in the transport of molecules.

Adsorption kinetics of a single particle (activated carbon type) is dealt with in
Chapter 9, where we show a number of adsorption / desorption problems for a single
particle. Mathematical models are presented, and their parameters are carefully
identified and explained. We first start with simple examples such as adsorption of
one component in a single particle under isothermal conditions. This simple
example will bring out many important features that an adsorption engineer will
need to know, such as the dependence of adsorption kinetics behaviour on many
important parameters such as particle size, bulk concentration, temperature,
pressure, pore size and adsorption affinity. We then discuss the complexity in the
dealing with multicomponent systems whereby governing equations are usually
coupled nonlinear differential equations. The only tool to solve these equations is
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the numerical method. Although there are a number of numerical methods available
to effectively solve these equations (Rice and Do, 1995), I would prefer to use the
orthogonal collocation method to solve these equations. Although the choice is
purely of personal taste, it is a very convenient method and very stable in solving
most adsorption kinetics problems. Isothermal as well as nonisothermal conditions
are dealt with in this chapter.

Chapter 10 deals with zeolite type particle, where the particle is usually in
bidisperse form, that is small pores (channels inside zeolite crystal) are grouped
together within a crystal, and the intercrystal void would form a network of larger
pores. In other words, there are two diffusion processes in the particle, namely
micropore diffusion and macropore diffusion. In the micropore network, only one
phase is possible: the adsorbed phase. Depending on the relative time scales
between these two diffusion processes, a system can be either controlled by the
macropore diffusion, or by micropore diffusion, or by a combination of both.
Isothermal as well as nonisothermal conditions will be addressed in this chapter.

Chapter 11 will deal with heterogeneous particle. Like Chapter 6 for equilibria,
the area of heterogeneity is a topic of current research in adsorption, especially in
kinetics, and much is needed before a full understanding of the effects of
heterogeneity can be realized. This chapter, however, will provide some results in
this area, and students are encouraged to develop their own thoughts in such a
fruitful area.

The remainder of the book deals with various methods commonly used in the
literature for the measurement of diffusivity. We start with Chapter 12 with a time
lag method, which belongs to the class of permeation method, of which another
method employing a diffusion cell is presented in Chapter 13. The time lag method
was pioneered by Barrer in the early 50's, and is a very useful tool to study diffusion
through porous media as well as polymeric membranes. Chromatography method is
presented in Chapter 14, and finally we conclude with a chapter (Chapter 15) on the
analysis of batch adsorber.

About the notations used in all chapters, I have attempted to use the same
notations throughout the text to ensure the uniformity in nomenclature. A table of
nomenclature is provided at the end of the text. The numbering of equations, tables
and figures is done with the section used as the prefix. For example, the first
equation in section 7.4 is numbered as eq. (7.4-1). Similarly, the second figure in
section 6.1 is labelled as Figure (6.1-2). Finally, the book is provided with
numerous computer codes written in MatLab language for solving many adsorption
equilibria and kinetics problems. Students are encouraged to use them for
effectively learning the various concepts of adsorption.



2
Fundamentals of Pure Component

Adsorption Equilibria

2.1 Introduction

Adsorption equilibria information is the most important piece of information in
understanding an adsorption process. No matter how many components are present
in the system, the adsorption equilibria of pure components are the essential
ingredient for the understanding of how much those components can be
accommodated by a solid adsorbent. With this information, it can be used in the
study of adsorption kinetics of a single component, adsorption equilibria of
multicomponent systems, and then adsorption kinetics of multicomponent systems.

In this chapter, we present the fundamentals of pure component equilibria.
Various fundamental equations are shown, and to start with the proceeding we will
present the most basic theory in adsorption: the Langmuir theory (1918). This
theory allows us to understand the monolayer surface adsorption on an ideal surface.
By an ideal surface here, we mean that the energy fluctuation on this surface is
periodic (Figure 2.1-1) and the magnitude of this fluctuation is larger than the
thermal energy of a molecule (kT), and hence the troughs of the energy fluctuation
are acting as the adsorption sites. If the distance between the two neighboring
troughs is much larger than the diameter of the adsorbate molecule, the adsorption
process is called localised and each adsorbate molecule will occupy one site. Also,
the depth of all troughs of the ideal surface are the same, that is the adsorption heat
released upon adsorption on each site is the same no matter what the loading is.

After the Langmuir theory, we will present the Gibbs thermodynamics
approach. This approach treats the adsorbed phase as a single entity, and Gibbs
adapted the classical thermodynamics of the bulk phase and applied it to the
adsorbed phase. In doing this the concept of volume in the bulk phase is replaced
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by the area, and the pressure is replaced by the so-called spreading pressure. By
assuming some forms of thermal equation of state relating the number of mole of
adsorbate, the area and the spreading pressure (analogue of equations of state in the
gas phase) and using them in the Gibbs equation, a number of fundamental
equations can be derived, such as the linear isotherm, the Volmer isotherm, etc.

_" : • adsorbate molecule

D
adsorption site

Figure 2.1-1: Surface energy fluctuations

Following the Gibbs approach, we will show the vacancy solution theory
developed by Suwanayuen and Danner in 1980. Basically in this approach the
system is assumed to consist of two solutions. One is the gas phase and the other is
the adsorbed phase. The difference between these two phases is the density. One is
denser than the other. In the context of this theory, the vacancy solution is
composed of adsorbates and vacancies. The latter is an imaginary entity defined as
a vacuum space which can be regarded as the solvent of the system.

Next, we will discuss one of the recent equations introduced by Nitta and his
co-workers. This theory based on statistical thermodynamics has some features
similar to the Langmuir theory, and it encompasses the Langmuir equation as a
special case. Basically it assumes a localised monolayer adsorption with the
allowance that one adsorbate molecule can occupy more than one adsorption site.
Interaction among adsorbed molecules is also allowed for in their theory. As a
special case, when the number of adsorption sites occupied by one adsorbate
molecule is one, their theory is reduced to the Fowler-Guggenheim equation, and
further if there is no adsorbate-adsorbate interaction this will reduce to the Langmuir
equation. Another model of Nitta and co-workers allowing for the mobility of
adsorbed molecules is also presented in this chapter.
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The fundamental equations, Langmuir, Volmer, Fowler-Guggenheim and Hill
de Boer, will form a basis for the study of heterogeneous adsorbents as we shall
discuss briefly in Chapter 3 and in further detail in Chapter 6.

Finally, we will discuss briefly the lattice vacancy theory of Honig and Mueller
(1962) who adapted the Flory-Huggin polymer-monomer solution theory. The form
of their equation is identical to that derived by Nitta using the statistical
thermodynamics approach.

2.2 Langmuir Equation

2.2.1 Basic Theory

Langmuir (1918) was the first to propose a coherent theory of adsorption onto a
flat surface based on a kinetic viewpoint, that is there is a continual process of
bombardment of molecules onto the surface and a corresponding evaporation
(desorption) of molecules from the surface to maintain zero rate of accumulation at
the surface at equilibrium.

The assumptions of the Langmuir model are:
1. Surface is homogeneous, that is adsorption energy is constant over

all sites (we will discuss heterogeneous surfaces in Chapter 6)
2. Adsorption on surface is localised, that is adsorbed atoms or

molecules are adsorbed at definite, localised sites (mobile
adsorption will be dealt with in Sections 2.3.3 and 2.5)

3. Each site can accommodate only one molecule or atom
The Langmuir theory is based on a kinetic principle, that is the rate of

adsorption (which is the striking rate at the surface multiplied by a sticking
coefficient, sometimes called the accommodation coefficient) is equal to the rate of
desorption from the surface.

The rate of striking the surface, in mole per unit time and unit area, obtained
from the kinetic theory of gas is:

P (2.2-1)

To give the reader a feel about the magnitude of this bombardment rate of molecule,
we tabulate below this rate at three pressures

P (Torr) Rs (molecules/cmVsec)

760 3xlO2 3

1 4xlO2 0

10-3 4xlO1 7
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This shows a massive amount of collision between gaseous molecules and the
surface even at a pressure of 10'3 Torr.

A fraction of gas molecules striking the surface will condense and is held by the
surface force until these adsorbed molecules evaporate again (see Figure 2.2-1).
Langmuir (1918) quoted that there is good experimental evidence that this fraction
is unity, but for a real surface which is usually far from ideal this fraction could be
much less than unity. Allowing for the sticking coefficient a (which accounts for
non perfect sticking), the rate of adsorption in mole adsorbed per unit bare surface
area per unit time is:

a P ^ (2.2-2)

Evaporation
/ \

Reflection

Figure 2.2-1: Schematic diagram of Langmuir adsorption mechanism on a flat surface

This is the rate of adsorption on a bare surface. On an occupied surface, when a
molecule strikes the portion already occupied with adsorbed species, it will
evaporate very quickly, just like a reflection from a mirror. Therefore, the rate of
adsorption on an occupied surface is equal to the rate given by eq. (2.2-2) multiplied
by the fraction of empty sites, that is:

? (1-9) (2.2-3)

where 6 is the fractional coverage. Here ^ is the number of moles adsorbed per
unit area (including covered and uncovered areas) per unit time.

The rate of desorption from the surface is equal to the rate, which corresponds
to fully covered surface (k^) , multiplied by the fractional coverage, that is:
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(2.2-4)

where Ed is the activation energy for desorption, which is equal to the heat of
adsorption for physically sorbed species since there is no energy barrier for physical
adsorption. The parameter kdoo is the rate constant for desorption at infinite
temperature. The inverse of this parameter is denoted as

1

kdoo

The average residence time of adsorption is defined as:

T - T P E d / R T

This means that the deeper is the potential energy well (higher EJ the longer is
the average residence time for adsorption. For physical adsorption, this surface
residence time is typically ranging between 1013 to 10'9 sec, while for chemisorption
this residence time has a very wide range, ranging from 10'6 (for weak
chemisorption) to about 109 for systems such as CO chemisorbed on Ni. Due to the
Arrhenius dependence on temperature this average surface residence time changes
rapidly with temperature, for example a residence time of 109 at 300K is reduced to
only 2 sec at 500K for a system having a desorption energy of 120 kJoule/mole.

Equating the rates of adsorption and desorption (eqs. 2.2-3 and 2.2-4), we
obtain the following famous Langmuir isotherm written in terms of fractional
loading:

(2.2-5)0
1 + bP

where
a exp(Q/R T) .

b = ,V g ; = b , exp Q / RgT (2.2-6)

Here Q is the heat of adsorption and is equal to the activation energy for desorption,
Ed. The parameter b is called the affinity constant or Langmuir constant. It is a
measure of how strong an adsorbate molecule is attracted onto a surface. The pre-
exponential factor b^ of the affinity constant is:

K = , a (2.2-7)
kdoo>/27rMRgT
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which is inversely proportional to the square root of the molecular weight. When P
is in Torr, the magnitude of b^ for nitrogen is given by Hobson (1965) as:

b,, = 5.682 x 10"5(MT) Torr (2.2-8)

The isotherm equation (2.2-5) reduces to the Henry law isotherm when the
pressure is very low (bP « 1), that is the amount adsorbed increases linearly with
pressure, a constraint demanded by statistical thermodynamics. When pressure is
sufficiently high, the amount adsorbed reaches the saturation capacity,
corresponding to a complete coverage of all adsorption sites with adsorbate
molecules (this is called monolayer coverage, 0 -» 1). The behaviour of the
Langmuir isotherm (9 versus P) is shown in Figure 2.2-2.

Increase in 0 and |b

Amount
adsorbed

Figure 2.2-2: Behaviour of the Langmuir equation

When the affinity constant b is larger, the surface is covered more with
adsorbate molecule as a result of the stronger affinity of adsorbate molecule towards
the surface. Similarly, when the heat of adsorption Q increases, the adsorbed
amount increases due to the higher energy barrier that adsorbed molecules have to
overcome to evaporate back to the gas phase. Increase in the temperature will
decrease the amount adsorbed at a given pressure. This is due to the greater energy
acquired by the adsorbed molecule to evaporate.

The isotherm equation (2.2-5) written in the form of fractional loading is not
useful for the data correlation as isotherm data are usually collated in the form of
amount adsorbed versus pressure. We now let C^ be the amount adsorbed in mole
per unit mass or volume1, and C ŝ be the maximum adsorbed concentration

1 This volume is taken as the particle volume minus the void volume where molecules are present in
free form.
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corresponding to a complete monolayer coverage, then the Langmuir equation
written in terms of the amount adsorbed useful for data correlation is:

- - - b ( T ) P (2.2-9a)
11 ** 1 + b(T)P

where

(2.2-9b)

Here we use the subscript JLX to denote the adsorbed phase, and this will be
applied throughout this text. For example, C^ is the concentration of the adsorbed
phase, and DM is the diffusion coefficient of the adsorbed phase, V^ is the volume of
the adsorbed phase, etc.

The temperature dependence of the affinity constant (e.g. 2.2-6) is T"1/2

exp(Q/Rg T). This affinity constant decreases with temperature because the heat of
adsorption is positive, that is adsorption is an exothermic process. Since the free
energy must decrease for the adsorption to occur and the entropy change is negative
because of the decrease in the degree of freedom, therefore

AH = AG + TAS < 0 (2.2-10)

The negativity of the enthalpy change means that heat is released from the
adsorption process.

The Langmuir equation can also be derived from the statistical
thermodynamics, based on the lattice statistics. Readers interested in this approach
are referred to the book by Rudzinski and Everett (1992) for more detail.

2.2.2 Isosteric Heat of A dsorption

One of the basic quantities in adsorption studies is the isosteric heat, which is
the ratio of the infinitesimal change in the adsorbate enthalpy to the infinitesimal
change in the amount adsorbed. The information of heat released is important in the
kinetic studies because when heat is released due to adsorption the released energy
is partly absorbed by the solid adsorbent and partly dissipated to the surrounding.
The portion absorbed by the solid increases the particle temperature and it is this rise
in temperature that slows down the adsorption kinetics because the mass uptake is
controlled by the rate of cooling of the particle in the later course of adsorption.
Hence the knowledge of this isosteric heat is essential in the study of adsorption
kinetics.
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The isosteric heat may or may not vary with loading. It is calculated from the
following thermodynamic van't Hoff equation:

RJ2 (2.2-11)

For Langmuir isotherm of the form given in eq. (2.2-9), we take the total
differentiation of that equation and substitute the result into the above van't Hoff
equation to get:

AH _ Q

RgT2 RgT2
8(l + bP) (2.2-12)

in which we have allowed for the maximum adsorbed concentration (C ŝ) to vary
with temperature and that dependence is assumed to take the form:

dT

Since (1+bP) = 1/(1-0), eq. (2.2-12) will become:

(2.2-13)

6ReT2

-AH = Q + — 2 — (2.2-14)
1 — 9

The negativity of the enthalpy change indicates that the adsorption process is an
exothermic process. If the maximum adsorbed concentration, C ŝ, is a function of
temperature and it decreases with temperature, the isosteric heat will increase with
the loading due to the second term in the RHS of eq. (2.2-14). For the isosteric heat
to take a finite value at high coverage (that is 0 —> 1) the parameter 5 (thermal
expansion coefficient of the saturation concentration) must be zero. This is to say
that the saturation capacity is independent of temperature, and as a result the heat of
adsorption is a constant, independent of loading.

2.3 Isotherms based on the Gibbs Approach

The last section dealt with the basic Langmuir theory, one of the earliest
theories in the literature to describe adsorption equilibria. One should note that the
Langmuir approach is kinetic by nature. Adsorption equilibria can be described
quite readily by the thermodynamic approach. What to follow in this section is the
approach due to Gibbs. More details can be found in Yang (1987) and Rudzinski
and Everett (1992).
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2.3.1 Basic Theory

In the bulk a-phase containing N components (Figure 2.3-1), the following

variables are specified: the temperature T" , the volume Va and the numbers of

moles of all species nj* (for i = 1, 2, ..., N). The upperscript is used to denote the

phase. With these variables, the total differential Helmholtz free energy is:

dF = -S a dT a - P adV a + £ >i?dnf (2.3-1)
i = l

where Sa is the entropy of the a phase, Pa is the pressure of that phase, n" is the

number of molecule of the species i, and (uj* is its chemical potential.

Equilibrium

a olane interface

7i T° A" n°

Figure 2.3-1: Equilibrium between the phases a and p separated by a plane interface a

Similarly, for the (3-phase, we can write a similar equation for the differential
Helmholtz free energy:

(2.3-2)

If equilibrium exists between the two phases with a plane interface (Figure 2.3-
1), we have:

. p a = p p (2.3-3)

that is equality in temperature, pressure and chemical potential is necessary and
sufficient for equilibrium for a plane interface.
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To obtain the Helmholtz free energy at a given temperature, pressure and
chemical potential, we integrate eq. (2.3-1) keeping T, P and U; constant and obtain:

N

F a = -PV a + ]T jLifn^ (2.3-4)

Differentiating eq. (2.3-4) and subtracting the result from eq. (2.3-1) will give the
following Gibbs-Duhem equation:

N

- V a dP-S a dT+^n"duf =0 (2.3-5a)

for the bulk a phase. As a special case of constant temperature and pressure, the
Gibbs-Duhem's relation is reduced to:

JTnjM^ =0 (2.3-5b)

Similarly, the Gibbs-Duhem equation for the (3-phase at constant temperature
and pressure is:

N

En? duf =0 (2.3-5c)

2.3. LI Thermodynamics of the Surface Phase

We now can develop a similar thermodynamic treatment for the surface phase
a, which is the interface between the phases a and P, and is in equilibrium with
these two phases. When the adsorbed phase is treated as a two dimensional surface,
fundamental equations in classical thermodynamics can still be applied. Applying
the same procedure to surface free energy, we will obtain the Gibbs adsorption
equation. This is done as follows. The total differentiation of the surface free
energy takes the form similar to eq. (2.3-1) with PadVa being replaced by 7idA :

N

dFCT = -SCTdT - TtdA + £ Hjdn? (2.3-6)
i=l

where the surface chemical potentials û  have the same values as those of the two
joining phases, n is the spreading pressure, playing the same role as pressure in the
bulk phase.

Integrating eq. (2.3-6) with constant T, n and |ij yields:
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N

FCT =-7cA + ^ | i i n 1
a (2.3-7)

which is an analogue of eq. (2.3-4). Differentiation of this equation yields:

N N

dFCT = -AdTi - TidA + ]T u^dnCT + ]T nfd\i{ (2.3-8)

Subtracting eq. (2.3-8) from eq. (2.3-6), we have the Gibbs equation for a planar
surface:

N

-AdTi-SGdT + VnfdUj = 0 (2.3-9)

Adsorption equilibria experiments are usually carried out at constant
temperature, therefore the Gibbs adsorption isotherm equation is:

N

-AdTt + ^ n f d j i j =0 (2.3-10)

For pure component systems (N = 1), we have:

-AdTt + ndn = 0 (2.3-11)

where we have dropped the superscript a for clarity.
At equilibrium, the chemical potential of the adsorbed phase is equal to that of

the gas phase, which is assumed to be ideal, i.e.

u = \xg = ng0 + RgTlnP (2.3-12)

Substituting eq.(2.3-12) into eq.(2.3-ll), the following Gibbs isotherm equation is
derived:

This equation is the fundamental equation relating gas pressure, spreading
pressure and amount adsorbed. It is very useful in that if the equation of state
relating the spreading pressure and the number of mole on the adsorbed phase is
provided, the isotherm expressed as the number of mole adsorbed in terms of
pressure can be obtained. We shall illustrate this with the following two examples:
linear isotherm and Volmer isotherm.
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2.3.2 Linear Isotherm

For an ideal surface at infinite dilution, the equation of state relating the
spreading pressure and the number of mole on the surface has the following form:

7iA = nRgT (2.3-14)

an analogue of the ideal gas law (i.e. diluted systems), that is the spreading pressure
is linear with the number of molecules on a surface of area A. Substituting this
equation of state into the Gibbs equation (eq. 2.3-13), we get:

f ^ 1 =n (2.3-15)

Integrating this equation at constant T, we obtain n = C(T)P, where C(T) is
some function of temperature. This equation means that at equilibrium the
spreading pressure in the adsorbed phase is linearly proportional to the pressure in
the gas phase. The spreading pressure is not, however, useful in the correlation of
adsorption equilibrium data. To relate the amount adsorbed in the adsorbed phase in
terms of the gas phase pressure, we use the equation of state (eq. 2.3-14) to finally
get:

— = K(T)P (2.3-16a)
A

where

K(T) = - ^ ^ - (2.3-16b)
g

The parameter K(T) is called the Henry constant. The isotherm obtained for the
diluted system is a linear isotherm, as one would anticipate from such condition of
infinite dilution.

2.3.3 Volmer Isotherm

We have seen in the last section that when the system is dilute (that is the
equation of state follows eq. 2.3-14), the isotherm is linear because each adsorbed
molecule acts independently from other adsorbed molecules. Now let us consider
the case where we allow for the finite size of adsorbed molecules. The equation of
state for a surface takes the following form:

7i(A-A0) = nRgT (2.3-17)

where Ao is the minimum area occupied by n molecules.
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The Gibbs equation (2.3-13) can be written in terms of the area per unit
molecule as follows:

V51npJT a

where the variable a is the area per unit molecule of adsorbate

(2.3-18a)

a = — (2.3-18b)
n

Integrating equation (2.3-18a) at constant temperature, we have:

lnP = JadTi: (2.3-19)

We rewrite the equation of state in terms of the new variable a and get:

n \ a - tfo) = R g T (2.3-20)

Substituting the spreading pressure from the equation of state into the integral form
of the Gibbs equation (2.3-19), we get:

(2.3-21)

But the fractional loading is simply the minimum area occupied by n molecules
divided by the area occupied by the same number of molecules, that is

9 = = a s i L

A (A/n) a

Written in terms of the fractional loading, 0, eq. (2.3-21) becomes:

lnP=J—™-j (2.3-23)
J 0 ( l - 0 ) 2

Carrying out the integration, we finally get the following equation:

(23-24.)

where the affinity constant b(T) is a function of temperature, which can take the
following form:
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(2.3-24b)

Eq. (2.3-24) is known as the Volmer equation, a fundamental equation to describe
the adsorption on surfaces where the mobility of adsorbed molecules is allowed, but
no interaction is allowed among the adsorbed molecules.

The factor exp(0/(l-0)) in eq. (2.3-24a) accounts for the mobility of the
adsorbate molecules. If we arrange eq. (2.3-24a) as follows:

( 2 3 " 2 5 a )

the Volmer equation is similar to the Langmuir isotherm equation (2.2-5) with the
apparent affinity as

(2.3-25b)

The difference between the Volmer equation and the Langmuir equation is that
while the affinity constant remains constant in the case of Langmuir mechanism, the
"apparent" affinity constant in the case of Volmer mechanism decreases with
loading. This means that the rate of increase in loading with pressure is much lower
in the case of Volmer compared to that in the case of Langmuir.

2.3.3.1 Isosteric Heat

If the saturation capacity is independent of temperature, the isosteric heat of
adsorption can be obtained for the Volmer equation (using Van't Hoff equation 2.2-
11) as:

Thus, the isosteric heat is a constant, the same conclusion we obtained earlier
for the Langmuir isotherm. This means that the mobility of the adsorbed molecules
does not affect the way solid atoms and adsorbate molecule interact vertically with
each other.

2.3.4 Hill-deBoer Isotherm

It is now seen that the Gibbs isotherm equation (2.3-13) is very general, and
with any proper choice of the equation of state describing the surface phase an
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isotherm equation relating the amount on the surface and the gas phase pressure can
be obtained as we have shown in the last two examples. The next logical choice for
the equation of state of the adsorbate is an equation which allows for the co-volume
term and the attractive force term. In this theme the following van der Waals
equation can be used:

-C To) = R g T (2-3"26)

With this equation of state, the isotherm equation obtained is:

bp = i r ^ e x p ( i r ^ ) exp(~ c0> (2-3"27)

where

b = b . e J - 2 - 1 C = - ^ _ = ^ L (2.3.28)
00 V j J ' RgTa0 RgT

where z is the coordination number (usually taken as 4 or 6 depending on the
packing of molecules), and w is the interaction energy between adsorbed molecules.
A positive w means attraction between adsorbed species and a negative value means
repulsion, that is the apparent affinity is increased with loading when there is
attraction between adsorbed species, and it is decreased with loading when there is
repulsion among the adsorbed species.

The equation as given in eq. (2.3-27) is known as the Hill-de Boer equation,
which describes the case where we have mobile adsorption and lateral interaction
among adsorbed molecules. When there is no interaction between adsorbed
molecules (that is w = 0), this Hill-de Boer equation will reduce to the Volmer
equation obtained in Section 2.3.3.

The first exponential term in the RHS of eq. (2.3-27) describes the mobility of
adsorbed molecules, and when this term is removed we will have the case of
localised adsorption with lateral interaction among adsorbed molecules, that is:

^ - c 6 ) (2.3-29)bP exp(c6)
1 — 0

This equation is known in the literature as the Fowler-Guggenheim equation, or
the quasi approximation isotherm. This equation can also be derived from the
statistical thermodynamics (Rudzinski and Everett, 1992). Due to the lateral
interaction term exp(-cG), the Fowler-Guggenheim equation and the Hill-de Boer
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equation exhibit a very interesting behaviour. This behaviour is the two
dimensional condensation when the lateral interaction between adsorbed molecules
is sufficiently strong. We shall illustrate this phenomenon below for the case of
Fowler-Guggenheim equation.

2.3.5 Fowler-Guggenheim Equation

Fowler-Guggenheim equation (2.3-29) is one of the simplest equations allowing
for the lateral interaction. Before discussing the two dimensional condensation
phenomenon, we first investigate the isosteric heat behaviour.

2.3.5.1 Isosteric heat

Using the van't Hoff equation (2.2-11), we can obtain the following heat of
adsorption for the Fowler-Guggenheim adsorption isotherm:

(- AH) = Q + zw0 (2.3-30)

Thus, the heat of adsorption varies linearly with loading. If the interaction between
the adsorbed molecules is attractive (that is w is positive), the heat of adsorption will
increase with loading and this is due to the increased interaction between adsorbed
molecules as the loading increases. This means that if the measured heat of
adsorption shows an increase with respect to loading, it indicates the positive lateral
interaction between adsorbed molecules. However, if the interaction among
adsorbed molecules is repulsive (that is w is negative), the heat of adsorption shows
a decrease with loading. If such a decrease of the heat of adsorption with loading is
observed experimentally, it does not necessarily mean that the interaction among
adsorbed molecules is negative as a decrease in the heat of adsorption could also
mean that the surface is heterogeneous, that is the surface is composed of sites
having different energy of adsorption. Molecules prefer to adsorb onto sites having
the highest energy of adsorption, and as adsorption proceeds molecules then adsorb
onto sites of progressingly lower energy of adsorption, resulting in a decreased heat
of adsorption with loading.

Similarly for the Hill-de Boer equation, we obtain the same isosteric heat of
adsorption as that for the case of Fowler-Guggenheim equation. This is so as we
have discussed in the section 2.3.3 for the case of Volmer equation that the mobility
of adsorbed molecule does not influence the way in which solid interacts with
adsorbate.
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2.3.5.2 Isotherm Behaviour

Since the Fowler-Guggenheim equation (2.3-29) has the adsorbate-adsorbate
interaction term (e"cG) , it will exhibit interesting behaviour when there is attraction
among the adsorbed molecules. But first, let us discuss the situation when there is
repulsion among the adsorbed molecules (c < 0). When the pressure in the gas
phase is very low (hence the surface coverage is also low), the behaviour is identical
to that of an ideal surface, that is the amount adsorbed is linearly proportional to the
gas phase pressure. When the gas phase pressure increases, more molecules adsorb
onto the surface but they have a tendency to stay apart due to the repulsion, and
when the pressure is increased sufficiently high the surface will eventually be
saturated due to sufficiently high chemical potential in the gas phase. The
behaviour is similar to that exhibited by the Langmuir equation, but in this case of c
< 0, it takes higher pressure to fill the surface due to the repulsion of molecules.

Now back to the situation where there are strong attractions between adsorbed
molecules. If this attraction force is strong enough and when the pressure in the gas
phase reaches a certain point there will exist a phenomenon called the two-
dimensional condensation, that is the density of the adsorbed phase will change
abruptly from a low density to a high density. We will show this analysis of two-
dimensional condensation below. To simplify the mathematical notation, we let

y = bP

Then the Fowler-Guggenheim equation will take the form:

(2.3-31)

y = e"ce (2.3-32)

The behaviour of this equation with respect to the fractional loading can be
investigated by studying the first derivative of y with respect to 0:

1-C0Q-0) L_c0

(1-0)2

The existence of stationary points occurs when 1 - c8 (1-0) = 0, that is

e , = l
1/2 1/2

(2.3-33)

(2.3-34)

The two solutions for fractional loading are real when c is greater than 4. When this
happens, it is not difficult to prove that these two solutions are between 0 and 1 (a
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physical requirement for the fractional loading). One lies between 0 and 0.5 and the
other is between 0.5 and 1. The values of y = bP at these two stationary points are:

(2.3-35)

The following algorithm describes the behaviour of the Fowler-Guggenheim
equation.

Algorithm:
For a given y (= bP), that is for a given pressure
1. If y = 0, the only solution for 9 of eq. (2.3-32) is 0, irrespective of c
2. If c < 4, there will be only one solution (0) between 0 and 1.
3. If c > 4, there are three possibilities (see Figure 2.3-3):

3.1 If y > yj, there is one root which lies between 02 and 1.
3.2 If y < y2, there is one root which lies between 0 and 0
3.3 Ify < y < yb there will be three solutions mathematically. One will be
between 0 and 0,, one is between 0, and 02 , and the other is between 02

and 1.

The problem of multiplicity does not actually happen in the adsorption system, that
is the adsorbed phase does not exhibit three regions of different density at the same
time. What is occurring in the case of the value of c > 4 is that there exists a
threshold pressure ym such that

f W A ] ^ j d e [ e ' ( ) e ( ] l (2.3-36)

where 0* and 0* are lower and upper solutions for the fractional loading
corresponding to the pressure ym. The other solution for the fractional loading at
this threshold pressure is 0.5. Details of the derivation of eq. (2.3-36) can be found
in Rudzinski and Everett (1992). The following figure (2.3-2) shows the plot of y
(= bP) versus 0 (eq. 2.3-32) for the case of c = 7. The figure also shows the line ym

such that eq. (2.3-36) is satisfied.
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y2

Figure 2.3-2: Plot of y = bP versus the fractional loading for the Fowler-Guggenheim isotherm (c = 7)

This threshold pressure ym = (bPm) is called the phase transition pressure. The
physical implication of this phase transition pressure is as follows. When the
gaseous phase pressure is less than this phase transition pressure (y < ym), the
fractional loading will be in the range (0, 0*). What we have here is the low density
adsorption. At y = ym, the fractional loading is

0 =
0*+0* 1

(2.3-37a)

that is the fractional loading is one half at the phase transition pressure. This phase
transition pressure is obtained from (for c > 4):

= bP =
0

1-0 e-i
(2.3-37b)

When the gaseous pressure is greater than the phase transition pressure (y > ym),
the fractional loading is in the range (0*, 1). This is what we call the high density
adsorption. A computer code Fowler.m is provided with this book, and it calculates
the fractional loading for a given value of pressure.

Figure (2.3-3) shows typical plots of the fractional loading versus the
nondimensional pressure bP for the case of attraction between adsorbed molecules.
Various values of c are used in the generation of these plots.
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Figure 2.3-3: Plots of the fractional loading versus bP for the Fowler-Guggenheim equation

When the value of c is greater than the critical value of 4, we see the two
dimensional condensation when the pressure reaches the phase transition pressure.
Take the case of c = 7, there is a two dimensional condensation, and this occurs at
the fractional loading of one half and the nondimensional phase transition pressure
of

- - «0.03

An increase in the interaction (increase in c) will shift the phase transition
pressure to the left, that is the phase condensation occurs at a lower pressure, which
is attributed to the stronger attraction among adsorbed molecules.

Similar analysis of the Hill-deBoer equation (2.3-27) shows that the two
dimensional condensation occurs when the attraction between adsorbed molecules is
strong and this critical value of c is 27/4. The fractional loading at the phase
transition point is 1/3, compared to 1/2 in the case of Fowler-Guggenheim equation.
A computer code Hill.m is provided with this book for the calculation of the
fractional loading versus pressure for the case of Hill-de Boer equation. Figure 2.3-
4 shows plots of the fractional loading versus nondimensional pressure (bP) for
various values of c= {5, 7, 10, 15}.
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Figure 2.3-4: Plots of the fractional loading versus bP for the Hill-de Boer equation

Here we see the two dimensional condensation when c > 27/4 = 6.75. For this case,
the phase transition pressure is calculated from:

exp

l-e Fu-e;
exp - c9 = —exp — exp —

e_i 2 ^ 2 ; V 3
3

2.3.6 Harkins-Jura Isotherm
We have addressed the various adsorption isotherm equations derived from the

Gibbs fundamental equation. Those equations (Volmer, Fowler-Guggenheim and
Hill de Boer) are for monolayer coverage situation. The Gibbs equation, however,
can be used to derive equations which are applicable in multilayer adsorption as
well. Here we show such application to derive the Harkins-Jura equation for
multilayer adsorption. Analogous to monolayer films on liquids, Harkins and Jura
(1943) proposed the following equation of state:

7t = b - a a (2.3-38)

where a and b are constants. Substituting this equation of state into the Gibbs
equation (2.3-13) yields the following adsorption equation:

il-B-4 (2.3-39)

which involves only measurable quantities. Here Po is the vapor pressure. This
equation can describe isotherm of type II shown in Figure 2.3-5. The classification
of types of isotherm will be discussed in detail in Chapter 3. But for the purpose of
discussion of the Harkins-Jura equation, we explain type II briefly here. Type II
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isotherm is the type which exhibits a similar behaviour to Langmuir isotherm when
the pressure is low, and when the pressure is further increased the amount adsorbed
will increase in an exponential fashion.

Rearranging the Harkins-Jura equation (2.3-39) into the form of adsorbed
amount versus the reduced pressure, we have:

JC/B
v = , V _ (2.3-40a)

fW,
where x is the reduced pressure

x = — (2.3-40b)

We see that when the pressure approaches the vapor pressure, the adsorbed
amount reaches a maximum concentration given below:

limv = vmax =J— (2.3-41)
x-»i V t>

Thus, the Harkins-Jura isotherm equation can be written as

v 1

FKi
(2.3-42)

from which we can see that the only parameter which controls the degree of
curvature of the isotherm is the parameter B.

2.3.6.1 Characteristics

To investigate the degree of curvature of the Harkins-Jura equation (2.3-42), we
study its second derivative:

dx 2 U m a J 2Bx2

|2B
(2.3-43)i fi

1 + —hi -
B Vx

To find the inflexion point, we set the second derivative to zero and obtain the
reduced pressure at which the isotherm curve has an inflexion point
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(2.3-44)

For the Harkins-Jura equation to describe the Type II isotherm, it must have an
inflexion point occurring at the reduced pressure between 0 and 1, that is the
restriction on the parameter B is:

0 < B < - (2.3-45)

The restriction of positive B is due to the fact that if B is negative, eq. (2.3-40)
does not always give a real solution. With the restriction on B as shown in eq. (2.3-
45), the minimum reduced pressure at which the inflexion point occurs is (by
putting B to zero in eq. 2.3-44):

xinf = --j.0.22 (2.3-46)

Figure 2.3-5 shows typical plots of the Harkins-Jura equation.

2.0

Amount
adsorbed i o

o.o
0.0 0.2 0.4 0.6 0.8 1.0

Reduced pressure

Figure 2.3-5: Plots of the Harkins-Jura equation versus the reduced pressure with B = 0.01

Jura and Harkins claimed that this is the simplest equation found so far for
describing adsorption from sub-monolayer to multilayer regions, and it is valid over
more than twice the pressure range of any two-constant adsorption isotherms (More
about multilayer adsorption will be presented in Chapter 3). They showed that for
TiO2 in the form of anatase, their isotherm agrees with the data at both lower and
higher values of pressure than the commonly used BET equation (Section 3.3).

Harkins and Jura (1943) have shown that a plot of ln(P/P0) versus 1/v2 would
yield a straight line with a slope of - C. The square root of this constant is
proportional to the surface area of the solid. They gave the following formula:
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Sg = 4.06VC (2.3-47)

where v is the gas volume at STP adsorbed per unit g, and S has the unit of m2/g.
They also suggested that if the plot of ln(P/P0) versus 1/v2 exhibits two straight lines,
the one at lower pressure range should be chosen for the area calculation as this is
the one in which there exists a transition from a monolayer to a polylayer.

2.3.7 Other Isotherms from Gibbs Equation:

We see that many isotherm equations (linear, Volmer, Hill-deBoer, Harkins-
Jura) can be derived from the generic Gibbs equation (2.3-13). Other equations of
state relating the spreading pressure to the surface concentration can also be used,
and thence isotherm equations can be obtained. The following table (Table 2.3-1)
lists some of the fundamental isotherm equations from a number of equations of
state (Ross and Olivier, 1964; Adamson, 1984).

Table 2.3.1: Isotherm Equations derived from the Gibbs Equation

Equation of state

«a = RgT

na - RgT—In — - —

n{o-o0) = RJ

TTCT R T a lnf a 1 C W a °

(, + JL).-..).R.T

(, + i).-..).R,T

Isotherm

bP = 0

b P = e

i-e

bP exp

i-e *\i-eJ
e f" cwê

bP = exp

i-e \ KT)
b P - 9 exp(̂  9 jexp( c9)

bP- expl Jexp( cB2)

b P - J exp exp( c6)

Name

Henry law

Langmuir

Volmer

Fowler-
Guggenheim

Hill-deBoer
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Since there are many fundamental equations which can be derived from various
equations of state, we will limit ourselves to a few basic equations such as the Henry
law equation, the Volmer, the Fowler-Guggenheim, and the Hill-de Boer equation.
Usage of more complex fundamental equations other than those just mentioned
needs justification for doing so.

2.4 Multisite Occupancy Model of Nitta

The theory of Nitta et al. (1984) assumes a localised monolayer adsorption on
surface with an allowance for multi-site adsorption. This is an extension of the
Langmuir isotherm for localised monolayer adsorption. Nitta et al.'s theory is based
on the statistical thermodynamics, and its derivation is given briefly below.

Let M be the number of independent active sites and N be the number of
adsorbed molecules. When each adsorbed molecule occupies n sites, the partition
function of the adsorbed phase Q(M,N,T) is written by:

Q(M,N,T) = (js
N)g(N,M)exp

Ne (nN)2u

kT + 2MkT
(2.4-1)

where j s is the internal and vibrational partition function of an adsorbed molecule, 6
is the adsorption energy per molecule for adsorbate-adsorbent interaction and u is
the molecular interaction parameter for adsorbate-adsorbate interaction. The factor
g(N,M) is the combinatorial factor which describes the number of distinguishable
ways of distributing N adsorbed molecules over M sites. This function may be
expressed as:

where £ is a parameter relating to the flexibility and the symmetry of a molecule.
Knowing the partition function Q, the chemical potential of an adsorbate on the

surface is equal to the partial derivative of -kTln(Q) with respect to N, that is

S / X T \ / A * XT\ 2XT
V w r\ i l N l , M - n N 6 n Nu n / 1 . ,—- = -ln(iQO + ln — - n l n (2.4-3)
kT \MJ K M ) kT MkT

At equilibrium, this chemical potential is equal to the chemical potential of the
gas, which is expressed in terms of pressure and the internal partition of gas phase:



36 Equilibria

kT i kT
K 1 VJgK1

(2.4-4)

where A is the thermal de Broglie wavelength, and j g is the internal partition of gas
phase.

Equating the two chemical potentials at equilibrium, and noting that the
fractional loading is

0 = — (2.4-5)

the following adsorption isotherm equation is obtained:

ln(nbP) = ln0 - nln(l - 0) - — n0 (2.4-6a)
IV 1

or

nbP = — expf - — 0 ] (2.4-6b)
h__9jn v kT y

where b is the adsorption affinity, defined as:

b = i^-—expf — | (2.4-7)
j g Kl VK17

The behaviour of the Nitta equation is that the slope of the surface coverage
versus bP decreases with an increase in n, while it increases with an increase in the
interaction parameter u.

The adsorbed amount is related to the fractional loading as follows:

C, =C,S0 (2.4-8)

where C ŝ is the maximum adsorbed concentration, which is related to the site
concentration So as follows.

CMS = ^ (2.4-9)

The Nitta et al.'s equation contains four parameters, So, n, b, and u. As a first
approximation, we can set u = 0 to reduce the number of parameter by one. This is
reasonable in systems where the adsorbate-adsorbate interaction is not as strong as
the adsorbate-adsorbent interaction. If the fit of the three parameter model with the
data is not acceptable, then the four parameter model is used. In the attempt to
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reduce the number of fitting parameters in the Nitta's isotherm equation, the
following section shows how the adsorbate-adsorbate interaction energy can be
estimated.

2.4.1 Estimation of the Adsorbate-Adsorbate Interaction Energy

The following analysis shows how the interaction energy can be estimated from
the Lennard-Jones 12-6 potential, taken as a model for molecular interaction. The
pairwise interaction between two molecules separating by a distance r is given by

(2.4-10)

where § is the potential energy, 8* is the well depth of the potential, and a is the
collision diameter, which is defined as the distance at which the potential energy is
zero.

If the adsorbed molecules are randomly distributed, the total energy of
interaction between a molecule and all the surrounding molecules is:

Uj = f<|>(r) — 2?rr dr (2.4-11)
J A
a

where N is the number of adsorbed atoms on the surface and A is the surface area.
Substituting eq. (2.4-10) into eq. (2.4-11), we obtain the total energy of

interaction between one molecule and all the surrounding molecules as given below:

U l = - * L e V ^ (2.4-12)
1 5 A

There are N adsorbed molecules on the surface, the total energy due to the
molecular interaction is then simply

2

UT = —U, = - — e V — (2.4-13)
T 2 l 5 A

The factor 2 in the above equation is to avoid counting the pairwise interaction
twice. This total energy of the adsorbed molecule interaction can also be calculated
from

UT = - - u n N 0 (2.4-14)
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where u is the molecular potential energy associated to a site. Thus by equating the
above two equations yields the following expression for u

5 n0A

But the fractional loading is given by eq. (2.4-5); hence the above equation
becomes:

u = — e a 2 —— (2.4-16)
5 n A

where M is the number of active sites. When the spherical particles are packed
closely together, the fraction occupied by those particles is 0.907, and we write

n Ma2

4 nA
where

= 0.907 (2.4-17)

Combining eqs. (2.4-16) and (2.4-17) gives the following estimate for the
adsorbate-adsorbate interaction energy:

( *\
u = 3.44 — (2.4-18)

This estimated adsorbate-adsorbate interaction energy may be used in the Nitta
et al.'s equation (2.4-6) to reduce the number of parameters of that equation.

2.4.2 Special Case

When n = 1, the Nitta's equation (2.4-6) is reduced to the Fowler-Guggenheim
equation (2.3-29). In the case of no adsorbate-adsorbate interaction, that is u = 0,
we have the following isotherm:

nbP = — (2.4-19)
(1-0)"

This equation reduces to the famous Langmuir isotherm when n = 1. The
adsorption equation (2.4-19) without adsorbate - adsorbate interactions works well
with adsorption of hydrocarbons and carbon dioxide on activated carbon and carbon
molecular sieve with n ranging from 2 to 6.
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2.4.3 Extension to Multicomponent Systems

The Nitta et al.'s equation (2.4-6) is readily extended to multicomponent
systems. The relevant equation is:

^ A n l (242°)
When all the interaction energies between adsorbed molecules are zero, the

multicomponent equations will be:

Further, if n{ = 1 for all i, eq. (2.4-12) reduces to the extended Langmuir
equation. We shall further discuss multicomponent systems in details in Chapter 5.

2.5 Mobile Adsorption Model of Nitta et al.

The last section deals with the multi-site adsorption model of Nitta and his co-
workers. In such model each adsorbate molecule is adsorbed onto n active sites and
the adsorption is localised. For surfaces where mobile adsorption is possible, the
approach using the scaled particle theory can be used in the statistical
thermodynamics to obtain the required adsorption isotherm equation. This has been
addressed by Nitta and co-workers and what to follow is the brief account of their
theory (Nitta et al., 1991).

At a given temperature T, the system containing N molecules on a surface area
A has the following partition function

(2.5-1)
Nil, A2 ) \ RgT

where E is the potential energy, Af is the free area available to each molecule, A is
the de Broglie wave length and j s is the molecular partition function of an adsorbed
molecule. The free area for a molecule modelled as a hard disk of diameter d is
governed by the following equation

^ W n O - T l ) - - ^ - (2.5-2)
A ) \-r\
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which is developed from the scaled particle theory (Helfand et al., 1961). In the
above equation, r\ is the dimensionless surface density

A = P A
(2.5-3)

Figure 2.5-1 shows a plot of the reduced free surface area versus the
dimensionless density. We see that the surface free area diminishes to zero when
the dimensionless surface density is about 0.8.

The potential energy E in eq. (2.5-1) is contributed by two interactions. One is
the vertical interaction: adsorbate-adsorbent interaction, and the other is the
horizontal interaction: adsorbate-adsorbate interaction. The vertical interaction
energy is the negative of the well depth of the Lennard-Jones potential energy
between a molecule and all the atoms on the surface. The horizontal interaction
between two adsorbed molecules is (eq. 2.4-13)

- N 2 ^ (2.5-4a)
A

where a is related to the Lennard-Jones potential parameters. It was derived in the
last section (eq. 2.4-13) and takes the form

3TT 2 *a = — a e (2.5-4b)

A/A

Figure 2.5-1: Plot of the reduced free area versus the dimensionless surface density

Thus the potential energy E is given by the sum of the vertical interaction and the
horizontal interaction:
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(2.5-5)

Substitution of eqs. (2.5-2) and (2.5-5) into the partition function (eq. 2.5-1) yields
the explicit expression for the partition function:

_ 1 (j'A^I „ x N ( NTI Ne N 2 C 0 „*„
Q = — M - H (l-'n)Nexp - + + (2.5-6)

N!^ A ) \ \-y\ YX AkTJ

Knowing the partition function of a system containing N molecules occupying an
area of A, the chemical potential of a molecule is:

(2.5-7)
kT V 3N ) T A

Hence

iil = l n p^l_ l n ( 1 _ , ) + ( l z ^ _ J L _ ^ (2.5.8)
kT {fAJ V " (1-TI)2 kT AkT

At equilibrium, the chemical potential of an adsorbed molecule is the same as that of
a gas molecule

I n f l (2.5-9)
kT tfkTj

where j 8 is the internal molecular partition function and § is the fugacity coefficient.
Equating eqs. (2.5-8) and (2.5-9) yields the following adsorption isotherm for

the case of mobile adsorption on a surface

U J (1-n)2 kT

where b is the adsorption affinity, defined as

) (2.5-11)

T J V

and u is the horizontal interaction parameter

u = | : (2.5-12)
Eq. (2.5-10) has a very similar form to the Hill de Boer equation (2.3-27).
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The above equation of Nitta et al. deals with mobility of adsorbed molecules
and their lateral interaction. When the lateral interaction is zero, eq. (2.5-10)
becomes:

^eJiiz^hl (2.5-13)

This form is similar to that of the Volmer equation, which also accounts for the
mobility of the adsorbed molecules (but note the difference in the mobility term of
the two equations):

Q ( § \
<j)bP = exp (2.5-14)

2.6 Lattice Vacancy Theory

Honig and Mueller (1962) adapted the Flory-Huggin polymer-monomer
solution theory to obtain the lattice vacancy theory for gas phase adsorption. Here
the concept of fractional hole size is introduced. The isotherm equation obtained is:

^ - C " 2 6 (2.6-la)
1 G ) rPo

or
ln(P/Po) = ln9-rln(l-0)-zeinC (2.6-lb)

where

/ \ e(1"r)

Po = P* exp(- e / RgTJ — — (2.6-2a)

W
= exp | - — I (2.6-2b)

where 6 is the adsorption energy, j s is the partition function, w is the lateral energy
of interaction, z is the coordination number, and r is the number of monomer to
form an r-mer. The form obtained by Honig and Mueller is very similar to the form
of the equation obtained by Nitta et al. (1984).
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2.7 Vacancy Solution Models (VSM)

2.7.1 VSM-Wilson Model

The vacancy solution theory was first developed by Suwanayuen and Danner
(1980). Basically it assumes that the system consists of two solutions. One is the
gas phase and the other is the adsorbed phase. They differ in their difference in
composition (one is denser than the other). The vacancy solution is composed of
adsorbate molecules and vacancies. The latter is an imaginary entity defined as a
vacuum space which acts as the solvent of the system, and it has the same size as the
adsorbate.

The vacancy is denoted as the species v. The chemical potential of the species
v in the adsorbed phase, according to Suwanayuen and Danner, is:

Ii = \i0 + RgTln(yx) + no (2.7-1)

where y is the activity coefficient, x is the mole fraction, n is the surface pressure
and a is the partial molar surface area.

For the gas phase, a similar equation can be written

^ x G ) ( 2 . 7 - 2 )

Equating the chemical potential for the species v between the two phases gives the
following equation of state: (after assuming the contribution of the logarithm term in
eq. 2.7-2 is negligible)

RJT
n = --

g -ln(Yvxv) (2.7-3)

with the activity coefficient calculated from the Wilson equation as a function of the
mole fractions xb xv and two constants Avl and Alv:

lnYv =-ln(xv + A ^ x J - x J — - ^ ±f ] (2.7-4)
|_Xj+Alvxv xv+AvlX!j

Using the equation of state (2.7-3) into the Gibbs isotherm equation (eq. 2.3-
13), they obtained:

r c , _ 0 _ i r 1-(1-A y , )9 1 J Ay,(l-Av,)9 ( l - A , v ) 9 1
[ K i - e J P ' A w + ( i - A , v ) e J e x p [ i - ( i - A v , ) e A l v + ( i - A l v ) e J v

where K is the Henry constant, and
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(2.7-5b)

Eq. (2.7-5a) is called the VSM-W as it uses the Wilson equation for the activity
coefficient. This equation has been used successfully to describe adsorption of
many hydrocarbons on activated carbon.

2 7.2 VSM-Flory-Huggin Model

The VSM-W isotherm equation is a four parameters model (Alv , Avl, K and
C^). The pairwise interaction constants Alv and Avl have been found to be highly
correlated. To avoid this problem, Cochran et al. (1985) used the Flory-Huggin
equation for the activity coefficient instead of the Wilson equation:

lnyv = ln(l + ctlv0) (2.7-6a)

where

c c l v = - ^ - - l (2.7-6b)

with a, and av being molar areas of the adsorbed species and the vacancy,
respectively. Using this equation for activity in the equation of state (2.7-3) and
then substituting it into the Gibbs isotherm equation (2.3-13), the adsorption
isotherm equation is:

J e = c i L ( 2-7"7 )

This equation has one less parameter than eq. (2.7-5) which uses the Wilson
equation for activity coefficient.

Since the molar areas of the adsorbate (a^ and the vacancy (av) are positive, the
parameter a lv must be greater than - 1.

Rearranging eq. (2.7-7) as

] (2.7-8)
MS ( i-e) U+a l veJ

of which the first derivative is
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(2.7-9)
(i+alve)2

is always positive for ctlv > - 1, suggesting the mono tonic increase of the adsorbed
amount versus pressure.

The vacancy solution model is applied with good success in many systems, and
it is readily extended to multicomponent systems because the inherent feature of this
model is the interaction between gas molecules and the vacancies.

The two VSM isotherm equations are given in eqs. (2.7-5) and (2.7-7)
depending on whether the Wilson equation or the Flory-Huggin equation is used to
calculate the activity coefficient. Observing the form of these equations, the
vacancy solution model equation can be written in general form as follows:

(2.7-io)

The function f(9) describes the nonideality of the mixture, and is calculated from
equation:

(2.7-11)

By nonideality here, we mean the deviation from the Langmuir behaviour. When
f(0) = 1, eq. (2.7-10) reduces to the famous Langmuir equation.

2.7.3 Isosteric Heat of A dsorption

The isosteric heat of the FH-VSM (eq. 2.7-7) is obtained by Talu and Kabel
(1987) as:

AH
RgT V dT ) c

+
2a6 + a2e2

(2.7-12)
The last term is due to the change in the saturation capacity with respect to
temperature. This term blows up when the fractional loading approaches unity. The
heat of adsorption should take a finite value at high coverage, thus the saturation
capacity, according to Talu and Kabel, must be independent of temperature (that is
the third term in the RHS of eq. 2.7-12 must be zero).

Cochran et al. (1985) related the parameter a in the FH equation to temperature
through the saturation capacity as
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^ - l (2.7-13)

where m is a constant. If the saturation capacity is assumed constant, then a is also
a constant. This implies that the second term in the RHS of eq.(2.7-10) is also zero.
Thus,

is independent of loading, similar to the Langmuir equation.
For the W-VSM equation (2.7-5), the isosteric calculated for this model is:

f AH) _ fdlnlO| | 2 9 A l v + ( l - A l v ) 9 2 8A lv [ 6A v l [ 2 - ( l - A v l)9] dA vl

r R g T J = " l dT J + A l v [ A l v + ( l - A l v ) 0 ] 2 dT + [l - ( l _ A v l ) 0 ] 2 ST
(2.7-15)

Among the two models of VSM, the W-VSM describes experimental isosteric
heat much closer than the FH-VSM model, although the isosteric heat calculated
from FH-VSM does not differ more than 20% from experimental data.

2.8 2-D Equation of State (2-D EOS) Adsorption Isotherm

A number of fundamental approaches have been taken to derive the necessary
adsorption isotherm. If the adsorbed fluid is assumed to behave like a two
dimensional nonideal fluid, then the Equation of State developed for three
dimensional fluids can be applied to two dimensional fluids with a proper change of
variables. The 2D-EOS adsorption isotherm equations are not popularly used in the
description of data, but they have an advantage of easily extending to
multicomponent mixtures by using a proper mixing rule for the adsorption
parameters.

For 3D fluids, the following 3 parameter EOS equation is popularly used

v2 +abv + pt

where p is the pressure, v is the volume per unit mole, a and b are parameters of the
fluid and a and p represent numerical values. Different values of a and P give
different forms of equation of state. For example, when a = P = 0, we recover the
famous van der Waals equation.

Written in terms of molar density p (mole/volume), the 3D-EOS will become:
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= pRgT (2.8-2)

Adopting the above form, we can write the following equation for the 2D-EOS as
follows:

7 1 + / ' H \4l ~v)=CTR*T (2-8-3)() )
where n is the spreading pressure, a is the surface density (mole/area) and the
parameters as and bs are the 2D analogs of a and b of the 3D-EOS. Written in terms
of the surface concentration (mole/mass), the above equation becomes:

( l - b ' s w ) = wR,T (2.8-4)

where A is the specific area (m2/g).
To provide an EOS to properly fit the experimental data, Zhou et al. (1994)

suggested the following form containing one additional parameter

- (bsw)m) = wRgT (2.8-5)

This general equation reduces to special equations when the parameters a, P
and m take some specific values. The following table shows various special cases
deduced from the above equation.

a B m EOS

0
0
1
2

0
0
0
-1

1
Vi

1
1

van der Waals
Eyring
Soave-Redlich-Kwong
Peng-Robinson

To fit many experimental data, Zhou et al. (1994) have found that m has to be
less than lA. They suggested a value of 1/3 for m to reduce the number of
parameters in the 2D-EOS equation (2.8-5).

At equilibrium, the chemical potential of the adsorbed phase is the same as that
of the gas phase, that is
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H a = H g = ^ + R g T l n P (2.8-6)

The chemical potential of the adsorbed phase is related to the spreading pressure
according to the Gibbs thermodynamics equation (eq. 2.3-11) rewritten here for
clarity:

-AdTi + nd î = 0 (2.8-7)

Thus

= — RgT = aRgT (2.8-8)

But the spreading pressure is a function of a as governed by the equation of state
(2.8-3). We write

dlnP = - 1 - 1 ^ 1 da (2.8-9)
RgT a VdaJj

Integrating the above equation, we get

_ l _ C T f i W d a (2.8-10)
RgT J a Ida;1 V '

Eq. (2.8-10) is the adsorption isotherm equation relating the surface density a
(mole/m2) in terms of the gas phase pressure. The applicability of this isotherm
equation rests on the ability of the 2D-EOS (eq. 2.8-5) to describe the state of the
adsorbed molecule. Discussions on the usage of the above equation in the fitting of
experimental data are discussed in Zhou et al. (1994).

2.9 Concluding Remarks

This chapter has addressed the fundamentals of adsorption equilibria of a pure
component. A number of fundamental equations have been discussed. Although
they are successful in describing some experimental data, they are unfortunately
unable to describe experimental data of practical solids. This is usually attributed to
the complexity of the solid, and to some extent the complexity of the adsorbate
molecule. There are two approaches adopted to address this problem. One is the
empirical approach, which we will address in Chapter 3, and the other involves the
concept of heterogeneity of the system whether this heterogeneity is from the solid
or from the adsorbate or a combination of both. This second approach is addressed
in some detail in Chapter 6.



3
Practical Approaches of Pure

Component Adsorption Equilibria

3.1 Introduction

In the last chapter, we discussed the description of pure component adsorption
equilibrium from the fundamental point of view, for example Langmuir isotherm
equation derived from the kinetic approach, and Volmer equation from the Gibbs
thermodynamic equation. Practical solids, due to their complex pore and surface
structure, rarely conform to the fundamental description, that is very often than not
fundamental adsorption isotherm equations such as the classical Langmuir equation
do not describe the data well because the basic assumptions made in the Langmuir
theory are not readily satisfied. To this end, many semi-empirical approaches have
been proposed and the resulting adsorption equations are used with success in
describing equilibrium data. This chapter will particularly deal with these
approaches. We first present a number of commonly used empirical equations, and
will discuss some of these equations in more detail in Chapter 6.

3.2 Empirical isotherm equations

In this section, we present a number of popularly used isotherm equations. We
start first with the earliest empirical equation proposed by Freundlich, and then Sips
equation which is an extension of the Freundlich equation, modified such that the
amount adsorbed in the Sips equation has a finite limit at sufficiently high pressure
(or fluid concentration). We then present the two equations which are commonly
used to describe well many data of hydrocarbons, carbon oxides on activated carbon
and zeolite: Toth and Unilan equations. A recent proposed equation by Keller et al.
(1996), which has a form similar to that of Toth, is also discussed. Next, we
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describe the Dubinin equation for describing micropore filling, which is popular in
fitting data of many microporous solids. Finally we present the relatively less used
equations in physical adsorption, Jovanovich and Tempkin, the latter of which is
more popular in the description of chemisorption systems.

3.2.1 Freundlich Equation

The Freundlich equation is one of the earliest empirical equations used to
describe equilibria data. The name of this isotherm is due to the fact that it was used
extensively by Freundlich (1932) although it was used by many other researchers.
This equation takes the following form:

CM =KP1 /n (3.2-1)

where C^ is the concentration of the adsorbed species, and K and n are generally
temperature dependent. The parameter n is usually greater than unity. The larger is
this value, the adsorption isotherm becomes more nonlinear as its behaviour deviates
further away from the linear isotherm. To show the behaviour of the amount
adsorbed versus pressure (or concentration) we plot (C^ / C ô) versus (P/Po) as
shown in Figure 3.2-1, that is

k l / n

where Po is some reference pressure and C ô is the adsorbed concentration at that

reference pressure, C^o = K P Ql/n

Amount
adsorbed 1.5

Figure 3.2-1: Plots of the Freundlich isotherm versus P/Po
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We see from Figure 3.2-1 that the larger is the value of n, the more nonlinear is
the adsorption isotherm, and as n is getting larger than about 10 the adsorption
isotherm is approaching a so-called rectangular isotherm (or irreversible isotherm).
The term "irreversible isotherm" is normally used because the pressure (or
concentration) needs to go down to an extremely low value before adsorbate
molecules would desorb from the surface.

The Freundlich equation is very popularly used in the description of adsorption
of organics from aqueous streams onto activated carbon. It is also applicable in gas
phase systems having heterogeneous surfaces, provided the range of pressure is not
too wide as this isotherm equation does not have a proper Henry law behaviour at
low pressure, and it does not have a finite limit when pressure is sufficiently high.
Therefore, it is generally valid in the narrow range of the adsorption data.

Parameters of the Freundlich equation can be found by plotting log10 (CM)
versus log10 (P)

= log10(K)+llog10(P)
n

which yields a straight line with a slope of (1/n) and an intercept of log10(K).

Fitting of propane/ activated carbon data
To illustrate the linearity of this plot, we apply the Freundlich equation

to the adsorption data of propane onto a sample of activated carbon at 10,
30 and 60 °C. The data are shown in Table 3.2-1 and Figure 3.2-2. This
activated carbon is a typical commercial activated carbon, having a BET
surface area of 1100 m2/g, and a porosity of 0.7 (including macropores and
micropores)

Table 3.2-1: Adsorption data of propane on AC at 283, 303 and 333 K (C^ mmol/g)

283 K

P (kPa)
0.21
0.64
1.39
3.03
5.67
12.66
31.99
44.79
62.45
81.41
106.10
126.40

cu
1.13
1.74
2.28
2.89
3.37
3.96
4.58
4.80
5.05
5.27
5.51
5.68

303 K

P (kPa)
0.60
1.71
3.55
7.13
12.08
22.57
45.85
59.77
78.28
98.03
123.50

cu
1.12
1.71
2.23
2.79
3.22
3.72
4.26
4.48
4.71
4.92
5.15

333 K

P (kPa)
2.03
5.16
9.69
17.02
25.47
39.89
67.07
82.17
102.00
122.50

Cu
1.09
1.63
2.09
2.56
2.91
3.33
3.80
4.00
4.22
4.44
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Amount
adsorbed
(mmole/g)

20 40 60 80 100 120 140

Pressure (kPa)

Figure 3.2.-2: Adsorption isotherm of propane on activated carbon (T = 283, 303, 333 K)

Since the Freundlich equation is not applicable over the complete
range of pressure, we limit the fitting of this equation to only a few selected
data of the three isotherms. The selection of data is arbitrary. Here we
choose the first four data points to illustrate the application of the
Freundlich equation. The plots of log10 (C^) versus log10 (P) for the three
temperatures are shown in Figure 3.2-3, and they all can be fitted with a
straight line.

0.0 0.5

log10(P)

Figure 3.2-3: Plot of log^Cy versus log10(P)

Using the linear regression, we find the constants K and n at these
three temperatures, and the results are tabulated in Table 3.2-2.
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Table 3.2-2.

T(K)
283
303
333

Values for the optimal

K
1.99

1.37

0.83

parameters K and n

n
2.82
2.70
2.50

We note that the parameter K decreases with temperature, and so does
the parameter n. This particular temperature dependence will be discussed
next in Section 3.2.1.2.

3.2.1.1 Theoretical Justification of the Freundlich Equation

Although the Freundlich equation was proposed originally as an empirical
equation, it can be derived, however, from a sound theoretical footing. It is obtained
by assuming that the surface is heterogeneous in the sense that the adsorption energy
is distributed and the surface topography is patchwise, that is sites having the same
adsorption energy are grouped together into one patch (the adsorption energy here is
the energy of interaction between adsorbate and adsorbent). Each patch is
independent from each other, that is there is no interaction between patches.
Another assumption is that on each patch adsorbate molecule only adsorbs onto one
and only one adsorption site; hence, the Langmuir equation is applicable for the
description of equilibria of each patch, that is for a patch with an adsorption energy
E, the local adsorption isotherm equation of that patch is:

(3.2-2)
MSl + booexp(E/RgT)P

where E is the interaction energy between solid and adsorbate molecule.
Zeldowitsch assumed that the energy distribution of all patches follows the

exponential decay function. Let the number of sites having adsorption energy
between E and E + dE be F(E)dE, where F(E) is given by:

F(E) = a-exp(-E/E0) (3.2-3)

where a and Eo are constants with the product aE0 being the total number of sites.
The overall fractional coverage is simply the average of the local adsorption
isotherm over the full energy distribution, that is:

QO 00

0 = J6(E)F(E)dE / |F(E)dE (3.2-4a)
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where
0(E) = C^(E)/C^ s (3.2-4b)

Substitution of the local isotherm equation (3.2-2) and the energy distribution
(eq. 3.2-3) into eq. (3.2-4a), and after some approximations, Zeldowitsch derived
the Freundlich isotherm. Thus, the Freundlich equation has some theoretical basis at
least for heterogeneous solids having an exponential decay energy distribution and
Langmuir adsorption mechanism is operative on all patches.

3.2.1.2 Temperature Dependence ofK and n

The parameters K and n of the Freundlich equation (3.2-1) are dependent on
temperature as seen in Example 3.2-1. Their dependence on temperature is
complex, and one should not extrapolate them outside their range of validity. The
system of CO adsorption on charcoal (Rudzinski and Everett, 1992) has
temperature-dependent n such that its inverse is proportional to temperature. This
exponent was found to approach unity as the temperature increases. This, however,
is taken as a specific trend rather than a general rule.

To derive the temperature dependence of K and n, we resort to an approach
developed by Urano et al. (1981). They assumed that a solid surface is composed of
sites having a distribution in surface adsorption potential, which is defined as:

(3.2-5)

The adsorption potential A' is the work (energy) required to bring molecules in
the gas phase of pressure P' to a condensed state of vapor pressure Po. This means
that sites associated with this potential A' will have a potential to condense
molecules from the gas phase of pressure P \ If the adsorption potential of the gas

(3.2-6)

is less than the adsorption potential A' of a site, then that site will be occupied by an
adsorbate molecule. On the other hand, if the gas phase adsorption potential is
greater, then the site will be unoccupied (Figure 3.2-4). Therefore, if the surface has
a distribution of surface adsorption potential F(A') with F(A')dA' being the amount
adsorbed having adsorption potential between A' and A'+dA', the adsorption
isotherm equation is simply:
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(3.2-7)

F(A0

Unoccupied

Occupied

V
A = RgTln[ -J-

Figure 3.2-4: Distribution of surface adsorption potential

If the density function F(A') takes the form of decaying exponential function

F(A) = 8.exp(-A / Ao) (3.2-8)

where Ao is the characteristic adsorption potential, the above integral can be
integrated to give the form of the Freundlich equation:

-,1/n (3.2-9)

where the parameter K and the exponent (l/n) are related to the distribution
parameters 5, Ao, and the vapor pressure and temperature as follows:

K = (8A0)P0"
-R g T/A 0

RgT

(3.2-10a)

(3.2-10b)

The parameter n for most practical systems is greater than unity; thus eq. (3.3-
10b) suggests that the characteristic adsorption energy of surface is greater than the
molar thermal energy RgT. Provided that the parameters 5 and Ao of the distribution
function are constant, the parameter l/n is a linear function of temperature, that is
nRT is a constant, as experimentally observed for adsorption of CO in charcoal for
the high temperature range (Rudzinski and Everett, 1992). To find the temperature
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dependence of the parameter K, we need to know the temperature dependence of the
vapor pressure, which is assumed to follow the Clapeyron equation:

l n P 0 = c c - ^ (3.2-11)

Taking the logarithm of K in eq. (3.2-10a) and using the Clapeyron equation
(3.2-11), we get the following equation for the temperature dependence of lnK:

f / x pRKl aR g T
lnK = ln(5A0) + — M ^— (3.2-12a)

L ^ o J ^ o

This equation states that the logarithm of K is a linear function of temperature,
and it decreases with temperature. Thus the functional form to describe the
temperature dependence of K is

^ J (3.2-12b)

and hence the explicit temperature dependence form of the Freundlich equation is:

( uRj:\ R T/A

C^ = Ko exp^—^S-J xpV / A o (3.2-12c)

Since li^CjJ and 1/n are linear in terms of temperature, we can eliminate the
temperature and obtain the following relationship between lnK and n:

(3.2-13)
' Ao

suggesting that the two parameters K and n in the Freundlich equation are not
independent. Huang and Cho (1989) have collated a number of experimental data
and have observed the linear dependence of ln(K) and (1/n) on temperature. We
should, however, be careful about using this as a general rule for extrapolation as
the temperature is sufficiently high, the isotherm will become linear, that is n = 1,
meaning that 1/n no longer follows the linear temperature dependence as suggested
by eq. (3.2-10b). Thus, eq. (3.2-13) has its narrow range of validity, and must be
used with extreme care. Using the propane data on activated carbon (Table 3.2-1),
we show in Figure 3.2-5 that lnK and 1/n (tabulated in Table 3.2-2) are linearly
related to each other, as suggested by eq.(3.2-13).
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ln(K)
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Figure 3.2-5: Plot of ln(K) versus 1/n for propane adsorption on activated carbon

3.2.1.3 Heat of Adsorption

Knowing K and n as a function of temperature, we can use the van't Hoff

equation

(3.2-14)

to determine the isosteric heat of adsorption. The result is (Huang and Cho, 1989):

(3.2-15)

Thus, the isosteric heat is a linear function of the logarithm of the adsorbed

amount.

3.2.2 Sips Equation (Langmuir-Freundlich)

Recognising the problem of the continuing increase in the adsorbed amount
with an increase in pressure (concentration) in the Freundlich equation, Sips (1948)
proposed an equation similar in form to the Freundlich equation, but it has a finite
limit when the pressure is sufficiently high.

(bp)1/n

CH=CM 1/n
(3.2-16)

In form this equation resembles that of Langmuir equation. The difference
between this equation and the Langmuir equation is the additional parameter Mn" in
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the Sips equation. If this parameter n is unity, we recover the Langmuir equation
applicable for ideal surfaces. Hence the parameter n could be regarded as the
parameter characterising the system heterogeneity. The system heterogeneity could
stem from the solid or the adsorbate or a combination of both. The parameter n is
usually greater than unity, and therefore the larger is this parameter the more
heterogeneous is the system. Figure 3.2-6 shows the behaviour of the Sips equation
with n being the varying parameter. Its behaviour is the same as that of the
Freundlich equation except that the Sips equation possesses a finite saturation limit
when the pressure is sufficiently high. However, it still shares the same
disadvantage with the Freundlich isotherm in that neither of them have the right
behaviour at low pressure, that is they don't give the correct Henry law limit. The
isotherm equation (3.2-16) is sometimes called the Langmuir-Freundlich equation in
the literature because it has the combined form of Langmuir and Freundlich
equations.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.2-6: Plots of the Sips equation versus bP

To show the good utility of this empirical equation in fitting data, we take the
same adsorption data of propane onto activated carbon (Table 3.2-1) used earlier in
the testing of the Freundlich equation. The following figure (Figure 3.2-7) shows
the degree of good fit between the Sips equation and the data. The fit is excellent
and it is fairly widely used to describe data of many hydrocarbons on activated
carbon with good success. For each temperature, the fitting between the Sips
equation and experimental data is carried out with MatLab nonlinear optimization
routine, and the optimal parameters from the fit are tabulated in the following table.
A code ISOFIT1 provided with this book is used for this optimisation, and students
are encouraged to use this code to exercise on their own adsorption data.
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Figure 3.2-7: Fitting of the propane/activated carbon data with the Sips equation (symbol -data; line:
fitted equation)

The optimal parameters from the fitting of the Sips equation with the experimental
data are tabulated in Table 3.2-3.

Table 3.2-3: Optimal parameters for the Sips equation in fitting propane data on activated carbon

T(K) Cus (mmole/g) b (kPa *)

283
303
333

7.339
7.232
7.583

0.1107
0.04986
0.01545

n(-)
2.306
2.117
1.956

The parameter n is greater than unity, suggesting some degree of heterogeneity
of this propane/ activated carbon system. The larger is this parameter, the higher is
the degree of heterogeneity. However, this information does not point to what is the
source of the heterogeneity, whether it be the solid structural property, the solid
energetical property or the sorbate property. We note from the above table that the
parameter n decreases with temperature, suggesting that the system is "apparently"
less heterogeneous as temperature increases.

3.2.2.1 The Theoretical Basis of the Sips Equation

Using the energy distribution approach (the approach which we shall discuss in
more detail in Chapter 6), Sips derived eq. (3.2-16) from the following integral
equation, which is the average of the local Langmuir isotherm equation over an
energy distribution as shown below:
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bcoexp(E/RgT)P
F(E) dE

where the energy distribution takes the form (Sips, 1948)

(3.2-17a)

F(E) =
8 l + 2cos - exp ^

\nJ {n R,

- E l [ 2 E m - E
+ e xP - - ^ p -

^ n iVg i

(3.2-17b)

Here Em is the energy at which the distribution is maximum. When the energy
is large and positive, the above distribution will reduce to:

(3.2-17c)
RgT RgT

This distribution is an exponential decay function with respect to the adsorption
energy. Figure 3.2-8 shows the plot of the energy distribution (3.2-17b) versus Em -
E at 273 K.

F(E)

0 2 4 6

E m - E

Figure 3.2-8: Plot of the energy distribution versus Em - E fot T = 273 K

It exhibits a Gaussian distribution shape, and when the energy E is either larger or
smaller than Em the distribution exhibits an exponential decay.
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3.2.2.2 The Temperature Dependence of the Sips Equation

For useful description of adsorption equilibrium data at various temperatures, it
is important to have the temperature dependence form of an isotherm equation. The
temperature dependence of the Sips equation

(bP)1/n

^ < 3-2-1 8 a )

for the affinity constant b and the exponent n may take the following form:

= booexp — |=b o exp
g RgT

(3.2-18b)

i = -L + a( 1-^-1 (3.2-18c)
n n0 V T /

Here b^ is the adsorption affinity constant at infinite temperature, b0 is that at some
reference temperature To, r^ is the parameter n at the same reference temperature
and a is a constant parameter. The temperature dependence of the affinity constant
b is taken from the that of the Langmuir equation. Unlike Q in the Langmuir
equation, where it is the isosteric heat, invariant with the surface loading, the
parameter Q in the Sips equation is only the measure of the adsorption heat. We
shall discuss its physical meaning in Section 3.2.2.2.1. The temperature-dependent
form of the exponent n is empirical and such form in eq. (3.2-18c) is chosen because
of its simplicity. The saturation capacity can be either taken as constant or it can
take the following temperature dependence:

(3.2-18d)

Here C^ 0 is the saturation capacity at the reference temperature To, and x is a
constant parameter. This choice of this temperature-dependent form is arbitrary.

This temperature dependence form of the Sips equation (3.2-18) can be
used to fit adsorption equilibrium data of various temperatures simultaneously to
yield the parameter b0, C^ 0, Q/RT0, rio and a.



62 Equilibria

Example 3.2-2: | Fitting of propane/AC data with temperature dependent
Sips equation

Using the data of propane at three temperatures 283, 303 and 333 K
(Table 3.2-1) simultaneously in the fitting of the Sips equation (3.2-18), we
get the following optimal parameters:

Table 3.2-4: Optimal parameters for the temperature dependent Sips equation

X

b0

Q/RT0

"o

a

7.348 mmole/g

0

0.1075 (kPa)1

12.22

2.312

0.5559

where the reference temperature used was To = 283 K. The Matlab code
ISOFIT2 is provided with this book for this task of fitting of multiple
isotherm data at various temperatures.

Knowing the adsorption heat number Q/RgT0, the parameter Q can be
calculated as

mole

This parameter Q is a measure of the adsorption heat, and the above
value is typical for adsorption of low alkanes and alkenes on activated
carbon. The parameter n decreases with temperature. The same behaviour
is found for the exponent (1/n) in the Freundlich equation. The
dependence of n on temperature in eq. (3.2-18c) can be used to extrapolate
to temperatures outside the range used in the fitting (in this case [283,
333K] ) provided that they are not too far away from the fitted range. For
example, the extrapolated value of n at 373K is

i i / 98^

—I— = — — + 0.5559 1 - — = 0.5667
n373 2.312 V 373;

Thus
n373 = 1-̂ 65
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3.2.2.2.1 Isosteric Heat and the Physical Meaning of the Parameter Q

To obtain the isosteric heat for the temperature dependence form of the Sips
equation as given in eq. (3.2-18), we use the van't Hoff equation

(-AH) = RgT2(dlnP/dT)Q

and obtain the following result for the isosteric heat (Appendix 3.1).

( - AH) = Q-(ccRgT0).n In (bP) (3.2-18e)

or written in terms of fractional loading, we have:

(-AH) = Q-(aR gT 0)n 2 ln^] (3.2-18f)

or in terms of the amount adsorbed C^

( - AH) = Q-(ccRgT0)n2 ^ ^ c " ] (3-2"188)

in which we have assumed that the temperature variation of C ŝ is negligible. The
above equation states that the isosteric heat of adsorption decreases with pressure
(i.e. with loading). It takes a value of infinity at zero loading and minus infinity at
saturation. Thus, the Sips equation, despite having the correct finite capacity at
sufficiently large pressure, has its applicability only in the intermediate range of
pressure. Eq. (3.2-18e) also states that beside its dependence on the loading it is
also a function of temperature, reflecting through the temperature dependence of the
parameters n and b.

The isosteric heat equation (3.2-18f) reveals the physical meaning of the
parameter Q in the affinity equation (3.2-18b). It shows that when the fractional
loading is equal to one half, the isosteric heat is equal to Q. Thus the parameter O
defined in the affinity constant b is the isosteric heat at the fractional loading of 0.5:

Using the parameters obtained earlier for the system of propane on activated
carbon into eq. (3.2-18g), we get the following expression for the isosteric heat of
adsorption as a function of the adsorbed concentration at 283 K

(-AH) = 28750-6991 xlnf ^ ) —
v ; ^ 7.348 -Cj mole



64 Equilibria

The following table shows the variation of the isosteric heat the amount adsorbed.

Table 3.2-5: Isosteric heat as a function of loading using the Sips equation

Cu (mmole/g)

1
2
3
4
5
6

(-AH) (Joule/mole)

41,670
35,626
31,344
27,506
23,466
18,311

Similarly we can obtain the isosteric heat as a function of loading at the other
two temperatures 303 and 333K, and Figure 3.2-9 shows plots of the isosteric heat
of propane on activated carbon versus loading for the three temperatures 283, 303
and 333 K.

Isosteric
heat
(kJ/mole)

0.2 1.00.4 0.6 0.8

Fractional loading, 0

Figure 3.2-9: Plot of the isosteric heat versus fractional loading

Note the pattern of the isosteric heat with respect to the fractional loading, and the
three curves intersect at the same point corresponding to the fractional loading of
0.5 and the isosteric heat of Q. This is the characteristics of the Sips equation.

3.2.3 Toth Equation

The previous two equations have their limitations. The Freundlich equation is
not valid at low and high end of the pressure range, and the Sips equation is not
valid at the low end as they both do not possess the correct Henry law type
behaviour. One of the empirical equations that is popularly used and satisfies the
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two end limits is the Toth equation. This equation describes well many systems
with sub-monolayer coverage, and it has the following form:

bP
-ps l/t

(3.2-19a)

Here t is a parameter which is usually less than unity. The parameters b and t are
specific for adsorbate-adsorbent pairs.

When t = 1, the Toth isotherm reduces to the famous Langmuir equation; hence
like the Sips equation the parameter t is said to characterize the system
heterogeneity. If it is deviated further away from unity, the system is said to be
more heterogeneous. The effect of the Toth parameter t is shown in Figure 3.2-10,
where we plot the fractional loading (C^/C^) versus bP with t as the varying
parameter. Again we note that the more the parameter t deviates from unity, the
more heterogeneous is the system. The Toth equation has correct limits when P
approaches either zero or infinity.

C
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Figure 3.2-10: Plot of the fractional loading versus bP for the Toth equation

Being the three-parameter model, the Toth equation can describe well many
adsorption data. We apply this isotherm equation to fit the isotherm data of propane
on activated carbon. For example taking the isotherm data at 303 K in Table 3.2-1,
the extracted optimal parameters are (using the ISOFIT1 routine):

C^ = 33.56 mmole/g, b = 0.069 (kPa)1, t = 0.233

The parameter t takes a value of 0.233 (well deviated from unity) indicates a
strong degree of heterogeneity of the system.
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Several hundred sets of data for hydrocarbons on Nuxit-al charcoal obtained by
Szepesy and Illes (Valenzuela and Myers, 1989) can be described well by this
equation. Because of its simplicity in form and its correct behaviour at low and high
pressures, the Toth equation is recommended as the first choice of isotherm equation
for fitting data of many adsorbates such as hydrocarbons, carbon oxides, hydrogen
sulfide, alcohols on activated carbon as well as zeolites. Sips equation presented in
the last section is also recommended but when the behaviour in the Henry law
region is needed, the Toth equation is the better choice.

3.2.3.1 Temperature Dependence of the Toth Equation

Like the other equations described so far, the temperature dependence of
equilibrium parameters in the Toth equation is required for the purpose of
extrapolation or interpolation of equilibrium at other temperatures as well as the
purpose of calculating isosteric heat.

The parameters b and t are temperature dependent, with the parameter b taking
the usual form of the adsorption affinity, that is

b = b^ exp = b0 exp
RgT0 T"1 (3.2-19b)

where b^ is the affinity at infinite temperature, b0 is that at some reference
temperature To and Q is a measure of the heat of adsorption. The parameter t and
the maximum adsorption capacity can take the following empirical functional form
of temperature dependence

(3.2-19c)

(3.2-19d)

The temperature dependence of the parameter t does not have any sound
theoretical footing; however, we would expect that as the temperature increases this
parameter will approach unity.

Fitting of propane/AC data with temperature dependent
Toth equation
The temperature-dependent form of the Toth equation (3.2-19) is used to
simultaneously fit the isotherm data at 283, 303 and 333 K of propane onto
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activated carbon (using the ISOFIT2 routine), and we extract the
following optimally fitted parameters

Table 3.2-6: Optimal parameters for the temperature dependent Toth equation

b0

Q/RgT0

to
a

X

8.562 mmole/g

10.54 (kPa)'1

19.59

0.2842

0.284

0

where the reference temperature is To = 283 K. Knowing the adsorption
heat number Q/RT0, the parameter Q is calculated as:

Q = 46093 Joule/mole

This measure of heat of adsorption is much higher than that derived from
the fitting of the data with the Sips equation earlier, where we have found a
value of 28750 J/mol for Q. This large difference should cause no alarm as
the parameter Q is only the measure of adsorption heat. For example in the
case of the Sips equation, Q is the isosteric heat of adsorption at a fractional
loading of 0.5, while the parameter Q in the case of the Toth equation is the
isosteric heat of adsorption at zero fractional loading as we shall show in
the next section.

3.2.3.1.1 The Isosteric Heat and the Physical Meaning of the Parameter Q

Using the temperature dependence of b and t as given in eq. (3.2-19) and
applying the van't Hoff equation

( AH 1 r ^
[ J[ R g T 2 J " l <3T J e

we obtain the following isosteric heat equation for the Toth equation (Appendix
3.2).

(- AH) = Q - y(aRgT0 K ln(bP)- [l + (bP)'] In
bP

(l + (bP)f
(3.2-19e)
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Written in terms of the fractional loading or adsorbed concentration CM, the
isosteric heat is:

= Q-I(aRgT0) In e

LMH
(3.2-19f)

or

1-
(3.2-19g)

Like the Sips equation, the isosteric heat of adsorption is a function of pressure
(or loading), and it takes a value of infinity at zero loading and minus infinity at
very high loading, which limits the applicability of the Toth equation in its use in
the calculation of isosteric heat at two ends of the loading. The meaning of the
parameter Q in the Toth equation is now clear in eq. (3.2-19f). It is equal to the
isosteric heat when the fractional loading is zero

Q = (- AH)|

Since the Sips and Toth empirical equations fit the equilibrium data reasonably
well, it may be possible to use the isosteric heat as a function of loading as a
criterion in choosing the correct isotherm equation. Using eq. (3.2-19g) and the
optimal parameters in Table 3.2-6 for the Toth equation, we obtain the following
equation for the isosteric heat at 283 K with values tabulated in Table 3.2-7:

(-AH) = 46,093-2,35 lx In
(1.841-C0,2842)3'52

/8.562)

8.562)
0.2842

Joule

mole

Table 3.2-7: Isosteric heat as a function of loading using the Toth equation

Cu (mmol/g) (-AH) (Joule/mole)

1
2
3
4
5
6

33,608 (-19%)
30,451 (-14%)
27,775 (-11%)
25,137 (-9%)
22,274 (-5%)
18,854 (-3%)
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The isosteric heats calculated by the Toth equation are lower than those
calculated by the Sips equation (Table 3.2-5). The above table shows the percentage
differences between the values calculated by the Sips and Toth equations. The
difference is seen to be significant enough for the isosteric heat to be used as the
criterion to better select the isotherm equation.

Take the example of propane on activated carbon, we plot the isosteric heat (eq.
3.2-19f) versus the fractional loading for the Toth equation using the parameters
obtained in Table 3.2-6 (Figure 3.2-11). Just like the case of the Sips isotherm, the
isosteric heat decreases with loading, and it shows a weak temperature dependence.

Isosteric
heat
(kJ/mole)

0.2 0.4 0.6 0.8
Fractional loading, 8

l.o

Figure 3.2-11: Plots of the isosteric heat versus fractional loading using the Toth equation

3.2.3.2 Other Properties of the Toth Equation

Although the Toth equation, like Sips and Freundlich, is an empirical equation,
it has an advantage over the other two in that it has the following Henry constant at
zero loading:

(3.2-20a)

where the Henry constant (H) is bC^, which is similar to that of the Langmuir
equation. Let us investigate the slope of the Toth adsorption isotherm at finite
loadings:

dP

bCM

1/t + l)
(3.2-20b)
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or written in terms of the fractional loading:

dC,, / t\i/t+i
^ b C ( l e t )

where

(3.2-20C)

(3.2-20d)

The slope of the Toth isotherm (3.2-20c) has a constant limit at zero loading,
and at a given loading it decreases with the loading at a rate much faster than that
for the case of Langmuir equation. This is due to the heterogeneity effect
manifested in the parameter t of the Toth equation. Physically, molecules prefer to
adsorb onto sites of high energy and then as adsorption progresses molecules then
adsorb onto sites of decreasing energy, resulting in a slower rise in the amount
adsorbed versus pressure compared to that of the Langmuir equation.

3.2.3.3 Energy Distribution

Using the energy distribution concept of eq. (3.2-17a) with Langmuir equation
describing the local isotherm, Sircar and Myers (1984) provided the following
energy distribution which gives rise to the Toth equation:

F(E) =

where

1 + bx1 cos(7rt)]2 +[bx t sin(Ttt)]2 |
-arcsin
t

bx1 sin(Trt)

= l / b
0; (3.2-21)

Eq. (3.2-21) is the energy distribution of the Toth equation. Having an energy
distribution only means that the system is not homogeneous, and it does not point to
the source of heterogeneity as well as the physical meaning of the parameters in the
energy distribution.

3.2.4 Unilan equation

Unilan equation is another empirical relation obtained by assuming a patchwise
topography on the surface and each patch is ideal such that the local Langmuir
isotherm is applicable on each patch. The distribution of energy is assumed
uniform. Integrating eq. (3.2-17a) with the following uniform energy distribution
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F(E) =

1
Emax ~ Emin

0 for :

for
(3.2-22)

we obtain the following result, called the Unilan equation (The term Unilan comes
from uniform distribution and Langmuir local isotherm)

C -
2s

l + besP

+ be"sP

where

= boexp

— F + F

2RgT

(3.2-23a)

(3.2-23b)

(3.2-23c)

Here Emax and Emin are the maximum and minimum energies of the distribution,
and b^ is the adsorption affinity at infinite temperature. The parameter s
characterises the heterogeneity of the system. The larger this parameter is, the more
heterogeneous is the system. If s = 0, the Unilan equation (3.2-23) reduces to the
classical Langmuir equation as in this limit the range of energy distribution is zero.
Figure (3.2-12) shows the behaviour of the Unilan equation with s being the varying
parameter.

Fractional
loading, 6

1.0

0.8

0.6

0.4

0.2

0.0

Figure 3.2-12: Plot of the fractional loading versus bP for the Unilan equation
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There we note that the larger is the value of s (around 10) the closer is the isotherm
to the rectangular (irreversible) behaviour.

The Unilan equation has the correct behaviour at low and high pressures. The
Henry behaviour at zero loading is:

C^HP (3.2-24a)

where H is the Henry constant defined as:

^ H (3.2-24b)

When s = 0 (homogeneous solids), the Henry constant will become H = C ŝ b .
The slope of the Unilan equation in terms of pressure is:

1 (3.2-25a)
dP

or in terms of fractional loading, it is (using eq. 3.2-23)

r sinhs
b xe

_ e-2s(i-e)
e

1-e -2s
(3.2-25b)

As seen in Figure 3.2-12, the slope of the isotherm is large for large value of s
initially and then it decreases rapidly as the loading increases, indicating adsorption
at low pressure is favourable at stronger energy sites and then adsorption takes place
on progressingly weaker energy sites.

Like the Sips and Toth equation, the Unilan equation is a three-parameter
isotherm equation, and they are commonly used to correlate adsorption equilibrium
data of many solids, such as activated carbon and zeolite.

3.2.4.1 The Temperature Dependence of the Unilan Equation

The temperature dependence of the Unilan equation is shown in eqs.(3.2-23)
assuming the maximum and minimum energies are not dependent on temperature.
Like the last two empirical isotherm equations (Sips and Toth), we assume that the
saturation capacity follows the following temperature dependence:

c — (3.2-26)
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Fitting of propane/AC data with temperature dependent
Unilan equation
Using such temperature dependence, the Unilan equation can be used to fit
simultaneously the data of propane on activated carbon at 283, 303 and 333
K (Table 3.2-1). We obtain the following extracted fitted parameters by
using the ISOFIT2 routine:

Table 3.2-8: Optimal parameters of the Unilan equation

K
E/RT0

AE

X

13.91 mmole/g
0.001355 (kPa)1

8
43590
0

The reference temperature To used in the above fitting is 283 K. The
degree of fitting between the Unilan equation and the experimental data is
comparable to that for the cases of Sips and Toth equations. The
discrimination between these three empirical equations now rests on the
behaviour of the isosteric heat. This is what we will do next.

3.2.4.1.1 The Isosteric Heat

Using the temperature dependence form of the Unilan equation (3.2-23) into the
van't Hoff equation (3.2-14), we derive the following expression for the isosteric
heat as a function of loading (Appendix 3.3).

2 0 - 9 )
bP

bP) AE [ 2 + esbP + e-sbP| AE
2 I e s - e" s J 2bP

AE (3.2-27a)

The term bP in the above equation is related to the fractional loading through
the isotherm equation (3.2-23a), that is:

~se -se

The limit of the isosteric heat (eq. 3.2-27a) at zero loading is:

lim(- AH) = E + f coths - -M — (3.2-27b)

p->ov V s7 2

Also, the limit at very high loading is:

lim(- AH) = E - RgT (scoths-1) (3.2-27c)
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Example 3;2~5 Isosteric heat calculated from the limits of the Unilan

equation
The two limits of the isosteric heat at low and high loading (eqs. 3.2-

27b and c) can be obtained by starting from the limits of the isotherm
equation (3.2-23). At zero loading, the fractional loading of the Unilan
equation is:

f ^ (3.2-28a)

from which the isosteric heat can be obtained by substituting it into the
van't Hoff equation:

lim(-AH) = I + f coths - - ] — (3.2-28b)
p->o V s7 2

which is exactly the same as eq. (3.2-27b).
Similarly, at very high loading, the Unilan equation (3.2-23) reduces

to:

(3.2-28C)
s ) Kb?)

from which the isosteric heat can be obtained as:

lim(-AH) = I - RT(s coths-1) (3.2-28d)
P-»oo

again confirming eq. (3.2-27c).

The meaning of the mean energy E is clear when we consider the isosteric heat
equation (3.2-27a). When the isosteric heat^of adsorption is equal to E , it is not
difficult to show from eq. (3.2-27a) that bP = 1, corresponding to a fractional
loading of 0.5. Thus the physical meaning of the mean adsorption energy E is that
it is the isosteric heat of adsorption at a fractional loading of 0.5. This is similar to
the Sips equation where its parameter Q is also the isosteric heat of adsorption at the
fractional loading of 0.5.

Using the parameters obtained from the fit of the Unilan equation to the
adsorption data of propane on activated carbon at 283, 303 and 333 K, we plot the
isosteric heat versus loading at these three temperatures (Figure 3.2-13). Unlike the
cases of Sips and Toth where we have seen some moderate temperature dependence
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of the isosteric heat, this quantity calculated from the Unilan equation is practically
independent of temperature.

40

30

Isosteric heat
(kJ/mole) 20

10 -

0.2 0.4 0.6 0.8

Fractional loading, 0

1.0

Figure 3.2-13: Plots of the isosteric heat versus fractional loading using the Unilan equation

It is now interesting to compare the isosteric heats calculated from the Sips,
Toth and Unilan equations derived from the fitting with propane/activated carbon
data at 283, 303 and 333 K. The results are tabulated in Table 3.2-9 and shown
graphically in Figure 3.2-14 for T = 283K.

50

40

Isosteric heat 30
(kJ/mole)

20

10

0
1 2 3 4 5

Adsorbed concentration (mmole/g)

Figure 3.2-14: Comparison between isosteric heats calculated from Sips, Toth and Unilan equations

We see a distinction between the isosteric heat calculated from the Toth equation
and those calculated from the Sips and Unilan equations, despite of the fact that the
three isotherm equations describe the equilibrium data fairly well. This distinction
in the isosteric heat curve could be utilised in the matching between the
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experimental isosteric heat and the heat equations for the three isotherms (eqs. 3.2-
18f, 3.2-19f and 3.2-27a) to decide on the better choice of isotherm equation.

Table 3.2-9: Isosteric heats from the Sips, Toth and Unilan equations

C^ (mmole/g)

1
2
3
4
5
6

Sips

41,670

35,626

31,344

27,506

23,466

18,311

(-AH) (Joule/mole)
Toth

33,608

30,451

27,775

25,137

22,274

18,854

Unilan

36,360

33,881

31,041

28,022

24,930

21,810

3.2.5 Keller, Staudt and Toth's Equation

Recently, Keller and his co-workers (1996) proposed a new isotherm equation,
which is very similar in form to the original Toth equation. The differences between
their equation and that of Toth are that:

(a) the exponent a is a function of pressure instead of constant as in the case of Toth

(b) the saturation capacities of different species are different

The form of Keller et al.'s equation is:

_ ~ bP
a =

[l + (bP)a]
where the parameter ctm takes the following equation:

pP

eel

(3.2-29a)

(3.2-29b)

Here r is the molecular radius, and D is the fractal dimension of sorbent surface.

The saturation parameter C^, the affinity constant b, and the parameter (3 have
the following temperature dependence:

T
CHS=Cns,Oe xP

b = b 0 exp
R g T V T

= poexp
RgTVT

(3.2-29c)

(3.2-29d)
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Here the subscript 0 denotes for properties at some reference temperature To.
The Keller et al.'s equation contains more parameters than the empirical equations
discussed so far.

Fitting the Keller et al's equation with the isotherm data of propane on activated
carbon at three temperatures 283, 303 and 333 K, we found the fit is reasonably
good, comparable to the good fit observed with Sips and Toth equations. The
optimally fitted parameters are:

Cns,0

b0

Po

Q,/RT0

Q2/RT0

X

16.08 mmole/g

0.9814 (kPa)1

3.225 (kPa)"1

0.4438

10.94

-0.2863

0.0002476

3.2.6 Dubinin-Radushkevich Equation

The empirical equations dealt with so far, Freundlich, Sips, Toth, Unilan and
Keller et al., are applicable to supercritical as well as subcritical vapors. In this
section we present briefly a semi-empirical equation which was developed originally
by Dubinin and his co-workers for sub critical vapors in microporous solids, where
the adsorption process follows a pore filling mechanism. More details about the
Dubinin equation will be discussed in Chapter 4.

Hobson and co-workers (1963, 1967, 1969, 1974) and Earnshaw and Hobson
(1968) analysed the data of argon on Corning glass in terms of the Polanyi potential
theory. They proposed an equation relating the amount adsorbed in equivalent
liquid volume (V) to the adsorption potential

(3.2-30)

where Po is the vapour pressure. The premise of their derivation is the functional
form V(A) which is independent of temperature. They chose the following
functional form:

lnV = lnV 0 -BA 2 (3.2-31)

where the logarithm of the amount adsorbed is linearly proportional to the square of
the adsorption potential. Eq. (3.2-31) is known as the Dubinin-Radushkevich (DR)
equation. Writing this equation explicitly in terms of pressure, we have:
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= Voexp
(PE0

(3.2-32)

where Eo is called the solid characteristic energy towards a reference adsorbate.
Benzene has been used widely as the reference adsorbate. The parameter (3 is a
constant which is a function of the adsorptive only. It has been found by Dubinin
and Timofeev (1946) that this parameter is proportional to the liquid molar volume.
Figure 3.2-15 shows plots of the DR equation versus the reduced pressure with
E/RT as the varying parameter.

1.0

0.8

Fractional 0 6

loading

0.4

0.2

o.o
0.2 0.4 0.6 0.8

Reduced pressure, P/Po

1.0

Figure 3.2-15: Plots of the DR equation versus the reduced pressure

We see that as the characteristic energy increases the adsorption is stronger as the
solid has stronger energy of interaction with adsorbate. One observation in that
equation is that the slope of the adsorption isotherm at zero loading is not finite, a
violation of the thermodynamic requirement. This will be discussed in greater detail
in Chapter 4, where we will deal with adsorption in microporous solids.

Eq. (3.2-32) when written in terms of amount adsorbed (mole/g) is:

C^exp
1

(PE0)
R.Tin—

g P,

where the maximum adsorption capacity is:

c -

(3.2-33a)

(3.2-33b)
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The parameter Wo is the micropore volume and vM is the liquid molar volume.
Here we have assumed that the state of adsorbed molecule in micropores behaves
like liquid.

Dubinin-Radushkevich equation (3.2-33) is very widely used to describe
adsorption isotherm of sub-critical vapors in microporous solids such as activated
carbon and zeolite. One debatable point in such equation is the assumption of
liquid-like adsorbed phase as one could argue that due to the small confinement of
micropore adsorbed molecules experience stronger interaction forces with the
micropore walls, the state of adsorbed molecule could be between liquid and solid.

The best utility of the Dubinin-Radushkevich equation lies in the fact that the
temperature dependence of such equation is manifested in the adsorption potential
A, defined as in eq. (3.2-30), that is if one plots adsorption data of different
temperatures as the logarithm of the amount adsorbed versus the square of
adsorption potential, all the data should lie on the same curve, which is known as the
characteristic curve. The slope of such curve is the inverse of the square of the
characteristic energy E = PE0.

To show the utility of the DR equation, we fit eq. (3.2-33) to the adsorption data
of benzene on activated carbon at three different temperatures, 283, 303 and 333 K.
The data are tabulated in Table 3.2-10 and presented graphically in Figure 3.2-16.

Table 3.2-10: Adsorption data of benzene on activated carbon

283 K

P (kPa)

0.0133

0.0933

0.2932

0.6798

1.5590

2.6520

4.2920

6.3580

8.7440

10.0200

C u (mmole/g)

1.6510

3.2470

3.8750

4.2560

4.5270

4.6600

4.8060

4.9480

5.0480

5.0840

303 K

P (kPa)

0.0001

0.0002

0.0133

0.0267

0.0666

0.0933

0.1599

0.3466

0.6931

1.2800

2.8260

3.9320

6.6380

8.5570

10.410

C u (mmole/g)

0.4231

0.8462

1.1110

1.4060

1.9540

2.1660

2.5090

2.9730

3.4310

3.7610

4.1490

4.2770

4.4410

4.5370

4.5880

333 K

P (kPa)

0.0010

0.0267

0.0533

0.0933

0.2532

0.3732

0.6531

1.3330

2.6120

4.3590

7.6640

9.4770

11.5600

C u (mmole/g)

0.4231

0.8450

1.1090

1.4030

1.9460

2.1520

2.4870

2.9290

3.3470

3.6260

3.9380

4.0370

4.2340
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The vapour pressure and the liquid molar volume of benzene are given in the
following table.

Table 3.2-11: Vapour pressure and liquid molar volume of benzene

T(K)
303
333
363

Po (kPa)
16.3
52.6
150

vM (cc/mmole)
0.0900
0.0935
0.0970

By fitting the equilibria data of all three temperatures simultaneously using the
ISOFIT1 program, we obtain the following optimally fitted parameters:

Wo = 0.45 cc/g, E = 20,000 Joule/mole

Even though only one value of the characteristic energy was used in the fitting
of the three temperature data, the fit is very good as shown in Figure 3.2-16,
demonstrating the good utility of this equation in describing data of sub-critical
vapors in microporous solids.

Amount
adsorbed
(mmol/g)

4 6
Pressure (kPa)

Figure 3.2-16: Fitting the benzene/ activated carbon data with the DR equation

3.2.6.1 Isosteric Heat and the Heat of Immersion

The isosteric heat of adsorption of the DR equation can be calculated from the
van't Hoff s equation (3.2-14), and the result is:

1/2

— I + • (3.2-34a)
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where AHvap is the latent heat of vaporization, 8 characterizes the change of the
saturation capacity with respect to temperature:

1 dC
• = - 8 (3.2-34b)

The net heat of adsorption is the isosteric heat minus the heat of vaporization, i.e.:

,1/2
111 r.~ in i / i \

(3.2-35)

Figure 3.2-17 shows the reduced net heat of adsorption q^/RgT versus the
fractional loading with E/RgT as the varying parameter. The heat of adsorption is
infinite at zero loading, and the higher is the characteristic energy the higher is the
isosteric heat of adsorption.

0.2 0.4 0.6 0.8

Fractional loading, 6

1.0

Figure 3.2-17: Plots of the reduced net heat of adsorption versus fractional loading

The enthalpy of immersion is the amount of heat released if adsorption is taken
place in a bulk liquid adsorbate. Since adsorption is from the liquid phase there is
no phase change associated with the condensation of vapors to liquid phase; hence
the net heat of adsorption is used in the calculation of the heat of immersion. This
heat of immersion is given by:

= Jqnet(e)d0 = -(pEo)(l- (3.2-36)
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which can be readily used to determine the characteristic energy of the system.
Stoeckli and his co-wokers (1986, 1989, 1992, 1993) have utilized this dependence
to obtain the characteristic energy by simply measuring the heat of immersion of a
number of liquids.

3.2.7 Jovanovich Equation

Of lesser use in physical adsorption is the Jovanovich equation. It is applicable
to mobile and localised adsorption (Hazlitt et al, 1979). Although it is not as
popular as the other empirical equations proposed so far, it is nevertheless a useful
empirical equation:

1 - 0 = exp - a (3.2-37)

or written in terms of the amount adsorbed:

^j] (3.2-38a)
where

b = b00exp(Q/RgT) (3.2-38b)

At low loading, the above equation will become C^ « ^C^bjP = HP . Thus, this
equation reduces to the Henry's law at low pressure. At high pressure, it reaches the
saturation limit. The Jovanovich equation has a slower approach toward the
saturation than that of the Langmuir equation.

3.2.7.1 Isosteric Heat of Adsorption

To calculate the isosteric heat, we use the van't Hoff equation (3.2-14) and
obtain:

AH = -Q < 0 (3.2-39)

Hence the heat of adsorption is constant and is independent of loading, which is the
same as in the case of Langmuir isotherm.

3.2.8 Temkin Equation

Another empirical equation is the Temkin equation proposed originally by
Slygin and Frumkin (1935) to describe adsorption of hydrogen on platinum
electrodes in acidic solutions (chemisorption systems). The equation is (Rudzinski
and Everett, 1992):
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v(P) = Cln(cP) (3.2-40)

where C and c are constants specific to the adsorbate-adsorbent pairs. Under some
conditions, the Temkin isotherm can be shown to be a special case of the Unilan
equation (3.2-23).

3.2.9 Summary of Empirical Equations

The following table summarises the various empirical isotherm equations.

Table 3.2-12 Summary of commonly used empirical isotherm equations

Isotherm

Frendlich

Sips (LF)

Toth

Unilan

Keller et al.

DR

Jovanovich

Temkin

Functional form

C,=KP-

c -c
1

c c
u us

[
c «" c

2 : '

C C a

V-Voexp

(bP)1/n

+ (bP)1/n

bP
fii/t

l+CbP)1]

J 1 + b V p l
U + be SPJ

bP
m [ l + (bP)a]1 / a

i rRTlnpy"

C - C fl — e ~ b p l
*^u ~ uslL e J

v(P) = Cln(cP)

Remarks

Does not have Henry law
limit and no saturation limit

Does not have Henry law
limit, but it has finite
saturation limit

Has Henry law limit and
finite saturation limit

Has Henry law limit and
finite saturation limit

Has Henry law limit and
finite saturation limit

Does not have Henry law
limit, but reach a finite limit
when P approaches Po

Has Henry law limit and
finite saturation limit

Same as Freundlich. It does
not have correct Henry law
limit &finite saturation limit
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3.3 BET (Brunauer, Emmett and Teller) isotherm and modified BET isotherm

All the empirical equations dealt with in Section 3.2 are for adsorption with
"monolayer" coverage, with the exception of the Freundlich isotherm, which does
not have a finite saturation capacity and the DR equation, which is applicable for
micropore volume filling. In the adsorption of sub-critical adsorbates, molecules
first adsorb onto the solid surface as a layering process, and when the pressure is
sufficiently high (about 0.1 of the relative pressure) multiple layers are formed.
Brunauer, Emmett and Teller are the first to develop a theory to account for this
multilayer adsorption, and the range of validity of this theory is approximately
between 0.05 and 0.35 times the vapor pressure. In this section we will discuss this
important theory and its various versions modified by a number of workers since the
publication of the BET theory in 1938. Despite the many versions, the BET
equation still remains the most important equation for the characterization of
mesoporous solids, mainly due to its simplicity.

3.3.1 BET Equation

The BET theory was first developed by Brunauer et al. (1938) for aflat surface
(no curvature) and there is no limit in the number of layers which can be
accommodated on the surface. This theory made use of the same assumptions as
those used in the Langmuir theory, that is the surface is energetically homogeneous
(adsorption energy does not change with the progress of adsorption in the same
layer) and there is no interaction among adsorbed molecules. Let s0, s,, s2 and sn be
the surface areas covered by no layer, one layer, two layers and n layers of adsorbate
molecules, respectively (Figure 3.3-1).

- M -

Figure 3.3-1: Mutiple layering in BET theory
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The concept of kinetics of adsorption and desorption proposed by Langmuir is
applied to this multiple layering process, that is the rate of adsorption on any layer is
equal to the rate of desorption from that layer. For the first layer, the rates of
adsorption onto the free surface and desorption from the first layer are equal to each
other:

(3.3-1)

where a1? b1? and Ex are constant, independent of the amount adsorbed. Here Ej is
the interaction energy between the solid and molecule of the first layer, which is
expected to be higher than the heat of vaporization.

Similarly, the rate of adsorption onto the first layer must be the same as the rate
of evaporation from the second layer, that is:

J (3.3-2)

The same form of equation then can be applied to the next layer, and in general for
the i-th layer, we can write

aiPs^ = biSi exp^-^J (3.3-3)

The total area of the solid is the sum of all individual areas, that is

S = f > (3.3-4)
i=0

Therefore, the volume of gas adsorbed on surface covering by one layer of
molecules is the fraction occupied by one layer of molecules multiplied by the
monolayer coverage Vm:

The volume of gas adsorbed on the section of the surface which has two layers of
molecules is:

fe) (3-3-6)
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The factor of 2 in the above equation is because there are two layers of molecules
occupying a surface area of s2 (Figure 3.3-1). Similarly, the volume of gas adsorbed
on the section of the surface having "i" layers is:

(3.3-7)

Hence, the total volume of gas adsorbed at a given pressure is the sum of all these
volumes:

V = : v I i s
i = V

m
i ^ — (3-3-8)
I-,
i=0

To explicitly obtain the amount of gas adsorbed as a function of pressure, we
have to express Sj in terms of the gas pressure. To proceed with this, we need to
make a further assumption beside the assumptions made so far about the ideality of
layers (so that Langmuir kinetics could be applied). One of the assumptions is that
the heat of adsorption of the second and subsequent layers are the same and equal to
the heat of liquefaction, EL :

E 2 = E 3 = - = E i = - = E L (3.3-9)

The other assumption is that the ratio of the rate constants of the second and higher
layers is equal to each other, that is:

3!L.iL_. . .*Lr i (3.3..O)
a2 a3 a{

where the ratio g is assumed constant. This ratio is related to the vapor pressure of
the adsorbate as will be seen later in eq. (3.3-19).

With these two additional assumptions, one can solve the surface coverage that
contains one layer of molecule (s,) in terms of s0 and pressure as follows:

s^^Psoexp^) (3.3-1 la)
b i

where e, is the reduced energy of adsorption of the first layer, defined as

ei=^V (3-3-1 lb)
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Similarly the surface coverage of the section containing i layers of molecules is:

(3.3-12a)

for i = 2, 3, ..., where EL is the reduced heat of liquefaction

(3.3-12b)

- i
al I \l I r I

Si = — s ogexp(6 1-6L) - expeL

^1

K g l

Substituting these surface coverages into the total amount of gas adsorbed (eq. 3.3-
8), we obtain:

(33-13)

i=l

where the parameter C and the variable x are defined as follows:

(3.3-14a)

= -exp(eL) (3.3-14b)

x b,
- J ( 3 .3.1 4c)

By using the following formulas (Abramowitz and Stegun, 1962)

7rV (33-15)

()
eq. (3.3-13) can be simplified to yield the following form written in terms of C and
x:

V Cx
(3.3-16)Vm ( l - x ) ( l - x + Cx)

Eq. (3.3-16) can only be used if we can relate x in terms of pressure and other
known quantities. This is done as follows. Since this model allows for infinite
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layers on top of a flat surface, the amount adsorbed must be infinity when the gas
phase pressure is equal to the vapor pressure, that is P = Po occurs when x = 1; thus
the variable x is the ratio of the pressure to the vapour pressure at the adsorption
temperature:

P
x = (3.3-17)

With this definition, eq. (3.3-16) will become what is now known as the famous
BET equation containing two fitting parameters, C and Vm:

V CP

(P0-P)[l
(3.3-18)

Figure 3.3-2 shows plots of the BET equation (3.3-18) versus the reduced
pressure with C being the varying parameter. The larger is the value of C, the
sooner will the multilayer form and the convexity of the isotherm increases toward
the low pressure range.

o.o 0.2 0.4 0.6 0.8

Reduced pressure, P/Po

Figure 3.3-2: Plots of the BET equation versus the reduced pressure (C = 10,50, 100)

Equating eqs.(3.3-17) and (3.3-14b), we obtain the following relationship
between the vapor pressure, the constant g and the heat of liquefaction:

Po = g - e x p -
R j



Practical Approaches of Pure Component Adsorption Equilibria 89

Within a narrow range of temperature, the vapour pressure follows the Clausius-
Clapeyron equation, that is

P 0 = a - e x p - L

. V.
Comparing this equation with eq.(3.3-19), we see that the parameter g is simply the
pre-exponential factor in the Clausius-Clapeyron vapor pressure equation. It is
reminded that the parameter g is the ratio of the rate constant for desorption to that
for adsorption of the second and subsequent layers, suggesting that these layers
condense and evaporate similar to the bulk liquid phase.

The pre-exponential factor of the constant C (eq. 3.3-14c)

a,g a ibj

b,aj
forj> 1

can be either greater or smaller than unity (Brunauer et al., 1967), and it is often
assumed as unity without any theoretical justification. In setting this factor to be
unity, we have assumed that the ratio of the rate constants for adsorption to
desorption of the first layer is the same as that for the subsequent layers at infinite
temperature. Also by assuming this factor to be unity, we can calculate the
interaction energy between the first layer and the solid from the knowledge of C
(obtained by fitting of the isotherm equation 3.3-18 with experimental data)

The interaction energy between solid and adsorbate molecule in the first layer is
always greater than the heat of adsorption; thus the constant C is a large number
(usually greater than 100).

3.3.1.1 Properties of the BET equation

We have seen how the BET equation varies with the reduced pressure as shown
in Figure 3.3-2. It is worthwhile to investigate its first and second derivatives to
show how the slope as well as the inflexion point vary with the constant C.

The first and second derivatives of the BET equation are

(3.3.20a,
[l + (C-l)(P/P0)]

2
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/ p \ 2

(C- l ) 2 (P/P 0 ) 3 +3(C- l ) (P/P 0 ) + 2-<

(l-P/P0)3[l + (C-l)(P/P0)]
3

(3.3-20b)

Investigation of this slope reveals that the slope decreases with an increase in
pressure up to a certain pressure beyond which the slope increases quickly with
pressure and becomes infinite when the vapor pressure is reached. This means that
there exists an inflexion point, and this point can be found by setting the second
derivative to zero. In so doing, we obtain the relative pressure at which the isotherm
has an inflexion point (White, 1947):

and the amount adsorbed at this inflexion point is:

<33-21a>

(3.3-21b)

Figure 3.3-3 shows a plot of the reduced volume adsorbed versus the reduced
pressure at the inflexion point with C as the parameter on such plot.

(V/VJ,

o.o

0.00 0.05 0.10 0.15 0.20 0.25 0.30

(P/Po)i

Figure 3.3-3: Plot of V/Vm versus the reduced pressure at the inflexion point

For the inflexion point to exist in the physical range (that is V/Vm must be positive),
the lower limit on C will be

0

that is
C > 2

(3.3-22a)

(3.3-22b)
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As the constant C increases, both the amount adsorbed and the pressure at the
inflexion point increase up to the reduced pressure of 0.25, at which the constant C
is 9. When the constant C is increased beyond 9, the amount adsorbed at the
inflexion point only varies slightly between the monolayer coverage Vm and 1.2 Vm,
and the reduced pressure at this inflexion point continually decreases with C. As C
approaches infinity, the inflexion point moves toward zero pressure and the amount
adsorbed approaches the monolayer capacity, Vm. This extreme limit simply means
that monolayer is instantaneously formed at minute pressure and multilayering starts
immediately at P = 0 according to the following equation:

V 1
V m ~ ( l - P / P 0 )

which is the limit of eq. (3.3-18) when C -»oo.

3.3.1.2 Surface area determination

Eq. (3.3-18) is the famous BET equation, and it is used extensively for the area
determination because once the monolayer coverage Vm is known and if the area
occupied by one molecule is known the surface area of the solid can be calculated.

To conveniently determine Vm, the BET equation can be cast into the form
which is amenable for linear plot as follows:

v(po-p) vmc

The pressure range of validity of the BET equation is P/Po = 0.05 - 0.3. For
relative pressures above 0.3, there exists capillary condensation, which is not
amenable to multilayer analysis. The capillary condensation will be dealt with in
Section 3.9, and this phenomenon is taken advantage of to determine the pore size
distribution as the pressure at which the liquid condenses in a pore depends on the
pore size. More about this will be discussed in Section 3.9.

A plot of the LHS of eq.(3.3-23) versus (P/Po) would yield a straight line with a
slope

Slope = < C 1 >

and an intercept
cvm

Intercept =
cvm
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Usually the value of C (eq. 3.3-14c) is very large because the adsorption energy of
the first layer is larger than the heat of liquefaction, the slope is then simply the
inverse of the monolayer coverage, and the intercept is effectively the origin of such
plot. Therefore, very often that only one point is sufficient for the first estimate of
the surface area.

Once Vm (mole/g) is obtained from the slope, the surface area is calculated
from:

A = V m N A a m (3.3-24)

where NA is the Avogadro number and am is the molecular projected area. The
following table lists the molecular projected area of a few commonly used
adsorbates.

Table 3.3.1: Molecular Projected Area of some common gases

Gas
argon
ammonia
carbon dioxide
n-butane
krypton
methane
nitrogen
oxygen
oxygen
sulfur dioxide
xenon

T(K)
77
209
195
273
90
90
77
79
90.6
250
90

Po(Pa)
2.78 x 104

1.013 x 105

1.013 x 105

2.74 x 103

1.08 x 104

1.013 x 105

8.25

am (A2/molecule)
15
12.6
20
44
20
16
16
14.1
14.6
18.7
23

We illustrate the surface area determination using the BET equation with the
following example, where the solid is Carbolac and the adsorbate is CF2C12 and the
adsorption temperature is -33.1 °C.

Surface area determination of Carbolac

To illustrate the linear plot of the BET method, we apply it to the data of
CF2C12 adsorption on Carbolac at -33.1 °C (Carman and Raal, 1952). The
data are shown in Figure 3.3-4a. The vapour pressure of CF2C12 at -33.1 °C
is 659 Torr. Restricting the range of the reduced pressure below 0.3, we
plot P/V(P0-P) versus P/Po as shown in Figure 3.3-4b. A straight line can
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be drawn through the data points of that plot, and a simple linear regression
gives

Slope = ^ C " ^ = 0.2493
CVm

Intercept = = 1.188 x 10~3

cvm
from which we can readily calculate the monolayer coverage as Vm = 4
mmole/g and the constant C = 210.

Amount
adsorbed
(mmole/g)

0 100 200 300 400 500 600 700

Pressure (Torr)

Figure 3.3-4a: Plot of isotherm data of CF2C12

onCarbolacat-33.1°C
Figure 3.3-4b: BET plot

Using the projection area of CF2C12 of 33.6 A2, we can calculate the surface
area as follows:

0.004 mole 6.023 x 1023 molecules 33.6 A 2 1 m2

SQ = x x x
8 g mole molecule 1020 A 2

S g = 8 0 9 ^

This demonstrates the simplicity of the BET equation in the surface area
determination.
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3.3.2 Differential heat

The isosteric heat of the BET isotherm is obtained from the following equation
(Lopatkin, 1987):

-AH = E L + q °—-T (3.3.25a)

where q is obtained from the temperature dependence of the constant C

g ^ (3.3.25b)

For the constant C taking the temperature dependence form as given in eq.(3.3-14c),
q is simply the difference between the energy of adsorption of the first layer and the
heat of liquefaction.

3.3.3 BDDT (Brunauer, Deming, Denting, Teller) Classification

The theory of BET was developed to describe the multilayer adsorption.
Adsorption in real solids has given rise to isotherms exhibiting many different
shapes. However, five isotherm shapes were identified (Brunauer et al., 1940) and
are shown in Figure 3.3-5. The following five systems typify the five classes of
isotherm.

1. Type 1: Adsorption of oxygen on charcoal at -183 °C
2. Type 2: Adsorption of nitrogen on iron catalysts at -195°C (many solids

fall into this type).
3. Type 3: Adsorption of bromine on silica gel at 79°C, water on glass
4. Type 4: Adsorption of benzene on ferric oxide gel at 50°C
5. Type 5: Adsorption of water on charcoal at 100°C

Type I isotherm is the Langmuir isotherm type (monolayer coverage), typical of
adsorption in microporous solids, such as adsorption of oxygen in charcoal. Type II
typifies the BET adsorption mechanism. Type III is the type typical of water
adsorption on charcoal where the adsorption is not favorable at low pressure
because of the nonpolar (hydrophobic) nature of the charcoal surface. At
sufficiently high pressures, the adsorption is due to the capillary condensation in
mesopores. Type IV and type V are the same as types II and III with the exception
that they have finite limit as P -» Po due to the finite pore volume of porous solids.
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Type I

r
Type II J

Type IV

Type III /

TypeV

Figure 3.3-5: BDDT classification of five isotherm shapes

The BET equation (eq. 3.3-18) developed originally by Brunauer et al. (1938) is
able to describe type I to type III. The type III isotherm can be produced from the
BET equation when the forces between adsorbate and adsorbent are smaller than
that between adsorbate molecules in the liquid state (i.e. E, < EL). Figure 3.3-6
shows such plots for the cases of C = 0.1 and 0.9 to illustrate type III isotherm.

0.0 0.2 0.4 0.6 0.8 1.0

P/Po

Figure 3.3-6: Plots of the BET equation when C < 1

The BET equation (3.3-18) does not cover the last two types (IV and V)
because one of the assumptions of the BET theory is the allowance for infinite
layers of molecules to build up on top of the surface. To consider the last two types,
we have to limit the number of layers which can be formed above a solid surface.
This is dealt with next.
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3.3.3.1 BET Equation for n-Layers

When the adsorption space is finite which is the case in pores of finite size, that
is the adsorption layer is limited by n, the procedure presented in Section 3.1.1 can
be applied and the resulting n-layer BET equation will take the form:

Cx l - l)xn + nxn+1

( C - l ) x - C x n+1

where
x = P / P 0

(3.3-26a)

(3.3-26b)

When n approaches infinity, this equation reduces to the classical BET equation.
When n = 1, we have the famous Langmuir equation. When the pressure
approaches the vapor pressure, it can be shown that

l i m

x^iVm 2(nC + l)

Figure 3.3-7 shows plots of eq. (3.3-26) for C = 100 and various values of n.

V/V,

0.0 0.2 0.4 0.6 0.8 1.0

P/Po

Figure 3.3-7: Plot of the BET-n layer equation (3.3-26) versus the reduced pressure

The parameter C is normally greater than 1 because the heat of adsorption of
the first layer is greater than the heat of liquefaction, i.e. the attractive forces
between the adsorbed molecule and the adsorbent are greater than the attractive
forces between molecules in the liquid state. When this is the case, the amount
adsorbed when the pressure reaches the vapor pressure is
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hm
x->i V m

Although the n-layer BET equation gives a finite limit as P -> Po, this limit is
approached in a fashion as shown in Figure 3.3-7, that is it does not exhibit the
plateau commonly observed for many solids.

3.3.3.2 Type IV and V isotherms

Although the n-layer BET equation (3.3-26) can deal with types I to III by
properly adjusting the parameters n and C in eq.(3.3-26), it does not explain the
plateau observed in types IV and V. To account for this plateau, Brunauer et al.
(1940) presented a new theory, which is another extension of the BET theory.
When the pores are nearly filled, the adsorption energy of binding in some higher
layers is greater than the heat of liquefaction. This is because the last adsorbed
layers in a capillary is attracted to both sides. We denote this extra energy as Q.

— P /R T

Therefore, the rate of evaporation of the last layer is not kd e L g , but rather

kd e L g , that is molecules of the last layer find it harder to desorb back into
the gas phase. The adsorption is assumed to occur between two parallel plates. The
maximum number of layer that can fit in the two walls is 2n-l, not 2n because the
last layer is common to both walls. Using the following equations of evaporation
and condensation equilibria:

aPso=bS le"E l / R g T (3.3-28a)

aPsj = bsi+1e"EL/RgT for i = 1,2,--,n-2 (3.3-28b)

aPsnM=bsne- (EL+Q) /R-T (3.3-28c)

and following the same procedure as done in Section 3.3-1, Brunauer et al.(1940)
derived the following equation:

1_ = Cx 1 + (ng / 2 - n)xn-' - (ng - n + l)xn + (ng / 2)xn+1 ^

Vm 1-x l + (C-l)x + (Cg/2-C)xn-(Cg/2)xn + 1

where

g = exp(Q/RgT) (3.3-2%)
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Eq. (3.3-29) was derived for a maximum (2n-l) layers which can be fit into a
capillary. If the maximum number is 2n, the isotherm equation takes a slightly
different form:

V
Vm

Cx l + (ng/2-n/2)xn"1-(ng + l)xn+(ng/2

-l)x + (Cg/2-C/2)x n - (Cg/2 + C/2)x

n+1

n+1
(3.3-29c)

Eqs. (3.3-29a) and (3.3-29c) describe types IV and V, depending on the value of C.

If C » 1, we have type IV isotherm. When C < 1, we have type V isotherm.

Figure 3.3-8 shows plots generated from these two equations for the case of C = 100

» 1 (Type IV). The other parameters used are n = 10 and g = {1, 100, 1000}.

Figure 3.3-9 shows the isotherm curves for the case of C = 0.1 (Type V isotherm).

Figure 3.3-8a: Plots of eq. (3.3-29a) versus the
reduced pressure for n = 10 and C = 100

Figure 3.3-8b: Plot of eq. (3.3-29c) versus
the reduced pressure for n = 10 and C = 100

V/V,

Figure 3.3-9a: Plots of eq. (3.3-29a) versus the
reduced pressure for n = 10 and C = 0.05

P/Po

Figure 3.3-9b: Plot of eq. (3.3-29c) versus
the reduced pressure for n = 10 and C = 0.05
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3.3.4 Comparison between the van der Waals adsorption and the Capillary
Condensation

The modified BET equations for n layers and for type IV and V need some
discussion. This is done by comparing the theory of van der Waals adsorption and
the capillary condensation theory. The porous solid is assumed to consist of
capillaries bounded by two parallel planes, and the spacing between the two layers is
denoted as D. This simple configuration is sufficient for our discussion.

According to the capillary condensation theory (which will be treated in more
details in Section 3.9), the pressure at which the condensation will take place in a
pore of width D is:

[̂ lj (3.3-30)

where Po is the vapor pressure of free liquid, a is the surface tension, and vM is the
liquid molar volume at temperature T. For gas having a pressure lower than the
condensation pressure Pk, there is no capillary condensation except of course a sub-
monolayer adsorption, while for gas having pressure equal to or greater than the
condensation pressure Pk, the capillary of size D will be filled completely with
liquid. This is the basis of the capillary condensation theory.

In the present theory of van der Waals adsorption, the multilayer starts below
the pressure Pk and builds up with increasing pressure, and the capillaries are not
filled up even for pressures greater than this condensation pressure Pk, which
contradicts the capillary condensation. This means that the multilayer theory based
on van der Waals adsorption has an upper limit in the pressure range. Despite this
limitation, the van der Waals theory puts all five types of adsorption isotherm shape
into one framework, that is it can deal with unimolecular adsorption (Langmuir),
multilayer adsorption (BET) and enhanced adsorption in capillaries (BDDT).

3.3.5 Other Modified Versions of the BET Equation

Recognising that the BET equation has a narrow range of validity (P/Po is
between 0.05 to 0.35) and that the amount adsorbed at reduced pressures greater
than 0.35 is less than that predicted by the BET equation, Anderson (1946) proposed
new theories to extend this range. His reasons are that:

1. the heat of adsorption of the second layer is less than the heat of liquefaction.
2. the structure of solid is such that only finite number of layers is allowed.

Anderson (1946) studied two cases: In one case the modified BET equation
with heat of adsorption in the second layer and the next several layers being less
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than the heat of liquefaction. In the second case the surface available to each
subsequent layer is smaller.

In the first case where the heat of adsorption of the second and subsequent
layers is less than the heat of liquefaction, he obtained the following equation:

V _ Ckx (3 3 31a)
Vm ( l -kx)[ l + (C-l)kx]

where

x = — (3.3-3 lb)

Here the parameter d is the excess of the heat of liquefaction that the second and
subsequent layers release.

Bloomquist and Clark (1940) measured the adsorption of nitrogen on
microscopic glass sphere at -196 °C, and their data were fitted by the above equation
of Anderson, the constant d was found to be -53 cal/mole, or k = 0.715.

It is interesting to note here that the n-layer BET equation (3.3-26), for various
values of n, generates a family of curves which are superficially similar to those
generated from eq.(3.3-31) with various values of k.

Analysing a number of adsorption systems, Anderson (1946) found that the
value of k falling between 0.6 and 0.7, indicating that the excess heat of liquefaction
that the second and subsequent layers release is about -60 cal/mole.

In the second case where the surface area available for adsorption is smaller in
each subsequent layer, Anderson (1946) obtained the following formula:

V Cx

V ^ = ( l - jx)[ l + (C-l )x] ( 3 '

where

x = ̂ - (3.3-32b)

and j is the fraction available in the subsequent layer. This fraction was assumed
constant in each layer. When j = 0, this equation reduces to the Langmuir equation,
and when j = 1, we recover the famous BET equation.
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If we combine the two equations (3.3-31) and (3.3-32), that is when the heat of
adsorption of second layer and above is less than the heat of liquefaction and the
area of a layer is smaller than the preceding layer, the following formula is obtained:

( 3 3 " 3 3 )

where x is the reduced pressure and k is defined in eq.(3.3-31c).
The modified BET equation obtained by Anderson (eq. 3.3-33) can be regarded

as replacing the vapor pressure Po in the original BET equation by a parameter, P*.
It is reminded that in the Anderson's theory molecules in the second and subsequent
layers have a heat of adsorption numerically less than that of liquefaction. It was
found that P*/Po can take values up to 1.6. Although there is no convincing
argument about the physical meaning of this parameter P \ the use of the modified
BET equation allows the extension of the range of applicability to P/Po = 0.8,
instead of the usual range of 0.05-0.35 of the conventional BET equation. One
problem associated with the modified BET equation is that the value P* greater than
the vapor pressure implies that the energy of adsorption in the second and higher
layers is lower than the energy of condensation of the liquid, and this is not
physically plausible when the number of layers is sufficiently large! The extension
of the range of applicability of the Anderson equation is purely by chance as we
must remember that any multilayering theory must have a maximum pressure limit
beyond which the capillary condensation phenomenon will take over More
discussion on the modified BET equation can be found in Everett (1990) and
Burgess etal. (1990).

3.3.6 A ranovich 's Modified BET Equations

We have addressed the classical BET equation as well as some of its modified
versions. Although these modified equations were claimed to add to the original
equation some refined features, the classical BET equation is still the one that is
used by many workers as the primary tool to study surface area. Before closing this
section on BET typed equations, it is worthwhile to point out another equation
developed by Aranovich, who proposed a form very similar to that of the BET
equation. The difference is in the exponent of the term (1 - P/Po) in the denominator
of the two equations. In the BET case, the exponent is one while in the Aranovich
case the exponent is one half.

Aranovich (1988) claimed that his isotherm correctly describes the limiting
cases, and the range of validity of the BET equation is narrow (relative pressure of
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0.05 to 0.4). Also the BET equation has a factor of (1-P/PO) in the denominator,
giving infinite spreading pressure at saturation pressure.
The assumptions of his model are:

• The adsorbent surface is flat and uniform
• The phase in contact with the adsorbent is a vacancy solution to which a lattice

model can be applied.
• The energy change accompanying the evaporation of a molecule depends on the

number of layers.
• Only the configurational components of the free energy are considered.

The Aranovich's multimolecular equation is:

C(P /P 0 )

C(P/P0)](l-P/P0)
1/2

(3.3-34)

For comparison, we compare the BET equation and the Aranovich equation in
Figure 3.3-10 with C = 100.

0.0 0.2 0.4 0.6 0.8 1.0

P/Po

Figure 3.3-10: Comparison between the BET equation and the Aranovich equation (C = 100)

Using the Gibbs formula for the spreading pressure:

p

7t = RgTJVd(lnp) (3.3-35)

he obtained the following equation of state:
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-In
C , - ( 1 - P / P o )

1/2

n = - in 1 -4 (3.3-36a)
C p + ( 1 - P / P o )

jN 1/2

1/2

(3.3-36b)

This equation relates to the amount adsorbed, V, through the isotherm equation (eq.
3.3-34). Thus, by eliminating P between these two equations an equation of state
can be obtained.

Aranovich (1989) used a lattice model to provide a thermodynamics foundation
for his model. The differential heat of adsorption at low coverage for his
multimolecular isotherm equation as well as other properties are considered in
Aranovich (1990, 1992).

3.4 Harkins-Jura, Halsey Isotherms

Although the BET theory is used almost regularly as a convenient tool to
evaluate the surface area of a solid, other isotherms such as the Harkins-Jura
equation, obtained in Chapter 2 can also be used to determine the surface area.
Analogous to a monolayer film on liquids, Harkins and Jura (1943) obtained the
following equation:

(3.4-1)

where V is the gas volume at STP adsorbed per unit g. Jura and Harkins claimed
that this is the simplest equation for describing multilayer adsorption, and it is valid
over more than twice the pressure range of any two constant adsorption isotherms.
They showed that for TiO2 in the form of anatase, their isotherm agrees with the
experimental data at both lower and higher values of pressure than the commonly
used BET equation.

Eq. (3.4-1) suggests that a plot of ln(P/P°) versus 1/V2 would yield a straight
line with a slope of - C. The square root of this constant is proportional to the
surface area of the solid. The following formula was provided by Harkins and Jura:

Sg = 4.06VC (3.4-2)

where Sg has the unit of m2 per g. They also suggested that if the plot of ln(P/P0)
versus 1/V2 exhibits two straight lines. The one at lower pressure range should be
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chosen for the area calculation as this is the one in which there exists a transition
from a monolayer to multilayers.

3.5 Further Discussion on the BET Theory

3.5.1 Critical of the BET theory

Although the BET theory is used extensively, it still suffers from a number of
criticisms. The first is that surfaces of real solids are heterogeneous while the model
assumes that all the adsorption sites are energetically identical. The second reason
is the assumption of the vertical force between adsorbent and adsorbate molecules.
It neglects the horizontal interaction between adsorbed molecules. The third reason
was put forward by Halsey (1948) and is detailed below.

The key assumption of the BET theory is that the adsorbate can adsorb a second
molecule on top of the first molecule, releasing an amount of heat which is the same
as the heat of liquifaction, and this second molecule can allow a third molecule to
adsorb on top of it, and so on. Such a picture is very simplistic as it is more
reasonable that for hexagonal packing a combination of three adsorbed molecules
must form a triangular array before a fourth molecule can adsorb on top of those
three triangular adsorbed molecules, and then releasing an amount of heat equal to
the liquifaction heat.

With this notion of triangular array of adsorbed molecule, we now consider the
situation when the reduced pressure P/Po = 0.5. At this relative pressure, the
fractional coverage of the first layer is 1/2. The fraction of sites for the second layer
with filled triangular array underneath is

V 0.5-.,

The exponent 3 is because three molecules in the first layer are required to provide
one site for a molecule sitting on top of them. If these sites are filled to the BET
amount, that is half of the available sites for the second layer, we have the following
fractional coverage for the second layer:

) (3-5-2)

Using the same argument, the fraction of sites with triangular array underneath
for the third layer to form is:
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I = 0.00024 (3.5-3)

which means that only 0.024% of the sites in the third layer available for adsorption,
meaning the third layer is practically empty. Now that the third layer is practically
empty, the second layer is not protected from evaporation, the fractional loading of
the second layer is then controlled by the Langmuirian adsorption, not BET, that is
the fractional loading of the second layer is

Jj\ (>».) (L)M).mn (3.5.4)
\2J 1 + (P/PO) \2) \V

instead of that given by eq. (3.5-2). The first factor in the RHS of the above
equation is the fraction of active site available for the second layer to form. This
low loading of the second layer then renders the first layer from protection, and
hence the fractional loading of the first layer is controlled by the Langmuirian
adsorption, that is:

(P/Po) (\\
\ °\ = (3.5-5)

1 + (P/PO)

The Langmuirian equation does not allow for the interaction between adsorbed
molecules. To allow for this, we need to consider an equation that does so such as
the quasi-chemical treatment of Fowler-Guggenheim. The Fowler-Guggenheim
equation has the form:

7 r = bPx (3.5-6a)
(1-0) L 2-20 J V '

where

'-('-^'-•{'-"•(-iTr)} (35-6b)
Here w is the interaction energy between adsorbed molecules. A negative value of
w means attraction between adsorbed molecules, while a positive value means
repulsion. For the case of attraction, two dimensional condensation begins at 0*,
where 0* is the smallest root of (Section 2.3.5.2).
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(3.5-7)

Here P(l/2) has been obtained from eq. (3.5-6a), and it is the condensation pressure
at which the two-dimensional condensation occurs. We denote this condensation
pressure as Pc:

(3.5-8)

Since this 0* is small, we can neglect higher order term, and obtain the following
approximation for the fractional coverage at condensation:

For pressures lower than the condensation pressure Pc, the fractional loading is very
low and taking the limit of the Fowler-Guggenheim equation at low pressure we get

0 = b P (3.5-10)

Combining this with the expression for the condensation pressure (eq. 3.5-8), we get
the following expression for the fractional loading below the condensation pressure

for 0 < 0 < 0* and 0 < P < Pc.
With the assumption of hexagonal packing, there are six neighbors in a two

dimensional film and 12 neighbors in the liquid; therefore the interaction energy in
the two dimensional film is half of the heat of liquifaction, i.e.

EL
w = -

For the case of nitrogen adsorption at 77K, the heat of liquefaction is 5560
Joule/mole. Therefore, we can calculate the fractional loading at which the two
dimensional condensation begins (eq. 3.5-9):

f 5560/2 U.013
8.314 x 77 )
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Thus, as long as the pressure is below the condensation pressure Pc, the
fractional loading is very low (less than 2%). This is not reflected in the BET
equation, and this has led Halsey to conclude that for any value of C the adsorption
is confined to the first layer until the condensation pressure has been reached.

3.5.2 Surface with Adsorption Energy Higher than Heat of Liquefaction

By assuming the adsorption energy is greater than the heat of liquefaction by an
amount AE, the two dimensional condensation is found to occur at the fractional
loading as given in eq.(3.5-9), and this occurs at a much lower pressure because of
the high adsorption energy of the surface. This new condensation pressure is

( AF ^
P* =Pcexp --=-\ (3.5-12)

If E, > E2 > E3 > ... > EL, this type of isotherm will lead to step wise isotherm, with
the j-th step occurring at the pressure:

< 3 - 5 - 1 3 )

This type of stepwise isotherm is not observed in practice because discrete
values of the adsorption energies are not followed by practical solids. By allowing
for the distribution of adsorption energy, which we will show in the next section,
Halsey (1948) and others developed a new multilayer isotherm, which is known in
the literature as the FHH isotherm.

3.6 FHH Multilayer Equation

Let us assume that the surface is heterogeneous, and such heterogeneity is
characterized by the distribution F(AE). For a value of the excess energy AE the
condensation pressure is given in eq. (3.5-12), hence:

(3.6-1)

Sites having energies between AE and oo will be filled with condensed liquid at the
pressure P. Hence, the fractional loading is given by:

00

8= jF(AE)xd(AE) (3.6-2)
RgTln(p0/p)
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Assuming the energy excess to take the form of an exponential distribution,
F(AE)=c.exp(-AE/AEm), the above equation becomes:

(3.6-3)

which has the form of the Freundlich equation. We have seen in Section 3.2.1 that
the Freundlich equation can be obtained from the combination of the Langmuirian
local isotherm and an exponential energy distribution.

Instead of assuming a distribution for the excess energy AE, we can assume that
this excess energy is a function of loading (AE = a/0r). With this form, we obtain
the following semi-empirical equation (derived from eq. 3.5-12):

(3.6-4)

which was first derived by Halsey. When r = 2, this equation reduces to the
Harkins-Jura equation (3.4-1), which means that the Harkin-Jura equation is
applicable when the adsorption energy decreases with the second power of the
distance from the interface.

Eq. (3.6-4) can be written in terms of the volume of gas adsorbed, v, as follows:

(3.6-5)

This form of equation has been studied by Frenkel, Halsey and Hill in the study of
multilayer adsorption (Frenkel, 1946; Halsey, 1948; Hill, 1949, 1952), and hence it
is known in the literature as the FHH equation. The parameter r is regarded as a
measure of the rate of decline in the adsorption potential with distance from the
surface. For van der Waals forces, r is equal to 3. A value of about 2.7 is
commonly observed in practice.

3.7 Redhead's Empirical Isotherm

Recently, Redhead (1995) presented a new empirical equation to cover the
multilayer adsorption region, and his purpose is to extend the range of validity of
the proposed equation to higher pressure range. His empirical equation takes the
following form

-il/n

V,
m

(2n-l)(P/P0)~
^ ^ - -' (3.7-1)1-P/P,o
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where n is the empirical parameter and it was found to be in the range of 2.5 and 4.5
for most cases. Similar to the BET equation, it is a two-parameter equation. Figure
3.7-1 shows plots of this equation with n as the varying parameter. The BET
equation with C = 100 is also plotted on the same figure for comparison. Just like
the case of Aranovich equation, the Redhead equation lies below the BET equation
in the high range of the reduced pressure.

Redhead's equation of the form (3.7-1) was chosen based on the fact that:

(a) the BET equation reduces to

V 1

V m " l - P / P 0

(3.7-2)

when C and C(P/P0) are much larger than unity
(b) the FHH of the form

In J - = ± _ (3.7-3)

UoJ (V/Vm)3

is reduced to

— »[ k P / P ° I (3.7-4)
V I 1 - P / P I

when P/Po approaches unity.

The range of validity of the Redhead's equation is such that at the lower limit of
the relative pressure, the coverage is a monolayer, that is:

(P/Po) i
V o/m = _ i _ (3.7-5a)

1-(P/P o)m 2 n - l

from which we get
( P / P 0 ) m = i - (3.7-5b)

Thus, the range of validity of the Redhead's equation is:

— < — < 1 (3.7-6)
2n Po

The monolayer coverage can be found by simply plotting lnV versus
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P/Pp
1 - P / Pr

and the slope of such plot is 1/n. The lower applicability limit is then calculated
from eq.(3.7-5b). Knowing this lower limit the monolayer coverage can be read
directly from the curve V versus the relative pressure. Using experimental data of
many systems, the following table shows values of n and the monolayer coverage

Table 3.7-1: The values of n and Vra from the Redhead's method (Redhead, Langmuir, 1996,)

Gas
H2O
N2

N2

Ar
neopentane

neopentane

Solid

anatase

anatase

silica

alumina

silica

carbon

T(K)

298
77
77
77
273
273

n
3.10

3.07

4.11

3.77

2.36

5.81

Vm (Redhead)

3.46

3.39

10.66

37.15

0.36

0.0938

Vm (BET)

3.67mL(STP)/g

3.32mL(STP)/g

10.26 jimole/m2

37.05 mg/g
0.43 mmole/g
0.102 mmole/g

The monolayer coverages obtained by the BET method are also included in the
table, and these values are very comparable to those obtained by the Redhead's
method.

3.8 Summary of Multilayer Adsorption Equation

As discussed in previous sections, there are many equations available for the
description of multilayer adsorption. Despite the improvement of some equations
over the original BET equation, it is still the most popular equation used because of
its simplicity. It is in general applied to all solids including zeolite and activated
carbon even though its derivation based on surface does not hold for solids such as
zeolite and activated carbon. The challenge in this area is the development of an
equation which is capable in dealing with adsorption of sub-critical vapors in porous
solids having a wide pore size distribution, ranging from micropore to meso and
macropore. The subject of microporous solid will be dealt with in Chapter 4 where
we will address a different mechanism of adsorption, namely the micropore filling,
the various adsorption isotherm equations to deal with this mechanism and the
treatment of micropore size distribution.

The following table (Table 3.8-1) summarises all the multilayer equations dealt
with in this chapter. The parameter x in some of the equations is the reduced
pressure (P/Po)-
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Table 3.8-1: Multilayer adsorption isotherm equation

Isotherm
BET

n-layers BET

Langmuir case VI

Anderson

Anderson

Aranovich

Harkins-Jura

FHH

Redhead

Expression

V Cx
Vm ~(l-x)[l + (C-l)x]

V Cx l-(n+l)xn+nxn+1

Vm " 1 - x l + (C-l)x-Cxn+1

V Ckx
vm (l-kx)[l + (C-l)kx]

V Cx

Vm ~(l-jx)[l + (C-l)x]

V Ckx
vm ~(l-jkx)[l + (C-l)kx]

V Cx

vm ~ VT^d+cx)

ta(x) = B - £

ln(x) = -A(V)"B

V r(2n-l)x|/n

Parameter

vm )c

Vm, C, n

V m ) C , k

vm,cj

Vm,CJ,k

vm,c

B,C

A,B

Vm,n

Equation No.
(3.8-1)

(3.8-2)

(3.8-3)

(3.8-4)

(3.8-5)

(3.8-6)

(3.8-7)

(3.8-8)

(3.8-9)
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3.9 Pore volume and pore size distribution

We have studied the various equations in the last sections for the description of
multilayer adsorption. Of those equations, the BET equation is the most popular
equation for the determination of surface area. The range of validity of this
equation is that the relative pressure is between 0.05 and 0.35. Adsorption beyond
this range will result in filling of mesopore with sorbate liquid through the action of
capillary condensation.

In this section, we will deal with capillary condensation, and investigate how
this would vary with the pore size, and from which one could derive useful
information about the mesopore size distribution from the data of volume adsorbed
versus pressure. The range of validity for the capillary condensation is that the
relative pressure is between 0.35 and 0.99. We first start with some basic theories,
and then utilize them in the determination of the pore size distribution.

3.9.1 Basic Theory

A typical adsorption-desorption isotherm of a practical porous solid usually
exhibits a hysteresis (Figure 3.9-1) over the pressure range where the capillary
condensation phenomenon is operating.

B'

P/Po 1
Figure 3.9-1: Adsorption isotherm in mesoporous solids

The onset of the hysteresis loop indicates the start of the capillary condensation
mechanism. The desorption curve (AB'C) is always above the adsorption branch
(ABC), that is for a given loading adsorbate desorbs from a porous solid at a lower
pressure than that required for adsorption. Before proceeding with the analysis of
the isotherm, we first start with the basic capillary condensation theory of Lord
Kelvin, the former William Thompson.
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3.9.1.1 Kelvin Equation for Capillary Condensation

Due to the capillary force in small pores, the vapour pressure of a liquid inside
such pores is less than that of a flat surface. The change in the free energy due to
evaporation of a differential volume of liquid equals the change in surface area
times the surface tension:

nAG = -nRgTlnf — ) = (27rrdl)acos6 (3.9-la)

Here a is the surface tension, Po is the vapour pressure of the bulk phase, 0 is the
contact angle, and n is the number of moles in a pore segment having a length of d/
and a radius of r:

n = ±_ = E^ (39.lb)

with vM being the liquid molar volume.
Thus, the pressure at which the liquid will condense in a pore of radius r is

obtained by combining eqs. (3.9-la) and (3.9-lb):

V_ flocosevM 0 (39 .2)

Po \ RgT j

which is now known as the famous Kelvin equation. The implicit assumption
associated with this equation is that the liquid is incompressible (Gregg and Sing,
1982). Eq. (3.9-2) states that for a capillary of radius r the pressure at which the
species condenses or evaporates is less than the free surface vapour pressure, Po.

When the pore is very large, in the sense that

2CFCOS9 vMr » M

RgT

the pressure at which the species condenses or evaporates is equal to the vapour
pressure of the liquid, i.e. P/Po = 1. On the other hand, for pores of radius r, the
liquid will form at pressure P/Po < 1. This mechanism is valid when the filling and
emptying follows a vertical mechanism, that is species is removed out of the pore
vertically. This is reasonable for desorption, when the pore is initially filled with
liquid and liquid evaporates by the vertical removal (see Figure 3.9-2). We shall
discuss the relevant equation for adsorption mechanism but first let us apply eq.(3.9-
2) for the case of nitrogen in the following example.
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e 7
Vapor

Figure 3.9-2: Evaporation of liquid from a pore of radius r (rm is the radius of curvature)

Kelvin equationfornitrogen at 77K
To gauge the magnitude of eq. (3.9-2), we take the case of evaporation

of liquid nitrogen from a capillary at 77.4 K. The surface tension and
liquid molar volume of nitrogen (Gregg and Sing, 1982) are:

a = 8.72xlO~3 N /m; vM = 3.468x 10"5m3/mole

Substituting these values into eq. (3.9-2) gives the following equation for
the Kelvin radius in terms of the reduced pressure P/Po

0.9399 0.4082
r(nm) =

ln(P0/P) lo g l 0 (P 0 /P)

where the contact angle between nitrogen liquid meniscus and the solid
surface has been assumed zero. The vapour pressure of nitrogen at 77.4 K
is 760 Torr. The following table (Table 3.9-1) shows the capillary pressure
at various values of pore radius, and Figure 3.9-3 shows the reduced
pressure required for evaporation as a function of pore radius in nm.

Table 3.9-1 Capillary pressure as a function of radius for nitrogen at 77.4 K

r (nm)
1
2
5
10
20
25

P (Torr)
297
475
630
691
725
732

p/po

0.391
0.625
0.829
0.909
0.954
0.963

The zero contact angle is the usual assumption made almost automatically.
If the correct contact angle is different from zero, say 45 degrees, then the
Kelvin radius will differ from the one calculated from the assumption of
zero contact angle by a factor of cos 6 = 0.7.
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25

20

Kelvin radius, 15
rK (nm)

10

0.4 0.5 0.6 0.7 0.8 0.9 1.0

P/Po

Figure 3.9-3: Plot of the Kelvin'radius versus the reduced pressure for N2 at 77 K

In Table 3.9-1, the range of pore radii is chosen from the lower limit to the
upper limit of the mesopore (according to the IUPAC classification, 2 < d < 50 nm).
We note that the capillary condensation starts to occur in the smallest mesopore (d =
2 nm = 20 A) at the relative pressure of 0.39. It is reminded here that the upper
limit of the relative pressure for the validity of the multilayer theory is about 0.35.
This reduced pressure is usually regarded as the demarcation point between the
multilayer adsorption and the capillary condensation mechanism, and it is satisfied
by many adsorption systems.

3.9.1.2 Generalised Kelvin Equation

The capillary condensation occurs in the region where the hysteresis exists
(Figure 3.9-1). In this region of hysteresis, there are two values of the pressure that
give rise to the same amount uptake, that is giving rise to two values of the pore size
as calculated from eq. (3.9-2). To properly account for this, one must investigate
the way liquid is condensed or evaporated during the adsorption and desorption
cycles.

The Kelvin equation written in eq. (3.7.2) is a special case of the following
generalized Kelvin equation put forward by Everett (1972, 1975):

P ( 2avM 1^
— = exp - —-f-
F0 V K g X Tmj

(3.9-3)

where a is the surface tension, vM is the liquid molar volume and rm is the mean
radius of curvature of the interface defined as (Defay and Prigogine, 1966):
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-i-i-L (3*4)
rm rl r2

Here, rx and r2 are two principal radii of the curved interface. These radii of
curvature are defined by taking two planes at right angle to each other, and each of
them passes through a normal vector from a point on the surface (Gregg and Sing,
1982). By convention the radius of curvature is positive when the center is in the
vapour side of the interface.

To apply the capillary condensation to adsorption and desorption cycles, we
need to consider the state of pore liquid during desorption and that during
adsorption. During evaporation (desorption) the pore is filled and the sorbate starts
to evaporate from the liquid meniscus, taking the form of hemispherical shape
having a contact angle of 0 (Figure 3.9-4). The radius of curvature of this
hemispherical, rm, is related to the pore radius as follows:

r m = ~ L r (3.9-5)
cos 6

For this radius of curvature, the general equation (eq. 3.9-3) reduces to that of
Kelvin (eq. 3.9-2).

Capillary

2r

Liquid meniscus

Figure 3.9-4: The schematic diagram of the hemispherical meniscus

For adsorption, liquid is formed via surface layering and at the inception of
condensation from a vapour filled pore (radial filling rather than vertical filling), the
meniscus takes the cylindrical shape as shown in Figure 3.9-5. For this cylindrical
meniscus, two planes are drawn passing through the normal vector from any point
on the liquid surface. One plane cuts the pore, and hence the principal radius is r, =
r. The other plane perpendicular to the former will cut the liquid interface along the
pore axial direction, and hence its principal pore radius is r2 = oo. Therefore, the
radius of curvature for the case of adsorption is
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rm=2r (3.9-6)

Figure 3.9-5: Filling of a pore during the adsorption cycle

Substituting eq. (3.9-6) into eq. (3.9-3), we obtain the following equation for
capillary condensation along the branch of adsorption:

p VT?I a9-7>

P0 V R g T XJ
The capillary condensation equation for adsorption (eq. 3.9-7) can also be

obtained from the free energy argument of Cohan discussed in the following section.

3.9.1.3 Cohan's A nalysis of A dsorption Branch

Cohan's quantitative analysis in 1938 was based on the suggestion of Foster

(1932, 1934) that the hysteresis in adsorption is due to the delay in forming a

meniscus in the capillary. For adsorption, this is occurred by radial filling, rather

than vertical filling as in the case of desorption. When condensation of the first

layer occurs, the effective radius r decreases, causing further condensation at a fixed

reduced pressure P/Po . This means that a pore of radius r, corresponding to the

threshold reduced pressure P/Po, will be filled instantaneously.

If a small volume of liquid dV = 27irLdr is transported from a large body of

liquid to the capillary, the decrease in surface area is dS = 27tLdr (Figure 3.9-6).

Hence the change in surface energy is equal to that decrease in surface area times

the surface tension, that is:

-27iLadr (3.9-8)

Equating this change in surface energy to the change in free energy associating with

the isothermal transfer of dV of liquid from the bulk to the capillary, we get:

AF = dn(G r - G o ) = -27iLadr (3.9-9)
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where Gr is the free energy of the annular film and Go is the free energy of the bulk
liquid. The variable dn is the number of moles of liquid transferred. If the liquid
molar volume is vM, the number of moles transferred is:

dV 27trLdr
dn = = (3.9-10a)

i

2r

i
dr

Figure 3.9-6: Radial filling of a cylindrical pore

The free energy change between the annular film and the bulk liquid per unit
number of moles is:

G r - G 0 = R g T l n ^ (3.9-10b)

where Pr is the vapour pressure of the film and Po is the vapour pressure of the bulk
liquid.

Substituting eqs. (3.9-10) into eq.(3.9-9) we obtain the following equation
relating the vapour pressure of the film in terms of the vapour pressure of the bulk
liquid and the capillary radius.

(3.9-1 la)
Po rRgT

which is the required capillary condensation equation for the adsorption branch.
While vertical emptying of the pores occurs during desorption the vapor

pressure of the capillary liquid is given by the classical Kevin equation:

(3.9-1 lb)
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where r1 is the radius of curvature of the meniscus (r1 = r/cos9, where 0 is the contact
angle). For zero wetting angle, the radius of curvature is the same as the capillary
radius.

Comparing eq.(3.9-l la) for adsorption to eq.(3.9-l lb) for desorption, we obtain
the following relationship between the threshold pressure for condensation and that
for evaporation for a zero contact angle

Pa
2ds=PoPdeS (3.9-12a)

or

Pads I rdes

Po
(3.9-12b)

The reduced pressure required to empty a capillary is equal to the square of that
necessary to fill it. For example, a pore of radius r which fills with liquid adsorbate
at a reduced pressure P/Po of 0.7 would have its filled liquid evaporated at a reduced
pressure of about 0.5. The status of filling and emptying at two different relative
pressures is the basis of hysteresis in mesoporous solids.

3.9.1.4 Pore Size Distribution

We now know that for each pore of radius r, there exists a threshold pressure
for condensation and a threshold pressure for evaporation. This important point
now can be used to determine the pore size and its distribution. During the
adsorption cycle the filling of pore with adsorbate is in a radial fashion, and hence
the rise in the amount adsorbed versus pressure is gradual. After the pore is filled,
and when the pressure is reduced the liquid in the pore will remain until the pressure
in the gas phase reaches the evaporation pressure governed by eq. (3.9-1 lb) at
which the liquid will instantaneously evaporate, leaving only the adsorbed layer
behind. As the pressure is reduced further the amount adsorbed will decrease and
the relationship between the amount adsorbed and the pressure is dictated by the
equilibrium between the two phases (for example the BET equation).

Knowing this condensation pressure from the desorption branch of point A, the
pore radius then can be calculated from the Kelvin equation (3.9-2), assuming that
the liquid molar volume, the contact angle and the surface tension are known, i.e.:

cos0
RgT

(3.9-13)
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Unfortunately, this ideal situation never occurs in practice as all practical
porous solids have a distribution of pore size, so there will be a gradual change in
the desorption branch rather than an abrupt change as in the case of ideal solids.

3.9.1.5 Solids Exhibiting no Adsorbed Layer (pure Condensation and Evaporation)

Let us first consider a porous solid having a pore volume distribution f(r), that is
f(r) dr is the pore volume of pores having radii ranging between r and r + dr. For a
gas phase of pressure P, the threshold radius is calculated from either eq.(3.9-lla)
for condensation mechanism or eq.(3.9-llb) for evaporation mechanism. Let this
threshold radius be rK, then the amount adsorbed at a pressure P is simply the
fraction of pores having radii less than this threshold radius rK, that is:

V(P)= Jf(r)dr (3.9-14)

o

where rK is calculated from the following equation:

2VMGCOS0

RgTln(P0 /P) **™PO«t«m
8 „ ° ' (3-9-15)

RgTln(P0 /P)
for condensation

For simplicity, we have chosen the lower limit in eq. (3.9-14) as zero. Strictly
speaking it should be the lower limit of the mesopore range in which the capillary
condensation mechanism operates. We now illustrate the capillary condensation in
the following examples.

Maxwellian pore volume distribution
We take a porous solid having the following Maxwellian pore volume

distribution

(3.9-16)

where Vs is the total pore volume and r0 is the characteristic pore radius.
Figure 3.9-7a shows a typical plot of this pore volume distribution for Vs =
0.4 cc/g, and r0 = 3 nm.
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f(r)

0 2 4 6 8 10 12 14 16 18 20

Figure 3.9-7a: Plot of the Maxwellian pore volume distribution with Vs=0.4cc/g and ro=3nm

Substitution of eq.(3.9-16) for the pore volume distribution into eq.(3.9-14)
yields the following expression for the adsorbed volume as a function of
pressure

V(P) = VS 1 - 1 + -*- e x p - ^ (3.9-17)

where rK is a function of the reduced pressure, given as in eq.(3.9-15) for
adsorption and desorption branches. With the pore volume distribution
given in Figure 3.9-7a, Figure 3.9-7b shows the amount adsorbed for the
adsorption branch as well as that for the desorption branch for the case of
adsorption of nitrogen at 77K.

0.4 -

0.3
Amount
adsorbed
(CG/g) 02

0.1 -

0.0
0.0 0.2 0.4 0.6

Figure 3.9-7b: Plot of the amount adsorbed versus the reduced pressure
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The surface tension and the liquid molar volume for nitrogen at 77K are
a = 8.72 x 10"3 Newton / m and vM = 3.468 x 10~5 nrVmole. From Figure
3.9-7b we note that the desorption branch is above the adsorption branch,
concurring with what has been discussed in the previous sections. Also it
is seen that the amount adsorbed becomes only appreciably when the
reduced pressure is reasonably high. This is the characteristics of pure
condensation with no adsorbed layer.

| 'S||iii|llll||i|ll Gamma pore volume distribution
The Maxwellian distribution (eq. 3.9-16) is not of too much use as it is

not flexible enough to describe pore size distribution of many solids
because the mean pore size as well as the variance is controlled by only one
parameter, r0. This example considers a more flexible distribution, the
Gamma distribution which has the following form:

( 3 - 9 - 1 8 )

where F(«) is the Gamma function, Vs is the total pore volume, and a and p
are pore structural parameters. This distribution has the mean and
dispersion:

(3.9-19a)
a

(3.9-19b)
a

With this Gamma distribution for the description of the pore volume
distribution, the amount adsorbed can be obtained from eq.(3.9-14) and the
result is:

I^IK) (39.20)

where the function F(a,b) is the incomplete Gamma function, defined as

b

F(a,b)= Jx a -V x dx (3.9-21)
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To illustrate the amount adsorbed versus pressure, we take the
following values for the Gamma pore volume distribution:

Vs = 0.5 cc/g, p = 3, a = 2 run1

Figure 3.9-8a shows the plot of the pore volume distribution (curve A) and
Figure 3.9-8b shows the amounts adsorbed for the adsorption and
desorption branches. The mean pore radius for this choice is

3 + 1- = £ ± i
= 2 nm

a 2

which is the lower limit of the mesopore range according to the IUPAC
classification ( 2 nm < d < 50 nm). This small pore system, therefore, will
have the onset of hysteresis in the low pressure range (Figure 3.9-8b)

0.25

0.20

f(r)

0 2 4 6 8 10 12 14 16 18 20

r (nm)

Figure 3.9-8a: Plot of the Gamma pore volume distribution

Volume o.3
adsorbed

o.o

Figure 3.9-8b: Plots of the amount adsorbed versus the reduced pressure
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Let us take another set of values

Vs = 0.5 cc / g , p = 2 4 , a = 2.5 nm"1

With these values, the mean pore radius is

- p + 1 24 + 1 1A
r = - = = 10nm

a 2.5

which represents a mesoporous solid with large pores. Its pore volume
distribution is shown graphically in Figure 3.9-8a (Curve B), and the
amounts adsorbed for the adsorption and desorption branches are shown in
Figure 3.9-8b. Here we see that with the large mesoporous solid, the onset
of the hysteresis does not start until the reduced pressure is relatively high
(around P/Po = 0.85), compared to P/Po = 0.2 for the solid having small
mesopore size.

I Double Gamma pore volume distribution

Let us now study the case where the pore volume distribution exhibits
a bimodal distribution. We use the following double Gamma distribution
to describe this bimodal pore volume distribution:

Pl+1 a P2+1
af(r) - v" rfcn r"ea Pl+1 afc """ v

" e " "

With this distribution, the amount adsorbed is simply

±ii^iK) (39.23)
r(P2+i)

where rK is given as a function of pressure in eq. (3.9-15).
We shall take the case where the double Gamma distribution is the

linear combination of the two Gamma distributions that we have dealt with
in Examples 3.9-3 above. The total volume remains constant at 0.5 cc/g,
and it is split equally between the two modes of the distribution, that is

V s l = V s 2 =0.25 c c / g , pj = 3 , p 2 = 2 4 , 0 ^ = 2 n m " 1 , a 2 =2.5nm~1

The pore volume distribution is shown in Figure 3.9-9a, and the amounts
adsorbed are shown in Figure 3.9-9b. Due to the inherent bimodal display
of the pore volume distribution, the amount adsorbed shows two distinct
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hysteresis stages. One is attributed to the small pore range, while the other
(close to the vapour pressure) is due to the larger pore range.

10 12 14 16 18 20

r (nm)

Figure 3.9-9a: Plot of the double Gamma pore volume distribution

0.5

Volume
adsorbed
(cc/g)

0.4

0.3

0.2

0.1

0.0

! bey^dy^.

j Jr 4\\ Ads

0.0 0.2 0.4 0.6 0.8 1.0

P/Po

Figure 3.9-9b: Plots of the amount adsorbed versus the reduced pressure

3.9.1.6 Solids exhibiting Adsorbed Layer prior to the Condensation

The analysis so far assumes that there is no adsorption occurring on the pore
wall prior to the capillary condensation or after the evaporation. That type of
analysis is applicable to systems, such as water adsorption on perfect hydrophobic
surface such as that of a graphitized charcoal. In this section, we will deal with the
case where we will have adsorption (multilayer adsorption is allowed for) prior to
the condensation, and this so-called adsorbed layer will grow with pressure (for
example following the BET mechanism). This growth in the adsorbed layer will
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make the effective pore radius smaller, and thus making the capillary condensation
to occur sooner than the case where we have no layer adsorption dealt with in the
last section. Thus the difference between this case and the last is the adsorbed layer,
and this layer must be allowed for in the calculation of the Kelvin radius.

If we let "t" to represent the statistical thickness of the adsorbed layer (which is
a function of pressure), then the effective pore radius available for condensation is
related to the true pore radius as follows:

r K = r - t (3.9-24)

where rK is called the Kelvin radius, which is governed by eq.(3.9-15). What needs
to be done now is to determine the functional relationship between the statistical
film thickness with the pressure. We can either determine that from the BET
equation

V
t = a

V' m

where a is the thickness of one layer, or obtain the film thickness measured for a
nonporous reference material. The following equation is generally used as an
estimate for the statistical adsorbed film thickness as a function of pressure for
nitrogen adsorption at 77 K.

-i 1/3

t (nm) = 0.354
ln(P0/P)

(3.9-25)

where 0.354 nm is the thickness of one nitrogen molecule. With this film thickness
given in the above equation and the Kelvin radius rK given in eq.(3.9-15), the
threshold radius corresponding to a gas phase of pressure P is:

r(P) =

2vMacos0
™ f o r desorptionRgTln(P0 /P)

t + ^ r for adsorption
RgTln(P0 /P)

(3.9-26)

If the pore volume distribution is f(r), then for a given pressure P, pores having radii
less than the threshold radius (eq. 3.9-26) will be filled with adsorbate both in
adsorbed form as well as condensed form, while pores having radii greater than that
threshold radius will have their surfaces covered with layers of adsorbate. The
amount adsorbed at a given pressure P is then:



Practical Approaches of Pure Component Adsorption Equilibria 127

r(r}JV(P)= Jf(r)dr + t (3.9-27)

r(P)

In obtaining the above equation, we have assumed that pores are cylindrical in
shape, and the film thickness is independent of the pore radius. The factor (2/r) is
the surface area per unit void volume. The parameter rmax is usually taken as the
upper limit of the mesopore range, that is rmax = 25 nm.

Knowing the pore volume distribution f(r), the surface area is determined from:

2f(r)
dr (3.9-28)

Solids having Maxwellian pore volume distribution

We take the case where the solid is described by the Maxwellian pore
volume distribution, given as in eq.(3.9-16). With this distribution, we
evaluate the amount adsorbed from eq.(3.9-27) and the result is:

V(P) = V

where t is given in eq.(3.9-25) and the threshold radius is given in eq.(3.9-
26). For r0 = 5 nm and rmax = 25 nm, Figure 3.9-10 shows the amounts
adsorbed for the adsorption and desorption branches. Also plotted on the
same figures are the desorption and adsorption curves for the situation
where there is no adsorbed layer.

0.5

0.4

Volume °-3

adsorbed
(cc/g) 0.2

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.9-10: Plots of the amount adsorbed versus the reduced pressure
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3.9.1.6.1 The Inverse Problem: Determination of the Pore Volume Distribution
The analysis presented so far can be used to solve the inverse problem, that is if

we know the amount adsorbed versus pressure, the equation (3.9-27) can be used to
determine the constants for the pore volume distribution provided that we know the
shape of the distribution a-priori. We shall handle this inverse problem by assuming
that a mesopore volume distribution can be described by the double Gamma
distribution as given in eq.(3.9-22). With this form of distribution, the amount
adsorbed can be calculated from eq.(3.9-27), and the result is:

V(P) =
IXpt+Utr) | y r(p2+l,a2r)

fi) s>2 r(p2+i)

r ( P l + D J - - < i - < - > i r ( P 2 + i) r ( P 2
(3.9-30)

where the statistical thickness is calculated from eq.(3.9-25).
For a given set of experimental data of V versus P, the above equation can be

used in the optimization to determine the pore volume parameters, namely

's,2 Pi P2 (3.9-31)

There are six parameters to be determined from the optimization. Using the
knowledge that the maximum volume adsorbed is the sum of Vsl and Vs2, we then
are left with five parameters in the optimization. A programming code MesoPSDl
is provided with the book for the optimization of these five parameters.

To illustrate the above theory with the programming code MesoPSDl,
we apply it to the following data of the volume adsorbed (cc/g) versus the
reduced pressure P/Po.

P/Po
0.1423
0.1977
0.2470
0.2983
0.3516
0.3988
0.4460
0.4954

V (cc/g)
0.1843
0.2000
0.2074
0.2124
0.2183
0.2274
0.2343
0.2485

P/Po
0.5488
0.5940
0.6474
0.6947
0.7481
0.7954
0.8407
0.8758

V (cc/g)
0.2616
0.2717
0.2837
0.2989
0.3151
0.3312
0.3495
0.3769

P/Po
0.8985
0.9091
0.9216
0.9259
0.9363
0.9528
0.9652

V(cc/g)
0.3972
0.4268
0.4492
0.4686
0.4788
0.4950
0.4991
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Using the code MesoPSDl where eq. (3.9-30) is fitted to the above
experimental data, we obtain the following optimal parameters for the pore
volume distribution having the form of double Gamma distribution:

Vsl = 0.254 cc/g, Vs2 = 0.2435 cc/g, px = 8.119, p2 = 11.88
ctj = 4.788 nm1, ot2 = 2.053 nmf1

The fit between the double Gamma pore volume distribution using the
above parameters with the data is shown in Figure 3.9-1 la, where we see
that the fit is very good. Figure 3.9-1 lb shows the double Gamma pore
volume distribution as a function of pore radius. We note the two peaks in
the distribution, suggesting that there are two distinct groups of mesopore
for this solid. The mean radii for these two groups are:

ri =(p1 +l)/aj = 1.9 nm, 12 = =6.27 nm

0.50

0.45

0.40

Amount
adsorbed °-35

( c c / g) 0.30

0.25

0.20

0.15

Figure 3.9-1 l a : The amount adsorbed versus P/Po (Symbol: exp. data; line: fitted curve)

dV/dr

2 4 6 8 10 12 14

Pore radius (nm)

Figure 3.9-1 lb: Pore size distribution obtained from the fitting
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The above example illustrates a simple means to determine mesopore size
distribution by using the double Gamma pore volume distribution. Such a
distribution is able to describe a pore volume distribution having two major peaks.
Although solids having multiple peaks in pore volume distribution are rare, we will
show below that the same methodology can be applied to handle this case. This
time we use a combination of N Gamma distributions. The pore volume distribution
can take the form:

( 3 - 9 - 3 2 )

With this pore volume distribution, the amount adsorbed as a function of the
reduced pressure is then simply the extension of eq. (3.9-30), which is:

(3.9-33)

Thus for solids having multiple peaks the above equation can be used to fit the
data to optimally obtain the pore volume structural parameters pj, cc, (j = 1, 2, 3, ...,
N). From the optimization point of view, it is best to use a low value of N « 2 or 3
first in the optimization and if the fit is not satisfactory then the parameter N is
increased until the fit between the above equation and the data becomes acceptable.

3.10 Practical Approaches for the Pore Size Distribution Determination

The last section has shown the basic concepts of capillary condensation and
how they can be utilized in the determination of pore size distribution (PSD). In this
section, we address a number of practical approaches for PSD determination. One
of the early approaches is that of Wheeler and Schull and this will be presented first.
A more practical approach is that of Cranston and Inkley, and this will be discussed
next. Finally, the de Boer method is presented, which accounts for the effect of pore
shape on the calculation of the statistical film thickness and the critical pore radius.

3A0A Wheeler and Schull's method

Wheeler (1948) described a method which combines the BET multilayer
adsorption and the capillary condensation viewpoint to obtain the pore size
distribution from the desorption branch. His theory is detailed below.

The volume of gas not adsorbed at a pressure P is Vs -V, where Vs is the total
pore volume (that is the gas volume adsorbed at the vapour pressure Po ). This
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volume Vs - V must equal the summation of volumes of all unfilled pores of radii.
Before the pore is filled its effective radius is less than the true pore radius by the
thickness t of the physically sorbed multilayer. On emptying, all liquid is
evaporated except the physically adsorbed layer of thickness t, that is the radius used
in the Kelvin equation is (r-t) not r.

Wheeler used the length distribution L(r), rather than the pore volume
distribution, and proposed the following equation for the volume of gas not
adsorbed at a pressure P as:

00

V s -V = 7cJ(r-t)2L(r)dr (3.10-1)
TIC

where L(r) dr is the total length of pores of radii between r and r + dr, and rK is the
critical pore radius (corrected for physical adsorption), which means that all pores
having radii less than rK are filled and those having radii greater than rK are empty.

The total pore volume of the solid is calculated from eq. (3.10-1) by simply
setting rK = 0 and t = 0, that is when there is no adsorbate molecule in the pore:

00

Vs = 7i Jr2 L(r)dr (3.10-2)
o

Knowing the length distribution, the specific surface area can be calculated from:
00

S = In JrL(r)dr (3.10-3)
o

The volume distribution, which has a greater physical significance than the pore
length distribution, can be obtained from:

V(r) = 7cr2L(r) (3.10-4)

3.10.LI The Critical Pore Radius and the Statistical Film Thickness

To evaluate the volume adsorbed from eq. (3.10-1), we need to know the
critical pore radius rK and the statistical film thickness (t). Using eq.(3.9-15) for the
Kelvin radius, the critical radius is calculated from:

2avM cosG
t + ~ r desorption

RgTln(P0 /p) *
CTVM , V

t + -r1 r adsorption
RgTln(P0/P)
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The statistical film thickness may be calculated from eq. (3.9-25) or from the BET
equation, that is:

LBET (3.10-6)

where vM is the liquid molar volume, am is the molecular projection area, NA is the
Avogadro number (NA = 6.023 x 1023 molecules/mole), and 9BET is the fractional
loading relative to the monolayer coverage, calculated from the following BET
equation

C(P/P0)
0 BET - ' (C-1)P/PO]

(3.10-7)

For nitrogen as the adsorbate at 77 K, we have the following values for the liquid
molar volume and the molecular projection area vM = 34.68 cc/mole, am = 16.2
A2/molecule. From these values, we calculate the film thickness for one adsorbed
layer

' M = 0.354 nm (3.10-8)

Thus, the statistical film thickness for nitrogen calculated from the BET theory is:

t (nm) = 0.354 x 6BET (3.10-9)

It is known that the BET statistical film thickness of a practical porous solid is larger
than the experimental thickness for flat surfaces in the high pressure region (Schull,
1948). Figure 3.10-1 shows a plot of the statistical thickness t calculated from eq.
(3.10-9) with C= 100.

3.0

2.5

2.0

Statistical film
thickness, t (nm) l .5

l.o

0.5

o.o

Figure 3.10-1: Plots of the statistical film thickness versus the reduced pressure
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Also plotted in the same figure is the statistical thickness calculated from
equation (3.9-25). The two curves deviate significantly in the high pressure region.
The circle symbols on this figure are experimental data obtained on many non-
porous solids (Cranston and Inkley, 1957). We see that eq. (3.9-25) agrees very
well with the experimental data and it is then a better choice of equation for the
calculation of the statistical film thickness.

Eq. (3.10-1) is the equation allowing us to calculate the volume adsorbed V as a
function of the reduced pressure. For a given reduced pressure P/Po, the statistical
film thickness is calculated from eq. (3.9-25) and the critical radius rK is calculated
from eq. (3.10-5), and hence the volume adsorbed can be calculated by integrating
the integral in eq. (3.10-1). We illustrate this with a number of examples below.

3.10.1.2 Numerical illustrations

We shall present below a number of examples to illustrate the method of
Wheeler and Schull. We first use a simple Maxwellian distribution to describe the
length distribution, and then consider the Gaussian distribution. Finally in the last
example, we consider the double Gaussian distribution.

! Maxwellian distribution
Take the following Maxwellian distribution to describe the length

distribution

L(r)=Arexp [-—] (3.10-10)

where A and r0 are structural parameters. Knowing the length distribution,
the total pore volume is calculated from eq. (3.10-2), that is:

Vs=67cAr0
4 (3.10-11)

This equation relates Vs to the structural parameters A and r0.
Substitution of the length distribution (eq. 3.10-10) into eq. (3.10-1)

gives the following expression for the volume occupied by the adsorbate:

^ = 1_M0^o)
s 6n

where the function M is defined as follows:

+2ro(3rK -2t) + ro(3rK -t)(rK - t ) l

(3.10-12b)
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with rK and t being function of pressure, given in eqs. (3.10-5) and (3.9-25).
Figure 3.10-2 shows plots of the volume adsorbed versus the reduced
pressure for nitrogen as adsorbate at 77 K. The total pore volume used in
the plots is Vs = 0.5 cc/g and the characteristic pore radii r0 are 2, 2.5 and 3
nm. In the figure, we note that the smaller is the characteristic pore radius
the sooner does the capillary condensation occur.

0.5

0.4

Volume o.3
adsorbed
(cc/g) 0 2

0.1

0.0

P/Pn

Figure 3.10-2: Volume adsorbed (cc/g) versus P/Po for the Maxwellian length distribution

Gaussian distribution
The Maxwellian distribution is very simple and is not flexible enough

to describe the length distribution as it contains only one parameter r0

which is insufficient to characterise the shape of a practical distribution. A
better distribution for this is the Gaussian distribution given by:

L(r) = A exp r - r n (3.10-13)

where A, r0, and (3 are pore structural parameters. Here we see that there
are two parameters r0 and P that characterise the shape of the distribution.

The total pore volume is calculated from eq. (3.10-2) and for this
Gaussian distribution, it has the following form:

2(3
1

2P2 (3.10-14)
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The volume adsorbed at a given pressure P is obtained by substituting eq.
(3.10-13) into eq. (3.10-1) and we obtain:

_V_ = 1 _ £ Gp(rK>ro)
(3.10-15a)

1 + erf B) +
1

2P
2

where

G p (r K 5 r 0 ) = ——
4 ro

(3.10-15)

In eq. (3.10-15), the critical pore radius is calculated from eq. (3.10-5) and
the statistical film thickness is calculated from eq. (3.9-25). For nitrogen as
the adsorbate at 77 K, Figure 3.10-3a shows plots of the volume adsorbed
versus the reduced pressure for the case where P = 5. The three mean radii,
r0, used in those plots are 2, 2.5 and 3 nm. Similar to the last example, the
smaller is the pore range, the sooner does the capillary condensation occur.
Figure 3.10-3b shows the effect of the variance by changing the value of p.
The larger is this parameter, the sharper is the Gaussian distribution. This
figure shows that the hysteresis loop is becoming vertical when the
distribution is very sharp as one would expect for solids having fairly
uniform pores.

0.7

0.6

0.5

Volume
adsorbed °-4

( c c / g) o.3

0.2

o.l

o.o

Figure 3.10-3a: Plots of the volume adsorbed versus P/Po for b = 5
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Volume 0.5
adsorbed
(cc/g)

0.2 0.4 0.6

P/Po
0.8 1.0

Figure 3.10-3b: Plots of the volume adsorbed versus P/Po for r0 = 2 nm

Bimodal Gaussian distribution
For solids having bimodal pore size distribution, we can use a

combined Gaussian distribution as shown below.

L(r) = A,exp -Pi r-r, + A2 exp -pj (3.10-16a)

which is the summation of the two Gaussian distributions.
The total pore volume is calculated from eq. (3.10-2), that is:

The amount adsorbed V(P) is given by:

(3.10-16b)

(3.10-17)

where the functional form for Gp is given in eq. (3.10-15b).

3.10.2 Cranston and Inkley's (CI) method

Cranston and Inkley (1957) presented a refined method over that of Barrett et
al. (1951). Instead of using the pore length distribution and giving an equation



Practical Approaches of Pure Component Adsorption Equilibria 137

relating the cumulative amount adsorbed up to a pressure P, Cranston and Inkley
provided an equation relating the incremental adsorbed amount when the pressure is
changed incrementally. Their method can provide an estimate for surface area, and
can be applied to both adsorption and desorption branches of the isotherm to
determine the pore size distribution.

3 A 0.2.1 The Statistical Film Thickness

This method, like the other methods, requires the knowledge of the statistical
film thickness of the adsorbed layer on a flat surface. The experimentally
determined thickness of the adsorbed layer for nitrogen on a flat surface was
obtained by Cranston and Inkley as a function of reduced pressure as shown in
Figure 3.10-1 as symbols and are tabulated in Table 3.10-1.

The data in Figure (3.10-1) was the average of isotherms of 15 nonporous
materials (such as zinc oxide, tungsten powder, glass sphere, precipitated silver),
obtained by dividing the volume of nitrogen adsorbed by the BET surface area.
This average thickness of the adsorbed layer is a function of P/Po:

(3-10-18)

The functional form in the RHS is independent of the nature of the solid, and this is
called the universal t-plot.

Table 3.10-1: Tabulation of the statistical layer thickness t(nm) versus the reduced pressure for nitrogen

P/Po
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26

t(nm)
0.351
0.368
0.383
0.397
0.410
0.423
0.436
0.449
0.456
0.475

P/Po
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46

t(nm)
0.488
0.501
0.514
0.527
0.541
0.556
0.571
0.586
0.602
0.618

P/Po
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66

t(nm)
0.634
0.650
0.666
0.682
0.699
0.717
0.736
0.756
0.777
0.802

P/Po

0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86

t(nm)
0.826
0.857
0.891
0.927
0.965
1.007
1.057
1.117
1.189
1.275

P/Po 1
0.88
0.90
0.92
0.94
0.96
0.98

(nm)
1.382
1.494
1.600
1.750
1.980
2.29

3.10.2.2 The CI theory
Now back to the development of a working equation to determine the pore size

distribution. Let f(r) be the pore volume distribution such that f(r)dr is the volume
of pores per unit mass having radii between r and r + dr. Also let P(r) be the
pressure at which pores of radii less than r will be filled with liquid, and P(r+dr) be
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the pressure at which pores of radii less than r+dr will be filled with liquid. The
thickness of the adsorbed layer at the pressure P(r) is t(r) and that at P(r+dr) is

t(r + dr) = t(r) + dt (3.10-19)

The incremental volume of nitrogen adsorbed when the pressure is increased from
P(r) to P(r+dr) is given by the following equation:

l l i ^ fMdr (3.10-20)
ri r r

where r and t are functions of pressure as discussed earlier. The radius r is related to
the pressure according to the Kelvin equation, while the thickness t is related to the
pressure according to the universal plot shown in Figure 3.10-1 or eq. (3.9-25).

3.10.2.3 The Working Equation

Eq. (3.10-20) is the working equation, but in practice it is impossible to achieve
infinitesimal small increments in pressure. Rather, only a finite increment in
pressure can be made and measured, that is we have to deal with the integral form of
eq.(3.10-20) rather than its current differential form. Thus, if the system pressure is
increased from Vx to P2, the amount of nitrogen adsorbed due to this change in
pressure is simply the integration of eq. (3.10-20) from r, to r2, where xx and r2 are
the two critical radii corresponding to the pressures Vx and P2, respectively. This
amount of nitrogen adsorbed is:

f(r)dr (3.10-21)

where Vj2 is the volume of pore having radii between r, and r2. Solving for V12

from eq.(3.10-21), we get:

vi2 = R i2 vi2 ~ k i 2 | V „ "' v(r)dr (3.10-22)

where

R12 = r2_
 r 2 " r ' (3.10-23)

k 1 2 = 4 ( t 2 - t 1 ) , t 1 2 = ( t 1 + t 2 ) / 2 (3.10-24)
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Eq. (3.10-22) is the working equation for the determination of the pore size.
For computational purposes, the integral in the RHS is replaced by the summation,
that is:

('-t12)
> - * , ^ L - (3.10-25)

r2+Ar/2 z r

The value of rmax is taken as 15 nm as it is known that surface area of pores larger
than 15 nm is negligible. The further necessary equations in using the above
working equation for nitrogen at 77 K are:

09399
= u . * w (3.10-26)

ln(P0/P)

and
r = r K (P/P 0 ) + tF L A T(P/P0) (3.10-27)

Cranston and Inkley (1957) provided tables for R12, k12 and the critical relative
pressure as a function of pore size. They also tabulated (r - t^/r2 for the second
term in the RHS of eq. (3.10-25).

3.10.2.4 The Surface Area and the Mean Pore Radius

The average pore radius can be calculated by assuming that the pore is of
cylindrical shape:

2VD
r = — L (3.10-28)

Typical surface area, pore volume and mean pore size for a number of solids
are given in Table 3.10-2 (Smith, 1956).

Table 3.10-2: Typical surface area, pore volume and mean pore radius of some solids

Solids
Activated carbon
Silica gel
Silica-alumina
Activated clays
Activated alumina
Celite (kieselguhr)

Surface area (m2 /g)
500-1500
200-600
200-500
150-225
175
4.2

Pore volume (cc/g)
0.6-0.8
0.4
0.2-0.7
0.4-0.52
0.39
1.1

Mean pore radius (A)
10-20
15-100
33-150
100
45
11,000
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3.10.3 De Boer Method

De Boer studied extensively the pore size distribution, and refined methods to
determine it. Basically, he accounted for the pore shape in the calculation of the
statistical film thickness as well as the critical pore radius. What we present below
is the brief account of his series of papers published from early 60 to early 70.

3.10.3.1 Slit Shape Pore

For slit shape pore, the desorption branch should be used for the determination
of PSD and we will discuss this further in Section 3.11. The relevant equation is
then the Kelvin equation for evaporation, rewritten here in Kelvin radius versus P:

,3,0-29)
RgT

where rK is the Kelvin radius, vM is the liquid molar volume, and a is the surface
tension. For liquid nitrogen at 77 K, the values of these parameters are:

a = 8.72 x lO^Nm"1; vM = 34.68cm3 / mole; 6 = 0 (3.10-30)

Thus, the Kelvin equation for nitrogen adsorbate is:

rK(nm) = ^ ^ — r (3.10-31)
lo g l 0 (P 0 /P)

This Kelvin equation is not accurate in its use in the calculation of pore size because
the adsorption force modifies the meniscus shape. The following equation is
suggested to replace the simple Kelvin equation (Anderson and Pratt, 1985;
Broekhoff and de Boer, 1967):

r K = ( d - 2 t ) =

0.405 + 0.2798 (1 /1) - (2 / d) - 0.068(d / 2 -1)
l- -. ~ for t < l.OOnm

log l 0(P0 /P)

0.405 + 0.3222[(l /1) - (2 / d)l + 0.2966fexp(- 0.569d) - exp(- 1.137t)l
l for t>0.55nm

logI0(P0/P)

(3.10-32)
where d is the width of the slit, and t is the adsorbed layer thickness. Both have
units of nm. The film thickness t of the adsorbed layer is related to P/Po as:

01399
log10(P0/P) = — 0.034 for t < l n m

01611 t ( 3 1 0 ' 3 3 )

log10(P0 / P) = — 0.1682 exp(-1.137t) for t > 0.55 nm
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Thus, for a given reduced pressure, eqs.(3.10-33) can be solved to obtain the
adsorbed layer thickness t, and knowing this thickness t, eqs.(3.10-32) can then be
solved to obtain "d" and thence the Kelvin radius.

The procedure of getting the pore size distribution is then a simple and
straightforward manner. The volume of nitrogen in the capillary condensation range
is V, which is a function of the reduced pressure (P/Po), that is:

V = f(P/P0) (3.10-34)

But from eqs.(3.10-32) and (3.10-33), we can obtain a relationship between P/Po and
the width d, that is:

P / P 0 = g ( d ) (3.10-35)

Combining eqs.(3.10-34) and (3.10-35), we get the volume of nitrogen versus the
width of the pore:

V = f[g(d)] (3.10-36)

and then the pore size distribution is simply the derivative of the above equation
with respect to d, that is:

J^^A (3.10-37)
d(d) dgd(d)

3.10,3.2 Cylindrical Shape Pore

In the case of cylindrical pore, the layer thickness is not just a function of the
reduced pressure but also on the pore diameter d. The necessary equations relating t
and the reduced pressure and d are (Broekhoff and de Boer, 1967):

log10(Po I?) = ̂ P-- 0.034 + °'™2\ for t < 1 nm
t2 ( d / 2 - t ) (3.10-38)

l o g i o ( P o / P ) = Q 1 2 U - 0 . 1 6 8 2 e x p ( - 1 . 1 3 7 t ) + Q ' 2 ° 2 5 f o r t > 0 . 5 5 n m

The difference between this equation and eq.(3.10-33) is the last term in the RHS of
eq.(3.10-38), accounting for the curvature.

The modified Kelvin equation for this case of cylindrical pore is:
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r K =(d-2 t ) =

0.810 05596[d / 2t -1 - ln(d / 2t)] - 0.068(d / 2 -1)2

log10(P0/P) (d/2-t)log10(P0/P) for t<1.00nm

0.810 0.6444[d/2t-l-ln(d/2t)]
logl0(P0/P) + (d/2-t)log l 0(P0 /P)

0.5932f d / 2 - 1 - 0.87951 exp(-1.137t)l- / F \ - for t > 0.55nm
(d/2-t)log l 0(P0 /P)

0.512exp(-0.569d)
(d/2-t)log l 0(P0 /P)

(3.10-39)

Solving these two equations (eqs. 3.10-38 and 3.10-39) will then yield the pore
diameter, the thickness t and the Kelvin radius rK in terms of the reduced pressure.

3.11 Assessment of Pore Shape

There are two ways of assessing the shape of a pore (Anderson and Pratt, 1985).
One way is to investigate the shape of the hysteresis loop, and the other way is the
shape of the amount adsorbed plotted against t.

3.11.1 Hysteresis Loop

If the hysteresis loop is vertical and the adsorption and desorption branches are
parallel to each other, the pores are tubular in shape and open at both ends (type A).
If the hysteresis is very flat and parallel, the pores have slit shape with parallel walls
(type B). The third type is the type whereby the adsorption branch is vertical and
the desorption branch is inclined (type C). This type is for systems where there is
heterogeneous distribution of pores of type 1. The fourth type is that whereby the
adsorption branch is flat and the desorption branch is inclined (type D). This type is
exhibited by tapered slit pores. The fifth type has inclined adsorption branch and a
vertical desorption branch (Type E). Schematic diagram of these hysteresis loops is
shown in Figure 3.11-1.

The analysis of the hysteresis loop using the adsorption branch or the
desorption branch depend on the shape of the pore. For the ink-bottle shape, once
the pore is full the desorption will occur from the narrow neck and this is
replenished from the larger parts of the pore; thus analysis of the desorption branch
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does not give information about the main part of the pore. Therefore, the analysis of
the adsorption branch is necessary.

Figure 3.11-1: Various types of hysteresis loop

For slit shape pores, the pore becomes filled with adsorbate when the
multilayers of the opposite walls meet; therefore, the desorption branch must be
analysed.

For cylindrical pores with uniform cross section, either the adsorption branch or
desorption branch could be used. For cylindrical pores of significantly varied cross
section, the adsorption branch should be used as this type of pore behaves like ink-
bottle pore.

3.11.2 t-Method

If the adsorption occurs in a free surface (no restriction on the number of layers
which can be built up on top of the surface), the statistical thickness of the adsorbed
layer is a function of the reduced pressure as seen in Figure 3.10-1 or Table 3.10-1,
that is

tFLAT=fFLAT(P/Po) (3.1 M )

This functional form is called the universal t-plot for a flat surface. The statistical
average thickness can also be calculated by using eq.(3.9-25).

For pores of cylindrical or slit shape, the behaviour of the calculated statistical
thickness does not follow that of a flat surface as the pore shape can influence the
statistical film thickness. This is explained as follows. For cylindrical pores, the
solid will take up more sorbates than a free surface, that is

For a pore of slit shape, adsorption will occur on two surfaces of the pore when
pressure increases. As the pressure approaches a certain pressure, the adsorbed
layers of the two opposing walls meet; and this pore will be no longer available for
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uptake when the pressure is increased further. This means that for a porous solid
having a distribution of slit-shaped pores, the calculated statistical thickness will be
less than that corresponding to a flat surface due to the loss in surface area resulted
from the merging of two opposing layers, that is

tSLIT<tFLAT (3.11-3)

Thus, for a free surface, the plot of the amount adsorbed versus "t" will be a
straight line because the adsorption is a layering process and the area for adsorption
does not change as the number of layers increases. For porous solids, however, the
magnitude of the amount adsorbed can be either increased or decreased. If it
increases, then it indicates the presence of cylindrical pores, ink bottle pores, or
voids between closed packed spherical particles. On the other hand, if it decreases
this indicates slit-shaped pores.

These influences can be studied by collecting data of the amount adsorbed
versus the reduced pressure. For each value of the reduced pressure, we obtain the
hypothetical tFLAT from the universal t-plot. Then we finally plot the amount
adsorbed versus this hypothetical tFLAT. This plot will have the initial straight line
passing through the origin because all surfaces are available for adsorption initially,
and afterwards the slope can either increase or decrease compared to the initial slope
depending on the shape of the pore as discussed in eqs. (3.11-2) and (3.11-3). The
initial slope is the result of multilayering unhindered by the pore structure, and
hence it can be used to calculate the total surface area. This is done as follows. Let
Vm be the monolayer amount and V is the amount at a given pressure P. If this
amount is to build multilayer, then the number of layer is simply V/Vm. The number
of layer is also equal to t/a, where t is the statistical film thickness of a flat surface
corresponding to the amount adsorbed V and CT is the thickness of one layer. Thus

( 3 1 1 4 )

or

where V/t is simply the initial slope of the plot of V versus t. Knowing the
monolayer coverage, the surface area is simply calculated from

A = VmamNA (3.11-5)

where am is the projection area per molecule and NA is the Avogadro number. For
nitrogen as the adsorbate, the relevant parameters are:

a = 0.354 nm, am = 0.162 nm2 /molecule



Practical Approaches of Pure Component Adsorption Equilibria 145

The procedure of using the t-plot is provided below.

The procedure:
1- A reference non-porous material with similar surface characteristics is chosen to

obtain the information on the statistical film thickness as a function of the
reduced pressure. The t values for different reference adsorbents as a function
of the reduced pressure are available in literature, normally in the table form or
a best fit equation.

2- The equilibrium data of the amount adsorbed versus the reduced pressure are
plotted as the amount adsorbed versus the statistical thickness by using the data
of nonporous material in step 1.

3- From the plot of step 2, there are usually two distinct linear regions and two
straight lines can be drawn from these two regions. The slope of the first linear
line passing through the origin can be used to calculate the total surface area,
while the slope of the second straight line is used to calculate the external
surface area. The intercept of the latter line gives the volume of the micropores.

We now illustrate the above procedure with the following example.

|f^] Application oft-method
The nitrogen adsorption data at 77 K of a sample of activated carbon

are presented in the following table.

Table 3.

P/Po
(-)
0.010
0.029
0.061
0.077
0.104
0.125
0.148
0.171
0.192
0.210
0.251
0.305
0.357
0.399

11-1: Adsorption data of a sample of activated carbon.

V
(cc/g STP)
234.0
259.7
281.9
288.7
297.1
301.7
305.4
308.1
310.1
311.5
314.3
316.9
319.0
320.3

t(A)

2.631
3.054
3.380
3.476
3.809
3.809
3.965
4.105
4.244
4.366
4.638
5.001
5.363
5.596

0.470
0.545
0.604
0.621
0.654
0.680
0.708
0.733
0.758
0.780
0.828
0.893
0.958
0.999

P/Po
(-)
0.450
0.500
0.550
0.600
0.650
0.700
0.740
0.770
0.800
0.820
0.841
0.860
0.875
0.891

V
(cc/g STP)
321.7
322.9
324.0
325.0
326.0
327.0
327.9
328.6
329.3
329.8
330.5
331.2
331.9
332.7

t(A)

5.980
6.315
6.709
7.090
7.506
7.885
8.211
8.481
8.796
8.796
9.285
9.732
9.732
10.12

1.068
1.128
1.198
1.266
1.340
1.408
1.466
1.514
1.571
1.612
1.658
1.703
1.738
1.773
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In the above table, V is the amount adsorbed at the relative pressure
P/Po. For each value of the reduced pressure, the statistical film thickness t
can be obtained from a reference material of the same characteristics or
calculated using eq. (3.9-25). This has been included in the third column
of the above table by using eq. (3.9-25).

The next step is to plot the amount adsorbed V (cc/g) versus the
statistical thickness t as shown in Figure 3.11-2.

Amount 2oo
adsorbed
(cc/g)

0.2 1.40 . 4 0 . 6 0 .8 1.0 1.2

Thickness, t (nm)

Figure 3.11-2: Plot of the amount adsorbed versus the statistical film thickness

The best fits of two straight lines representing the two linear regions of the
t plot are also shown in the figure. The slope of the first straight line is
84.64 cc STP/g/A, which is equivalent to 3.78 x 10'2 mole N2/g/nm.
Substituting this slope into eq. (3.11-5), we obtain a total surface area of
1305 m2/g. Similarly, using the slope of the second straight line of 2.65 cc
STP/g/A (or 1.183 x 10"3 mole N2/g/nm), we obtain the surface area of the
external area of 41 m2/g. Finally the intercept of the second straight line to
the volume axis will provide the micropore volume. Assuming the state of
adsorbate in the micropore as liquid, we can calculate the micropore
volume. From Figure 3.11-2, we have an intercept of 306 cc STP/g.
Knowing the liquid density of nitrogen at 77 K as 0.807 g/cc, we calculate
the micropore volume as 0.47 cc/g. The following table summarises the
results.

Slope 1
(cc STP/g/A)

84.64

Slope 2
(cc STP/g/ A)

2.65

Intercept
(cc STP/g)

306

Total area
(nrVg)

1305

External
area
(m2/g)

41

Micropore
volume
(cc/g)

0.47
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3.11.3 The as Method
The t-method presented in the last section is applicable to the type IV isotherm.

It requires the information of the adsorbed film thickness of a reference material as a
function of the reduced pressure. If the reference material is used to compare with
the test sample, there is another method, called the as-method, which can be used to
derive information about the test sample. This as-method was developed by Sing
and co-workers and it is done as follows. First a reference solid having the same
surface characteristics as the test sample is chosen and then adsorption is carried out
on that reference material. The reduced adsorbed amount (ccs = V/V04) is then
plotted versus the reduced pressure, where Vo 4 is the volume adsorbed at a reduced
pressure of 0.4. This plot is called the standard ots-plot, and it plays a similar role to
the t-plot in the t-method presented in the last section. This standard ots-plot is then
used to construct a plot of the amount adsorbed versus ocs for the test sample, that is
for every value of the reduced pressure for the test sample, we obtain a value cts
from the ccs-plot. Then finally we obtain a relationship between the amount
adsorbed versus cts for the test sample, and a plot of such relationship is constructed.
As the as-method does not assume any value for the thickness of the adsorbed layer,
it can be used with any adsorbate gas. The surface area of the test sample is
calculated by measuring the slope of the linear part of the ocs-plot of the test sample
and that of the reference sample. By knowing the surface area of the reference, the
surface area of the test sample is calculated from:

Slope ref

Similar procedure as applied in the t-method can be used to calculate the external
surface area and micropore volume using the ccs values.

Application ofas-method
Using the previous example, the ocs values are shown in the fourth

column of Table 3.11-1. The surface area and the slope of the reference
sample is 81 m2/g and 29.42 cc STP/g. Figure 3.11-3 shows a plot of the
amount adsorbed versus ccs. The slope of the first line of the test sample is
474 cc STP/g. Thus the total surface area is calculated using eq. (3.11-6)
and its value is 1305 m2/g. This is exactly the same as that obtained by the
t-plot. The slope of the second line is 15 cc STP/g (or 4.03 x 1020

molecules/g). Knowing the projection area of nitrogen molecule as 0.162
nmVmolecule, we obtain the external surface area as 65 m2/g, compared to
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41 m2/g of the t-plot. The intercept of the plot 3.11-3 is 305.4 cc STP/g.
Knowing the liquid density of nitrogen at 77 K as 0.807 g/cc, we calculate
the micropore volume as 0.47 cc/g which is also the same as that obtained
by the t-plot.

Amount
adsorbed
(cc/g)

Figure 3.11-3: Plot of the amount adsorbed versus a

3.12 Conclusion
Various practical isotherm equations have been presented and they are useful in

describing adsorption data of many adsorption systems. Among the many equations
presented, the Toth equation is the attractive equation because of its correct
behaviour at low and high loading. If the Henry behaviour is not critical then the
Sips equation is also popular. For sub-critical vapours, multilayer isotherm
equations are also presented in this chapter. Despite the many equations proposed in
the literature, the BET equation still remains the most popular equation for the
determination of surface area. When condensation occurs in the reduced pressure
range of around 0.4 to 0.995, the theory of condensation put forward by Kelvin is
useful in the determination of the pore size as well as the pore size distribution.



4
Pure Component Adsorption in

Microporous Solids

4.1 Introduction

In Chapter 2, we discussed the fundamentals of adsorption equilibria for pure
component, and in Chapter 3 we presented various empirical equations, practical for
the calculation of adsorption kinetics and adsorber design, the BET theory and its
varieties for the description of multilayer adsorption used as the yardstick for the
surface area determination, and the capillary condensation for the pore size
distribution determination. Here, we present another important adsorption
mechanism applicable for microporous solids only, called micropore filling. In this
class of solids, micropore walls are in proximity to each other, providing an
enhanced adsorption potential within the micropores. This strong potential is due to
the dispersive forces. Theories based on this force include that of Polanyi and
particularly that of Dubinin, who coined the term micropore filling. This Dubinin
theory forms the basis for many equations which are currently used for the
description of equilibria in microporous solids.

The Dubinin equation (Dubinin, 1966, 1967, 1972, 1975) has its history in the
development of theory for adsorption in activated carbon. Activated carbon has a
very complex structure (see Chapter 1 for some details), with pores ranging from
macropores of order of greater than 1000 A to micropores of order of 10 A. It is this
micropore network where most of the adsorption capacity resides. Because of the
pore dimension comparable to the dimension of adsorbate molecule, the adsorption
mechanism in micropore is completely different from that on a surface of a large
pore, where adsorption occurs by a layering process. In micropores, the mechanism
is due to micropore filling because of the adsorption force field encompassing the
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entire volume of micropores. Such an enhancement in the adsorption potential
would lead to higher heat of adsorption in micropore compared to that on a surface.
For example, adsorption heat of n-hexane on activated carbon at 20 °C at a loading
of 0.25 mmole/g is about 15 kcal/mole, while for the same set of conditions on
nonporous carbon black, the heat of adsorption is about 10 kcal/mole (Dubinin,
1966).

4.1.1 Experimental Evidence of Volume Filling

The concept of micropore filling was demonstrated with zeolite CaA (5A) and
NaX. Since zeolites have regular structure, the specific surface area of the channels
(micropores) can be calculated using X-ray studies. These areas are 1640 and 1400
m2 /g for CaA and NaX, respectively. The external surface area of these zeolite
crystals are so low compared to the internal surface area; hence, adsorption on these
external areas can be neglected. Knowing the area, the theoretical "monolayer"
amount adsorbed can be calculated using the information of area occupied by one
adsorbate molecule. This is shown in Table 4.1-1 (Dubinin, 1966) together with the
experimental limiting amount adsorbed. Here CM* is the theoretical monolayer
amount, and CL is the experimental amount adsorbed.

Table 4.1-1.

Vapor

H2O
CO
N2
Ar
Benzene
n-pentane

Amount adsorbed and theoretical monolayer amount for CaA and NaA zeolites

T(°C)

20
-196
-196
-196
20
20

CaA (1640 m7g)

c.
(mmole/g) (mmole/g)
26.5
16.2
16.8
19.7
-
7.53

15.50
8.61
8.27
8.58
-
2.26

1.71
1.88
2.03
2.30
-
3.33

NaX(1400m2/g)

(mmole/g)
22.6
14.1
14.4
16.8
7.25
6.42

(mmole/g)
17.95
9.71
9.55
10.27
3.3
2.56

C */ C

1.26
1.45
1.51
1.64
2.2
2.51

From Table 4.1.1, the amount calculated assuming monolayer adsorption
mechanism is 2 to 3 times larger than the experimental values, indicating a
micropore filling rather than surface layering mechanism. Furthermore, for a given
adsorbate the ratio of the experimental amount adsorbed for the two zeolites is

Cu(CaA)
— ^ « 0.861
Cu(NaX)

which is in perfect agreement with the ratio of the void volumes of the two zeolites
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V(CaA) _ 0.278 cc /g

V(NaX) ~ 0.322 cc /g

rather than with the ratio of surface areas

S(CaA) 1640 m 2 / g

S(NaX) ~ 1400 m2 / g

-. 0.863

1.17

This shows clearly that the mechanism of adsorption is by micropore filling. This is
summarised graphically in Figure 4.1-1.

Surface
layering
mechanism

CaA NaX

versus

Pore
filling
mechanism

cfl

0.278 cc/g 0.322 cc/g

Figure 4.1-1: Possible adsorption mechanisms in CaA and NaX

4.1.2 Dispersive Forces

Forces of adsorption are electrostatic forces, the valance energy force and the
cohesive energy force. The force of relevant interest here is the van der Waals
force, which exists between all atoms and molecules. The van der Waals forces can
be classified into three groups:

(a) dipole-dipole forces
(b) dipole-induced dipole forces: In this case one molecule having a

permanent dipole will induce a dipole in a non-polar atom, such as
neon

(c) dispersion forces
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The dispersion force is the most important force in physical adsorption. It has
an origin in the quantum mechanics. Let us take an example of a non-polar atom
such as neon or helium. The time average of its dipole moment is zero. But at
instant time "t" there is an asymmetry in the distribution of electrons around the
nucleus and this generates a finite dipole. This so generated dipole will polarise any
nearby atom (that is it distorts the electron distribution) so that the nearby atom will
acquire a dipole. These two dipoles will attract, and the time average of this
attractive force is finite. This is the basis of the van der Waals's dispersion force.

The dispersion interaction energy between two identical atoms or molecules
having distance r apart is governed by the following London's equation:

4 (47ie0)
2 r6

where ct0 is the electron polarizability, e0 is the dielectric permitivity of the free
space, and I is the ionisation potential.

For dissimilar atoms or molecules, the interaction energy by the dispersion
force is:

S a c a o . I , I 2

2 ( 4 ) 2 6 I + I

The interaction potential energy is proportional to r"6. To evaluate the total
interactive potential energy between an atom or molecule with a layer of solid
atoms, we simply sum the above equation for pairwise interaction with respect to all
atoms on the solid layer. If the distance z between an atom or molecule and the
solid layer is larger than the solid atom spacing, the summation is replaced by the
following integral:

= _ | 2 "0.- "0,2 I, h x N x ( 2 7 I x ) d x ( 4 U3)
J 2

 [ '

where N is the number of surface atoms per unit area, 27ixdx is the differential area
on the solid layer, and the inter-atom distance "r" is given by

r = Vz2 + x2 (4.1-3b)

Evaluating the integral (4.1-3a) gives:

, , x 3TIN a 0 , a02 L I9
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This is the interaction potential energy between an atom or molecule and a layer. It
is proportional to z'4. If the solid is composed of semi-infinite layers of atoms, the
interaction energy is simply:

• s ( z ) = J<|>L(z')dz' = - 7iNf cc0>1
(4.1-5)

where N' is the number of atoms per unit volume. Thus the interaction potential
energy between an atom or molecule with a solid of semi-infinite in extent is
proportional to z"3, stronger than the interaction with a single layer.

For a slit shape pore whose walls are made of semi-infinite layers of atoms, the
interaction potential energy between an atom or molecule and the pore is the sum of
eq.(4.1-5) for both walls, that is:

Z) (4.1-6)

where H is the distance between the centers of the first layers of the two walls
(Figure 4.1-2). The summation in the potential results in an enhancement of the
interaction energy between the atom or molecule and the pore. This is the energy
source responsible for the micropore filling. We shall discuss more on this in
Chapter 6.

Figure 4.1-2: Configuration of a molecule residing in a slit shaped pore made up of semi-infinite layers
of solid atoms
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What we shall present in the next sections are the various adsorption equations
developed to describe adsorption equilibria in micropores. For solids containing
both micropores and mesopores, the data collected must have the contribution from
the mesopores removed before the data can be used to test the micropore filling
theory. For microporous solids having total surface area greater than 800 m2/g, the
contribution of the mesopore toward adsorption capacity is usually negligible if its
surface area is less than 10 m2/g. If the mesopore surface area is greater than about
50 m2/g, the amount adsorbed on the mesopore surface must be subtracted from the
total amount, that is:

where Smeso is the mesopore specific surface area and a is the value of adsorption per
unit surface area, usually obtained from the adsorption of a nonporous material
having similar surface characteristics as that of the microporous solid. For example,
in the case of microporous activated carbon, nonporous carbon black is normally
used to determine the parameter a.

4.1.3 Micropore Filling Theory

Bering et al. (1966, 1972) studied adsorption in micropores and suggested that
adsorption in pores of less than 15 A should follow a mechanism of pore filling of
the adsorption space rather than the mechanism of surface coverage (formation of
successive layers), which was discussed in Chapters 2 and 3. In pores having
dimension larger than 15 A and less than 1000 A, when the pressure reaches a
threshold pressure, adsorption by layering on the surface turns into volume filling
by the capillary condensation mechanism. A distinction between the adsorption
mechanism by surface layering and the mechanism by micropore filling can be
explained thermodynamically. In the case of surface layering, the chemical
potential of the adsorbent is independent of the amount adsorbed, while in the
second case of micropore filling the chemical potential is a function of the amount
adsorbed (Bering et al., 1972).

The fundamental quantity in the micropore filling is the differential molar work
of adsorption, given by:

[̂ ] (4.1-7)
The standard state is the bulk liquid phase at the temperature T, which is in

equilibrium with saturated vapour. The parameter Po is the vapour pressure of the
free liquid.
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The principal feature of the micropore filling is the temperature invariance of
the differential molar work of adsorption at a constant degree of filling of the
adsorption space, that is:

where 6 is the fraction of the micropore volume occupied by the adsorbate.
Integrating the above equation gives:

A = H(0) (4.1-9)

Assuming that an inverse of the above equation exists, we can write:

6 = H"1(A) (4.1-10)

This equation is the basis of the theory of micropore filling put forwards by the
school of Dubinin. As the adsorption potential A has the unit of molar energy, we
can scale it against a characteristic energy, hereafter denoted as E, and rewrite the
micropore filling equation (4.1-10) as follows:

0 = f(A/E,n) (4.1-11)

The characteristic energy is a measure of the adsorption strength between
adsorbate and adsorbent. The function f is regarded as the distribution function of
filling of micropores 0 over the differential molar work of adsorption, and n is the
parameter associated with the distribution function.

For two different adsorbates, their adsorption potentials must follow the
following equation to attain the same degree of filling 0

if the parameter n is the same for both adsorbates. Here A and E are the adsorption
potential and the characteristic energy of one adsorbate and Ao and Eo are those of
the reference adsorbate. For activated carbon, the reference adsorbate is chosen as
benzene.

Eq.(4.1-12) leads to:

A o
(4.1-13)

where the parameter p is the coefficient of similarity. This coefficient is taken as
the ratio of the liquid molar volume to that of the reference vapor.
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4.2 Dubinin Equations

4.2.1 Dubinin-Radushkevich (DR) Equation

The distribution f in eq. (4.1-11) is arbitrary. Dubinin and his co-workers chose
the functional form of the Weibull distribution

f (A / E, n) = expf- (A / E)n 1 (4.2-1)

The parameter n = 2 was first suggested by Dubinin and Radushkevich (1947), and
hence the resulted adsorption equation is called the DR equation

e = expf-(A/E)2] (4.2-2a)

where the adsorption potential is defined in eq. (4.1-7). Since the adsorption
mechanism in the micropore is the volume filling, the degree of filling is:

W
0 = (4.2-2b)

W v /
0

where W is the volume of the adsorbate in the micropore and Wo is the maximum
volume that the adsorbate can occupy.

The temperature dependence of the isotherm equation is embedded in the vapor
pressure and the term T appearing in the definition of the adsorption potential (eq.
4.1-7).

Observing the adsorption isotherm equation (4.2-2), we note that if the
characteristic energy is independent of temperature, plots of the fractional loading
versus the adsorption potential for different temperatures will collapse into one
curve, called the characteristic curve. This nice feature of the Dubinin equation
makes it convenient in the description of data of different temperatures.

The adsorption isotherm of the form (4.2-2) fits well numerous data of activated
carbon. It does not perform well in solids having fine micropores such as molecular
sieving carbon and zeolite. Before we address other forms of equation to deal with
these solids, let us return to the adsorption potential.

4.2.1.1 The Adsorption Potential A

The value of A is equal to the difference between the chemical potentials of the
adsorbate in the state of normal liquid and the adsorbed state at the same
temperature. For ideal fluids, this adsorption potential is
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This adsorption potential A is the change of the Gibbs free energy on adsorption:

A = -AGa d s

Thus, the Dubinin and Radushkevich equation states the distribution of the
adsorption space W according to the differential molar work of adsorption. A
typical plot of the adsorption potential versus the reduced pressure is shown in
Figure 4.2-1 for T = {77, 273 and 473 K}. For low reduced pressure, the adsorption
potential is high, while it is low for high reduced pressure. The latter means that
less molar work is required for adsorption via micropore filling when the gas is
approaching the vapour pressure.

Adsorption 1 2

potential 10
(kJ/mole)

Figure 4.2-1: Plots of the adsorption potential versus the reduced pressure (T = 77, 273, 473 K)

4.2.1.2 The Molar Amount Adsorbed

Knowing the volume W taking up by the adsorbate, the number of moles
adsorbed (moles/g) is simply

(4.2-3a)

assuming the adsorbed phase behaves like a liquid phase. Here C^ is the molar
amount adsorbed (mole/g solid), W is the liquid volume adsorbed per unit mass of
the solid, and vM is the liquid molar volume (cc of liquid/mole).

The assumption of liquid-like adsorbed phase is made following Gurvitch
(1915) who carried out experiments of various vapors on relatively large pores such
as clays and earths. These solids, however, are macroporous solids; therefore,
Gurvitch in fact measured the capillary condensation rather than micropore filling.
It has been reported in Dubinin (1966) that the volume sorbed may exceed the
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limiting adsorption volume by up to a factor of 1.5, indicating that the adsorbed
state in micropore is denser than the liquid state. However in the absence of the
information on the state of adsorbed phase, it is reasonable to assume that it behaves
like a liquid phase.

The saturation adsorption capacity corresponds to the maximum volume Wo:

C ^ s = W 0 / v M (4.2-3b)

This saturation capacity is a function of temperature as the liquid molar volume vM

is a function of temperature. This temperature dependence usually takes the form

dvM = 5

where 5 is the temperature coefficient of expansion and is of the order of 0.003 K"1

for many liquids. Assuming the temperature invariance of the maximum specific
volume Wo (rigid solid), the temperature dependence of the saturation adsorption
capacity is:

C^ dT

or in the integral form:

(4.2-4a)

C(JS=C(ls>oexp[-5(T-To)] (4.2-4b)

where C ŝ 0 is the saturation adsorption capacity at a reference temperature To.
Typical values of Wo of activated carbon are in the range of 0.25 to 0.5 cc/g.

For carbon char, this value is usually lower than 0.2 cc/g.

4.2.1.3 The Characteristic Curve

Equation (4.2-2) provides what we usually call the characteristic curve, that is
experimental data of various temperatures can be plotted on the same curve of lnW
versus A2.

The characteristic energy E in eq. (4.2-2) can be regarded as the average free
energy of adsorption specific to a particular adsorbent-adsorbate pair. If the change
in the Gibbs free energy, A, is equal to this characteristic energy, the amount
adsorbed will be

0 = exp(-l) « 0.37

that is 37% of the micropore volume is occupied with adsorbate when the adsorption
potential is equal to the characteristic energy.
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If the adsorption potential is one third of the characteristic energy, the amount
adsorbed is:

6 = exp(-l /3)*0.9

that is 90% of the micropore volume is filled.

4.2.2 Dubinin-Astakhov Equation

The DR equation describes fairly well many carbonaceous solids with low
degree of burn-off. For carbonaceous solids resulting from a high degree of burn-
off during activation, the degree of heterogeneity increases because of a wider pore
size distribution, and for such cases the DR equation does not describe well the
equilibrium data. To this end, Dubinin and Astakhov proposed the following form
to allow for the surface heterogeneity:

W = Wo exp (4.2-5a)

where the parameter n describes the surface heterogeneity, and the adsorption
potential A is defined in eq. (4.1-7). When n = 2, the DA equation reduces to the
DR equation. Rewriting eq. (4.2-5a) in terms of the characteristic energy of the
reference vapor, we get

W = Wo exp
PE(

(4.2-5b)

The DA equation is corresponding to the choice of arbitrary value in the
Weibull's distribution function (eq. 4.2-1). With this additional parameter in the
adsorption isotherm equation, the DA equation provides flexibility in the description
of adsorption data of many microporous solids ranging from a narrow to wide
micropore size distribution. The following table shows the degree of filling when
the adsorption potential is equal to some fraction of the characteristic energy.

Table 4.2-1: Degree of filling for the DA equation at some specific values of A/E

n

2
3
4
5
6

A/E
2
0.018
~0
~0
~0
~0

1
0.368
0.368
0.368
0.368
0.368

1/2
0.779
0.882
0.939
0.969
0.984

1/3
0.895
0.964
0.988
0.996
0.999
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It is seen from the above table that the DA equation corresponding to the higher
parameter n has a sharper equilibrium curve with respect to the adsorption potential.
This effect of n is also shown in Figure 4.2-2 where plots of the fractional loading
versus the reduced pressure for E = 10000 Joule/mole and T = 300 K are plotted.

1.0

0.8 -

Fractional °-6

loading
0.4

0.2 ....

o.o
o.oo 0.02 0.04 0.06 0.08 0.10

P/Pn

Figure 4.2-2: Plots of the DA equation versus P/Po for E=10kJ/mole and T = 300 K

Figure 4.2-3 shows the effect of the variation in the characteristic energy on the
fractional loading versus the reduced pressure with T = 298 K and n = 2. The higher
the characteristic energy, the sharper the isotherm curve, and the sharp rise occurs at
lower pressure.

1.0

0.8

Fractional 0.6
loading

0.4

0.2

0.0

E=l5kJ/mo

i;=10kJt/mol

E = 6 kJ/mol

0.00 0.05 0.10 0.15 0.20 0.25 0.30

P/Po

Figure 4.2-3: Plots of the DA equation versus P/Po for n = 2, and T = 298 K
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The characteristic energy is a measure of the strength of interaction between
adsorbate and adsorbent, and is different from the interaction energy in the
Langmuir equation (eq. 2.2-6). The Langmuir mechanism is the monolayer type
adsorption, and the interaction energy is a measure of the interaction between an
adsorbate molecule and surface atoms. In the case of micropore filling, the
interaction is between the adsorbent and the volume of adsorbate residing within the
micropore, and this interaction is the characteristic energy.

To show the utility of the DA equation in the description of sub-critical vapors,
we take the adsorption data of benzene on activated carbon at 303 K as tabulated in
Table 3.2-10. The benzene vapor pressure at this temperature is 16.3 kPa. Using
the program ISOFIT1.M provided with this book, we obtain the optimized
parameters as listed below:

C^s = 4.96 mmole / g , E o = 17610 Joule / mole , n = 2.46

Figure 4.2-4 shows a very good fit of the DA equation with the experimental data.

Amount
adsorbed
(mmol/g)

2 3

Pressure (kPa)

Figure 4.2-4: Fitting the benzene/ activated carbon data at 303 K with the DA equation (Po = 16.3 kPa)

4.2.2.1 The Heterogeneity Parameter n

Since the degree of sharpness of the adsorption isotherm versus adsorption
potential or the reduced pressure increases as the parameter n increases, this
parameter could be used as an empirical parameter to characterise the heterogeneity
of the system. Since it is an empirical parameter, it does not point to the source of
the heterogeneity. However, it can be used as a macroscopic measure of the
sharpness of the micropore size distribution. For solids having narrow micropore
size distribution such as the molecular sieving carbon, the DA equation with n = 3 is
found to describe the data well. Therefore, if the parameter n of a given system is
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found to deviate from 3 (usually smaller than 3), that system is said to be
heterogeneous or has a broad micropore size distribution. Typical values of n for
strongly activated carbon are between 1.2 and 1.8. For zeolite having extremely
narrow micropore size distribution, the parameter n is found to lie between 3 and 6.

Because n =3 is found to describe well data of solids having narrow pore size
distribution, the DA equation with n = 3 is generally used as the local isotherm for
the description of micropore size distribution as we shall discuss later in Section 4.4.

4.2.2.2 The incorrect Henry Law Behaviour

Thermodynamics suggests that an adsorption isotherm must exhibit the Henry
law behaviour when pressure is very low. Unfortunately, the DA as well as the DR
equations do not have the correct Henry law when the pressure is approaching zero.
The slope of the DA adsorption isotherm equation (4.2-5) is:

When n > 1, the slope is zero when the pressure approaches zero. On the other
hand, when the parameter n is equal to unity, eq. (4.2-6) will become:

Thus, for this case of n = 1, when RT > E (which is unlikely because thermal
energy should not be greater than the characteristic energy), the slope of the
isotherm is zero when P approaches zero. On the other hand, when RT < E, the
slope will be infinity when the pressure approaches zero (Eiden and Schlunder,
1990).

4.2.2.3 Equation for Super-Critical Adsorbate

The fundamental adsorption equation presented in eq. (4.2-5) involves the
vapor pressure Po at the adsorption temperature T. This implies that the equation is
applicable only to sub-critical adsorbates. However, experiments of gas adsorption
on microporous solids have shown that there is no abrupt change in the adsorption
during the transition from sub-critical to super-critical conditions. This suggests that
the DA isotherm equation can be empirically applied to super-critical gases as well.
To do this, we need to define an effective vapor pressure Po for super-critical gases,
sometimes called pseudo-vapour pressure, and the adsorbed phase molar volume.

The adsorbed phase molar volume for super-critical gases is estimated by the
following equation (which was proposed by Ozawa et al., 1976):
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vM(T) = vM(Tb) exp[0.0025(T-Tb)] (4.2-8)

where vM(Tb) is the molar volume of the liquid adsorbate at the normal boiling point.
The pseudo-vapour pressure can be estimated in a number of ways. One

approach is to use the following Antoine equation for the vapour pressure and
extrapolate it to temperatures above the critical temperature:

l n P 0 = P i - - y (4.2-9)

Here 0! and P2 can be calculated from the vapour pressure information at critical
condition and at the normal boiling point Tb at which Po = 1 arm (Dubinin, 1975).
Another approach is to evaluate the pseudo-vapour pressure at any temperature
above Tc by using the following Dubinin equation:

(4-2-10)

This approach does not render some experimental data to fall onto one
characteristic curve. A generalisation of eq. (4.2-10) was proposed by Amankwah
and Schwarz (1995):

(f) (4.2-11)

where k is a parameter specific to the adsorbate-adsorbent system. When this
equation is used in connection with the DA equation, we have a four-parameter
isotherm equation (Wo, Eo, n and k). Amankwah and Schwarz have applied this DA
equation to adsorption data of methane and hydrogen on a number of carbons at
temperatures well above the critical temperatures. They found that the parameter n
falls in the range of 1.5 to 1.8 while the parameter k in the range of 2.1 to 4.2.

4.2.2.4 Dubinin-Astakhov for Water Adsorption

The DA equation described so far works reasonably well in describing
adsorption equilibria of many vapours and gases, such as organic vapors onto
microporous activated carbon and carbon molecular sieve. As we have pointed out
in Section 4.2.2.2, this equation does not describe correctly the adsorption behaviour
at extremely low pressure due to the zero slope at zero loading. Because of this, the
DA equation has an inflexion point and its position depends on the value of the
characteristic energy (Figure 4.2-3). The lower the characteristic energy, the higher
the value of the reduced pressure where the inflexion point occurs. For organic
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vapors adsorption, the characteristic energy is high (usually greater than 15
kJoule/mole) and hence the inflexion point occurs at extremely low pressure, which
is not usually manifested in the plot of the fractional loading versus the reduced
pressure (see the curve corresponding to E = 15 kJoule/mole in Figure 4.2-3) unless
we magnify the pressure axis.

It is interesting, however, that the zero slope at zero loading behaviour and the
inflexion point exhibited by the DA equation can be utilised to describe the
adsorption of water on activated carbon. Water adsorption on carbon exhibits a type
V isotherm according to the BDDT classification. The curves corresponding to E =
1 and E = 2 kJoule/mole show this type of behaviour, and hence it is appropriate to
use the DA equation in the description of water adsorption on carbonaceous solids.
Although the DA equation with low characteristic energy E (of the order of 1 to 3
kJoule/mole) and n in the range of 2 to 8 can be used for the description of water
adsorption on carbon, it is important to note that the water adsorption does not
necessarily follow a micropore filling mechanism, but rather a cluster formation
mechanism. This is dealt with next.

4.2.2.5 Dubinin-Serpinski Equation for Water Adsorption on Carbon

Water is known to have extremely low affinity toward the graphitic surface, and
its adsorption mechanism is due to the quasi-chemisorption of water with some
specific surface functional groups on the carbon surface. Once water molecules
sorb onto the specific groups, they themselves act as secondary sites for further
water adsorption through hydrogen bonding mechanism. Due to the finiteness of
the volume space within the carbon particle, the more water adsorption occurs, the
lesser is the availability of these secondary sites. Using the kinetic approach, the
rate of adsorption is:

k^fl-kC^fc.o +CJ(P/PO) (4.2-12)

where kads is the rate constant for adsorption, C^ is the adsorbed concentration of
water, C ô is the concentration of the primary sites, and k represents the rate of loss
of the secondary sites due to the finiteness of the adsorption volume. Here CM0 + C^
is the total sites composed of primary and secondary sites, available for water
adsorption.

The rate of desorption is proportional to the adsorbed concentration, that is

kdesC^ (4.2-13)

Equating the above two rates, the following equation is obtained to describe the
adsorption of water on carbonaceous materials
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(4.2-14)

where c is the ratio of the rate constants. The above equation is a quadratic equation
in terms of C^ and it can be solved to obtain Ĉ  explicitly

i

(4.2-15)

where

x = •

This adsorption equation, known as the Dubinin-Serpinsky (D-Se) equation, exhibits
a type V isotherm as shown in Figure 4.2-5 for c = 3, C ô = 1 mmole/g and three
values of k = 0.005, 0.01 and 0.02. The following ranges for C ô, c and k are typical
for water adsorption in many different sources of carbon.

C^o 6 [0.05 - 5 mmole / g]

ce [ l -3 ]

k e [0.005 - 0.05 g / mmole]

80

60
Amount
adsorbed
(mmol/g) 40

20 -

Figure 4.2-5: Plot of the Dubinin-Serpinski equation versus P/Po with c = 3, C^o = 1 mmol/g

The concentration of the primary site increases with the degree of oxidation of
the carbon surface. This is mainly due to the increase in the oxygen-carrying
functional groups. The ratio of the two rate constants, c, is in the rather narrow
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range (1 - 3), and it may reflect the intrinsic association of the water molecule with
the functional group to form a cluster. The parameter k represents the loss of the
secondary sites with the progress of adsorption, and hence it affects strongly the
maximum amount of water which can be adsorbed by the solid and it does not
influence the initial adsorption behaviour as shown in Figure 4.2-5. The initial
behaviour is due to the association of water molecule with the functional group.
This characteristic can be described by the truncated Dubinin-Serpinsky equation:

ex
C^C.oyr^ (4-2-17)

The hyperbolic behaviour of the above equation leads to infinite adsorbed water
concentration when the reduced pressure is

x = - (4.2-18)
c

Such behaviour is not acceptable in practical systems, and hence the parameter
k is important in its provision of a constraint to limit the amount of water which can
be accommodated by a solid. The smaller this parameter is, that is the slower loss of
the secondary sites with adsorption, the higher is the maximum capacity for water.
This physically corresponds to solids having large pore volume to accommodate
large clusters. The maximum water capacity can be calculated from eq. (4.2-15) by
setting x = 1, that is:

(4.2-19)

Being a three parameter equation, the Dubinin-Serpinsky equation (4.2-15) can
be used directly in a nonlinear optimisation routine to determine the optimal
parameters. Alternatively, the initial adsorption data can be used with eq. (4.2-17)
to determine the constant c and the concentration of the primary site, and the
equation for the maximum capacity (4.2-19) then can be used to determine the
remaining parameter k.

Among the two equations for describing water adsorption on carbon, the D-Se
equation is a better choice as it reflects better the mechanism of adsorption. The DA
equation, however, is the one to use if we wish to obtain the adsorption isotherm at
different temperatures as the parameters E and n are almost temperature invariant
(Stoeckli et al., 1994). To test these two isotherms, we use the following data of
water on a sample of activated carbon.
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P/Po

0.05
0.07
0.09
0.11
0.13
0.16
0.18
0.23
0.27

Water adsorbed
(mmole/g)
0.58
0.67
0.88
1.08
1.14
1.45
1.65
2.35
3.11

P/Po

0.30
0.31
0.33
0.36
0.40
0.43
0.49
0.50
0.54

Water adsorbed
(mmole/g)
3.96
4.56
5.72
6.67
9.37
10.73
14.67
15.77
17.11

P/Po

0.58
0.62
0.64
0.68
0.72
0.75
0.82
0.85
0.88

Water adsorbed
(mmole/g)
18.15
19.54
20.21
20.96
21.55
22.18
22.97
23.54
24.1

Figure 4.2.6 shows plots of the above data as well as fitted curves (obtained
from the ISOFIT1 program) from the Dubinin-Serpinski equation and the DA
equation. Both of these equations fit the data reasonably well although the Dubinin-
Serpinski equation provides a better fit in the lower range of the pressure. This
could be attributed to the correct description of the water clustering in the lower
pressure range.

25

20

Amount
adsorbed
(mmole/g) 15

10

Dubinin-Se Dinski
Vo = 0.975

C = 3.058
k = 0.0261^

Dubinm-Astakhov

E = 2364 Joule/mol
n = 2.283

5 mmol/g

g/mmol

0.0 0.2 0.4 0.6 0.8 1.0

P/Pn

Figure 4.2-6: Fitting the Dubinin-Serpinski equation to water/activated carbon data
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4.2.3 Isosteric Heat of A dsorption and Heat of Immersion

4.2.3.1 Isosteric Heat

The heat of adsorption is calculated from the following van't Hoff equation:

AH

dT Jc

(4.2-20)

Taking the total derivative of the DA equation (4.2-5), we have:

| d C ^ _ n C A"-1 dA\
dT ^s (av\n dT

,_ n A""1 3A | A , , ,D

(4.2-2 la)
where DA/dT and dAJdP are given by:

,dlnP0 dA ReT
5T - « - \ p ; - - - « - dT
^ = R , W a +R,T^£iL ; ^ = - ^ 1 ; (4.2-21b)

The temperature variation of the maximum capacity is given in eq. (4.2-4a).
The change in vapor pressure with respect to temperature is given by the

Clausius-Clapeyron equation:

1 dP0 AHvap

P0 dT R T
(4.2-22)

g

where AHvap is the heat of vaporization.
At constant loading (that is dC^=0) , substitution of eqs. (4.2-21) and (4.2-22)

into the van't Hoff s equation (4.2-20) yields the following expression for the
isosteric heat:

(pE0)n5T
- AH = A + AHvap + VH ° ; (4.2-23)

nA
where A is the adsorption potential, given by

A = RgTlnf^-J (4.2-24)

Thus the isosteric heat is the summation of three terms. The first is due to the
adsorption potential, the second is the heat of vaporization and the third is due to the
change of the maximum capacity with temperature.

To express the isosteric heat of adsorption in terms of loading, we use the
definition of the adsorption equation (eq. 4.2-5) and obtain the following
expression:
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= AH v a p +pE o [ ln-- J (pE0)8T
= - ^ - (4.2-25)

4.2.3.2 Net Differential Heat

The net differential heat of adsorption is defined as the isosteric heat of
adsorption minus the heat of vaporization:

( 4-2"2 6 )

The net differential heat of adsorption is infinite at zero loading. This, however, has
no physical basis as the DA equation is not valid in the very small neighborhood of
zero loading. Figure 4.2-7 shows a typical plot of the net differential heat of
adsorption versus fractional loading for n = 2 and T = 300 K. The heat curve
decreases with loading and when saturation is approached the net differential heat of
adsorption increases rapidly. Such a rapid increase close to saturation is due to the
change of the saturation capacity C^ with respect to temperature. If this maximum
capacity is temperature-invariant, then the heat curve decreases monotonically with
loading and approaches zero when saturation is reached.

35

30

Net heat of 25

adsorption 20

(kJ/mole)
15

0.2 0.4 0.6 0.8
Fractional loading, 0

l.o

Figure 4.2-7: Net heat of adsorption versus fractional loading with E = 15 kJ/mol, n = 2, T = 300K

Figure 4.2-8 shows the effect of the heterogeneity parameter n on the heat
curve. The higher the value of n, the more uniform the heat curve. This is in
accordance with what was said earlier about the behaviour of the adsorption
isotherm curve versus the reduced pressure when n is increased, that is the system is
more homogeneous.
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Net heat of
adsorption
(kJ/mole)

0.2 0.4 0.6 0.8

Fractional loading, 6

1.0

Figure 4.2-8: Net heat of adsorption versus fractional loading with E=15 kJ/mol, 6 = 5X10"4 K"\
T=300K

4.2.3.3 Enthalpy of Immersion

Integration of the net heat of adsorption versus the fractional loading from 0 to
1 would give the molar enthalpy of immersion into the corresponding liquid
(Stoeckli and Krahenbuhl, 1981, 1989), that is:

(4.2-27)

where T is the Gamma function. This is the molar heat of immersion, that is the
amount of heat released per unit mole of adsorbate upon immersing the solid into a
liquid pool of adsorbate. Assuming the micropore volume would be filled with
adsorbate during the immersion and the adsorbate state within the micropore is
liquid-like, the heat of immersion per unit mass of solid is obtained by multiplying
the molar heat of immersion with the specific micropore volume Wo (cc/g) and
dividing it by the liquid molar volume, vM, that is:

- AHi = (pE0)W0(l + 5T)r(l +1 / n) / v M (4.2-28)

This specific heat of immersion is rather insensitive to n for n ranging from 2 to 6,
and it is more sensitive toward the variation of the parameter E and Wo. For DR
equation, that is n = 2, the specific enthalpy of immersion is:

A) (4-2-29)

The specific enthalpy of immersion is proportional to the characteristic energy,
and hence it provides a convenient check on the parameter obtained by fitting the
DA equation with the experimental data.
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Eq. (4.2-28) or (4.2-29) are directly applicable to strictly microporous solids.
For solids having high mesopore surface area, the specific enthalpy of immersion
must allow for the heat associated with the open surface, that is

- AH{ = ((3E0)W0(l + 8T)r(l + 1 / n) / vM + hjSe (4.2-30)

where h{ is the specific enthalpy of immersion on open surface.

4.3 Theoretical Basis of the Potential Adsorption Isotherms

The DA equation (4.2-5) is obtained by assuming the temperature invariance of
the adsorption potential at constant loading and a choice of the Weibull's
distribution to describe the filling of micropore over the differential molar work of
adsorption. It can be shown to be a special case of an isotherm equation derived
from the statistical mechanical principles when the loading is appreciable (Chen and
Yang, 1994). They derived the following isotherm

^ . = o (4.3-1)
kTp*Aj 8 * " (1-TI) 8 (!_,,)* kT

for a given pore dimension and geometry, with a mean force field O. In this
equation, ps and p8 are number densities of the adsorbed and fluid phases,
respectively, A is the de-Broglie thermal wavelength, and r| is defined as:

*=r2ps' ps=v (4-3-2)
where N is the number of molecules exposed to the force field, Vs is the volume of
the system and a is the diameter of the hard disk. The variable r\ is the fraction of
the surface covered.

For appreciable adsorption, they reduce the above isotherm to:

ln0 = - (4.3-3)

where NA is the Avogradro number and K is a constant. If we define

KNA<D = pE0 (4.3-4)

the above will become the DA equation. When n=2, it then reduces further to the
DR equation. With the above definition of the characteristic energy (4.3-4), we see
that it is proportional to the mean potential energy of the pore.
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4.4 Modified Dubinin Equations for Inhomogeneous Microporous Solids

Adsorption isotherms of many microporous solids do not usually conform to
the simple DR equation. Even with the adjustable parameter n in the DA equation,
it also can not describe well many experimental data. This inability to fit the data is
attributed to the heterogeneity of the system, that is the characteristic energy varies
with the different regions in the solid.

There are a number of approaches to deal with such heterogeneous solids. One
simple approach is to assume that the solid is composed of two distinct regions and
there is no interaction between these two. With such an assumption, the DR or the
DA equation can be applied to each region, and the overall isotherm is simply the
summation of the two simple DRs or DAs equations. This is dealt with in Section
4.4.1. Another approach is to assume a continuous distribution of the characteristic
energy. The distribution of the characteristic energy is completely arbitrary and its
form is chosen in such a way that an analytical solution can be obtained from the
averaging of a local isotherm over that distribution. Due to the arbitrary choice of
the distribution function, the resulting equation is at best empirical and the
parameters resulting from the averaging must be treated as empirical constants.
Attempts to assign physical meaning to these constants must be treated with care
and be checked with independent experimental means.

4.4.1 Ideal Inhomogeneous Microporous Solids

The simplest way of describing the adsorption isotherm of an inhomogeneous
microporous solid is to use the equation given below:

w,0,1C U.l
H = — - e x p

"0,1

W 0 > 2
+ exp (3E0,2

(4.4-1)

where vM is the liquid molar volume. The micropore volume has been assumed to
be divided into two independent regions and each region follows either the DR or
DA equation. Here the exponent n for the two regions can be either the same or
different. It is usually taken to be the same to reduce the number of parameter by
one. The distinction between the two regions is then the difference in the
characteristic energy. Figure 4.4-1 shows a typical plot of the amount adsorbed of
eq. (4.4-1) versus the reduced pressure for E, = 10 kJoule/mole and E2 = 5
kJoule/mole. Here a is the fraction of the region having E, = 10 kJ/mole.

This approach is one of the simplest approaches to deal with inhomogeneous
solids. Practical solids, however, do not easily break down into two distinct regions
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having two distinct characteristic energies, but rather they possess a distribution of
energy. This is dealt with in the next section.

Fractional 0 6
loading

P/Po

Figure 4.4-1: Plots of the dual DA equation versus P/Po with E, =10 kJ/mole, E2 =5 kJ/mole, n=2,

T=300K

4.4.2 Solids with Distribution in Characteristic Energy Eo

With the concept of distribution of the characteristic energy, the adsorption
isotherm equation can be written in general as follows:

= W0 Jf(E0)e(A/pE0,n)dEc

()
(4.4-2)

where Wo is the maximum specific volume of the micropore, f(E0) is the distribution
of the characteristic energy based on the reference vapour, and 6 is the local
fractional loading corresponding to the characteristic energy (3E0. The parameter n
may vary with the variation of the characteristic energy, but for simplicity it is
always taken as a constant.

It is noted in eq. (4.4-2) that the characteristic energy of the reference vapour is
used as the distributed variable, and therefore the functional form of the distribution
f(E0) would reflect the heterogeneity of the solid. Hence the parameters of such
distribution function are the solid heterogeneity parameters.

The range of integration, Q(E0), strictly speaking should reflect that of a
micropore system, that is the proper range should be between Emin and Emax. The
lower limit Emin is the characteristic energy associated with the largest pore in the
micropore system, and the upper limit Emax associates with the smallest accessible
micropore. However, the range of integration is usually extended beyond its range
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of validity to facilitate the analytical integration of the integral (4.4-2). For
example, the lower limit could be set to zero and the upper limit could be set to
infinity.

With any form of the distribution and a particular choice of the local isotherm,
eq. (4.4-2) can be in general integrated numerically to yield the overall adsorption
isotherm equation. The local fractional loading 0 can take the form of either the DR
or DA equation. As discussed earlier the DA equation with n = 3 describes well
solids having narrow micropore size distribution, and hence this makes this equation
a better candidate for a local isotherm equation rather than the DR equation.
However, since the selection of a distribution function is arbitrary, this does not
strictly enforce the local isotherm to reflect the "intrinsic" local isotherm for a
specific characteristic energy. Moreover, the DR or DA itself stems from a
Weibull's distribution function of filling of micropore over the differential molar
work of adsorption. Thus, the choice of the local isotherm is empirical, and in this
sense the procedure of eq. (4.4-2) is completely empirical. The overall result,
however, provides a useful means to describe the equilibrium data in microporous
solids.

Because of the way that the characteristic energy appears in the DR or DA
equation, instead of using the distributed variable as Eo it will be chosen as

) (4.4-3a)

or
( 1 ^

(4.4-3b)

depending on the choice of the distribution function to facilitate the analytical
integration of the integral equation. Thus the overall adsorption isotherm is
evaluated from the following equation:

or

The distribution functions of the Gaussian and Gamma form are tabulated in the
following table (Table 4.4-1).

= W0 j f[-^ e ( A / p E 0 , n ) d - U (4.4-4a)
n(Eo)

 KE°J V E ° y

= W0 | f-^- e(A/pE0 ,n)d(-H (4.4-4b)
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Table 4.4-1: The functional form of the distribution function

Distribution Functional form
function

Eq. No.

Gaussian

Shifted
Gamma

Gamma

exp

q n + 1 I 1 1
2 E 2
0 ^O.max

n-1

exp

r(n/3)U0
^~ eXP

(4.4-5)

(4.4-6)

(4.4-7)

The parameter Eo in eq. (4.4-5) is the mean characteristic energy of the solid
toward the reference vapor, and a is the variance in the Gaussian distribution
(mole2/Joule2). The parameters q and n are distribution parameters, and they affect
the mean characteristic energy and the variance of the distribution. For the shifted
Gamma distribution (4.4-6), the mean and the variance are:

(4.4-8a)

(4.4-8b)a =

and for the Gamma distribution (4.4-7) the corresponding mean and variance are:

r ( n / 3 + l / 3 )

qT(n/3)

a =
A / r ( n / 3 ) r ( n / 3 + 2 / 3 ) -

qT(n/3)

(4.4-9a)

(4.4-9b)

The choice of the Gaussian and Gamma distribution in Table 4.4-1 is sufficient
to illustrate the us.e of distribution function to describe adsorption equilibria in
inhomogeneous solid. Other distributions could be used, but the lack of the physical
basis of the choice of the functional form has deterred the use of other functions.
Let us now address the distribution functions in Table 4.4-1 with the local isotherm
DR or DA equation.
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4.4.2.1 Gaussian Distribution and local DR Equation

This section will address the DR local isotherm and the Gaussian distribution of
the form given in eq. (4.4-5). The volume of the micropore occupied by the
adsorbate at a given adsorption potential A is:

> 2

W = Wo f- 1
exp

Eo
exp

PEO

—V| (4.4-10)
E

The range of the integration is between 0 and oo. The lower limit corresponds
to infinite characteristic energy, and the upper limit corresponds to zero
characteristic energy. Since these two limits are not physically feasible, the variance
in the Gaussian equation has to be narrow. Integration of the above equation gives
the following expression for the adsorption isotherm:

pEo
xexpTly 1-erf

2 1 / ^ 2

-1/Eo (4.4-11)

This form of equation was first derived by Stoeckli (1977). Figure 4.4-2 shows
plots of the above equation versus the reduced pressure with the variance as the
varying parameter.

Fractional
loading 0 6

o.o

Figure 4.4-2: Plots of eq. (4.4-11) versus P/Po with E = lOkJ/mol, p = 1, T = 300K
(Symbol o is from the DR equation)

Here we see that the more heterogeneous is the solid, the broader is the
isotherm curve, that is it has a sharper rise in the low pressure range and a slower
approach to saturation at high pressure. The sharper rise at very low pressure is due
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to the filling of pores having high characteristic energy and the slow approach to
saturation is due to the progressive filling of lower characteristic energy sites.

Stoeckli (1977) applied the above equation to experimental data of nitrogen,
xenon, SF6, N2O and benzene onto activated carbon, and found that all gases leading
to similar value of the variance c for a given solid, supporting the assumption that it
is a structural parameter.

Eq. (4.4-11) is applicable to heterogeneous solid and the heterogeneity is
reflected in the distribution function, and to be more specific, in the variance of the
distribution function. In other words, the larger is the variance the more
heterogeneous is the solid. We recall earlier the parameter n in the DA equation is
treated as a measure for the solid heterogeneity. Thus, the parameter n in a sense is
related to the variance a. The equivalence of these parameters was found by
Dubinin (1979) to take the following relationship

n = 2-( l .9xlO 6 )a

This relation states that when the variance of the distribution is zero, the
exponent n in the DA equation is 2, suggesting that DR equation describes
homogeneous solid, which is the assumption used in the derivation of eq. (4.4-11).
When the variance is positive, the exponent n is less than 2, and this is consistent
with the experimental data of many activated carbon systems where the exponent n
is found to fall between 1.2 and 1.8.

4.4.2.1.1 Micropore Size Distribution

If eq. (4.4-11) is accepted as the proper equation to describe the amount
adsorbed versus the reduced pressure, it can be used to match with the experimental
data to extract the mean characteristic energy and the variance. Having these
parameters, the distribution describing the heterogeneity is given in eq. (4.4-5), but
it does not point to the source of the heterogeneity. Dubinin and Zaverina (1949)
have shown that the characteristic energy and the micropore size are related to each
other. They found that the characteristic energy decreases with the activation of
carbon with carbon dioxide at high temperature. This process enlarges the
micropore, and by using the small angle X-ray scattering, the following approximate
equation relates the characteristic energy and the micropore half width, assuming
micropores are slit shape pores:

-V = Mx2 (4.4-12a)
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where M is a constant and x is the half width of the pore. For Eo taking the units
Joule/mole and x taking the units nm, the constant M takes the value:

M = 6.944 x 10~9 J-2nnr2

The distribution of the micropore volume in terms of l/E0
2 is:

dWft

d(l/Eg)
exp

(4.4-12b)

(4.4-13)

where Wo
u is the specific total micropore volume.

Replacing the characteristic energy with the pore half width (eq. 4.4-12a) in
eq.(4.4-13), we obtain the pore volume distribution in terms of the pore half width:

dW0 _2MxW0°

dx
exp

M

2a2
(4.4-14)

Figure 4.4-3 shows distribution of pore volume with the variance as the varying
parameter.

f(x)

3.0e-4

2.0e-4

1.0e-4

Figure 4.4-3: Micropore size distribution from eq. (4.4-14) with Eo = 10 kJ/mole

Thus, with the use of a distribution in terms of the characteristic energy (eq.
4.4-5) and the relationship between the characteristic energy and the micropore half
width (eq. 4.4-12a), the method allows an indirect means to calculate the micropore
volume distribution. We must however treat this volume distribution as an
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approximation to the intrinsic distribution as there are a number of assumptions
embedded in the derivation of such pore volume distribution:

(a) the use of DR as the local isotherm
(b) the use of the distribution function in the form of eq. (4.4-5)
(c) the relationship between the characteristic energy and the pore half

width

4.4.2.1.2 Geometrical Surface Area

Assuming the micropores having parallel sided slits with a half width of x, the
geometric surface area of the micropore walls is:

W
S =—S- (4.4-15a)8 x

This equation provides a good estimation of the geometric surface area for
homogeneous solids. For inhomogeneous solids, the differential increase in the
geometric surface area is related to the differential increase in the micropore volume
as follows:

dW
dS2 = °- (4.4-15b)

* x
assuming all slits have the same length. Using eq. (4.4-14) for the distribution of
pore volume with half-width, we obtain the following equation for the geometrical
surface area:

2MW0°

2<J2J M[xz -:
dx (4.4-16)

4.4.2.2 DA and Gaussian distribution

The last section shows the analysis of an inhomogeneous solid when the local
isotherm taking the form of the DR equation and the distribution in terms of l/E0

2

taking the Gaussian distribution (eq. 4.4-5). In this section, the local isotherm is
taking the form of DA (n = 3) as discussed earlier it describes narrow pore solids
better than the DR equation, and hence it should be a better choice for the local
isotherm. But this DA, like the DR equation, does not truly represent the "intrinsic"
local isotherm for the reason that the DA comes from the Weibull's distribution of
micropore filling over the differential molar work of adsorption.
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Using the DA equation and the Gaussian distribution (eq. 4.4-5), the following
equation is obtained

k 2

w = wn exp x exp
PE(

— (4.4-17)

or

W = Wo exp

erfc

erfc(-B0/(aV2)j

where

(4.4-18)

(4.4-19)

The above solution was first obtained by Rozwadowski and Wojsz (1984). This
equation is rarely used because of its complicated form.

4.4.2.3 DR Local Isotherm and Shifted Gamma Distribution

The Gaussian distribution used in the last two sections does not give a zero
value when the micropore size is zero. The choice of the shifted Gamma
distribution function as in eq. (4.4-6) overcomes this deficiency. In eq. (4.4-6),
EOmax is the maximum characteristic energy that the solid possesses. Using DR as
the local isotherm, the following equation is obtained:

i = exp[-B0(A/p)2]
q-f(A/p)2

where

(4.4-20)

(4.4-21)

The above equation can take a simpler form if the maximum characteristic
energy is taken to be infinity, that is:

-in+l

A _ w q (4.4-22)
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This adsorption isotherm equation has three parameters, Wo°, q and n, with the
last two being the structural parameters (hence will be independent from adsorbate
and temperature). By fitting this adsorption equation with the experimental data,
preferably with different adsorbates and temperatures, the three parameters can be
obtained.

As before, the characteristic energy Eo is related to the half width of the
micropore according to eq. (4.4-12). Therefore, the micropore size distribution,
J(x), is given by:

J(x) = exp[- Mq(x2 - 4)} (4-4-23)

where x0 is the micropore half width corresponding to EOmax.

4.4.2.4 DA (n=3) Local Isotherm and Shifted Gamma Distribution

The DA equation with n = 3
s

A0 = exp
PE(

(4.4-24)

is a better description of adsorption in activated carbon having fairly uniform
micropores. Taking this as the local isotherm for a heterogeneous solid instead of
the DR equation, the overall fractional loading can be calculated according to the
following equation:

9 = Jexp F(z)dz; z = •
1

(4.4-25)

The variable z is the inverse of the characteristic energy, and is related to the
micropore half-width. There are a number of correlations available in the literature
(Dubinin and Stoeckli, 1980; Stoeckli et al., 1989) and they are listed below:

(4.4-26a)

x = z 13.028- 1.53x10
3.5

(4.4-26b)

x = 1 2 z (4.4-26c)

where x is in nm and z is in mole/kJoule. Figure 4.4-5 shows plots of the micropore
half-width versus the characteristic energy obtained from the above three
correlations.
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Micropore half-
width (nm)

. (4.4-2<$a)

Eq. (4.4-26b)
Elq. (4.4-26c)

5 10 15 20 25 30 35 40 45

Characteristic energy (kJ/mole)

Figure 4.4-4: Plot of the micropore half-width versus the characteristic energy

Knowing the energy distribution F(z) the pore size distribution is:

dx
(4.4-27)

The choice of the function form for the energy distribution F(z) is arbitrary, and
again it is chosen to allow the integration to be performed analytically. The
following Gamma distribution satisfies this requirement:

^ n - -

F(z) = — 3 z11"1 exp - (qz)3 (4.4-28)

r(n./3) Pl V 4 M
where n > -1 , and q > 0. Using this form of distribution function, eq. (4.4-25) can
be analytically integrated to give:

1
0 = - (4.4-29)

By fitting the above adsorption isotherm equation with equilibrium
experimental data, the parameters n and q can be obtained; hence the energy
distribution F(z) is obtained, from which one could readily determine the micropore
size distribution from eq. (4.4-27).

Knowing the parameters n and q, the differential adsorption potential
distribution X(A) is obtained as:

X(A) = - -^- = n(Pq)-3A2[l + (A/| (4.4-30)
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This distribution is useful to calculate enthalpy and entropy of adsorption in the
micropores (Jaroniec, 1987) and the heat of immersion (Jaroniec and Madey, 1988).

To test eq. (4.4-29), we fit it to the adsorption data of benzene on activated
carbon at 30 °C (Table 3.2-10) and the result is shown in Figure 4.4-5. Knowing the
parameters n and q from the isotherm fit, the micropore size distribution is
calculated from eq. (4.4-27) and it is shown graphically in Figure 4.4-6.

Amount 4

adsorbed
(mmole/g) 3

Residual
jDA: 0.3128
TC: 0.3795
iDR: 0.4114

1 2 3 4 5 6

Pressure (kPa)

Figure 4.4-5: Fitting of the benzene/activated carbon data of 30 °C with DR, DA, and Jaroniec-Choma
eqs.

J(x)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
x (nm)

Figure 4.4-6: Pore size distribution calculated from the benzene/activated carbon fitting with JC
equation

4.5 Solids with Micropore Size Distribution

The above section assumes that the solid has a distribution in terms of the
structural parameter B = l/E0

2 , and the micropore distribution is then calculated
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based on the information of this f(B) distribution by using the relationship between
B and the micropore half width, x. Such a choice of distribution function in terms
of Eo is based solely on mathematical convenience rather than on any physical
reasoning.

Since adsorption of many adsorbates in micropores of carbonaceous solids is
due to the dispersion force, the micropore size is therefore playing a major role in
the attraction of adsorbate molecules. In this sense, a distribution of the micropore
size is a more fundamental description of heterogeneity than the distribution in
characteristic energy as done in the previous section. If we let the micropore size
distribution as f(x) such that W0°f(x) is the micropore volume having micropore size
between x and x + dx, then the volume of micropore occupied by adsorbate at a
given adsorption potential A is:

W = W0° Je(A/pE0,n)f(x)dx (4.5-1)

where x is the micropore half width, with xmin and x ^ are its minimum and
maximum, respectively. The lower limit is the minimum accessible half width, and
the upper limit is the upper limit of the micropore range. However, for
mathematical convenience, those limits are usually replaced by 0 and oo,
respectively, to facilitate the analytical integration of the above integral.

To evaluate the intergral (4.5-1), the parameters of the local isotherm must be
expressed in terms of the micropore half width, x. The parameter n is usually
regarded as a constant. The parameter Eo is the characteristic energy of the
reference vapor, and it is found by the small angle X-Ray scattering to follow the
following relationship with the micropore half width

E o = - (4.5-2)
X

For benzene as the reference vapour, the constant k is:

k = 12 kJoule - nm/ mole (4.5-3)

Another description of the parameter k is given by Dubinin and Stoeckli (1980)

k = 13.028 - (l.53 x 1 ( T 5 ) E J5 (4.5-4)

Figure 4.4-4 shows plots of the characteristic energy versus the micropore half
width using these two forms for k. The difference between the two is insignificant
except when the micropore half width is less than 0.4 nm. Thus for solids having
large micropores, such as the well developed activated carbon, the simple form for k
(eq. 4.5-3) is adequate.
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4.5.1 DR Local Isotherm and Gaussian Distribution

The micropore size distribution can be assumed to take the following Gaussian
distribution:

exp 25 2 = W0°f(x) (4.5-5)

where Wo° is the total micropore volume, x0 is the half-width of a slit shaped

micropore which corresponds to the maximum of the distribution curve, and 5 is the
variance.

Using the relationship between the characteristic energy and the micropore half
width (eq. 4.5-2), the adsorption equation of DR written in terms of this half width x
is:

W = Wo exp(- mx2A2) (4.5-6)

where

1
m = - (4.5-7)

To obtain an equation for a heterogeneous solid, the adsorption equation for a
micropore volume element dW is:

= dW0exp(-mx2A2) (4.5-8)

Combining eq. (4.5-5) and (4.5-6) yields the following equation for the volume
occupied by the adsorbate:

w°w= ° exp
262

exp(-mx2A2 jdx

Evaluation of the above integral gives:

rexp -
[ + 2m52A2

1 + erf

(4.5-9)

(4.5-10)

This equation was first obtained by Dubinin and Stoeckli, and is hereafter called

the D-S equation. Using this equation to fit experimental data, three parameters can

be extracted from this fitting process, namely Wo°, x0 and 6. Knowing these

parameters, the micropore size distribution in terms of volume then can be
calculated from eq. (4.5-5).
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Figures 4.5-1 and 4.5-2 show the plot of eq. (4.5-10) versus the reduced
pressure with the variance and the mean pore half width as the parameters,
respectively.
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Figure 4.5-1: Plots of the DS equation versus P/Po with T=300 K, x0 = 1 nm and 8 = {0.1, 0.3, 0.5}
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Figure 4.5-2:: Plots of the DS equation versus P/Po with T=300 K, 8 = 1 nm and x0 = {0.75,1,1.25

nm}

4.5.1.1 Geometrical Surface Area of Micropore

If the micropore volume is described by a Gaussian distribution given as eq.
(4.5-5), the geometrical surface of the micropore walls under the assumption of slit
shaped pore is:
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S -
8

— exp
x 262 dx (4.5-11)

Here the parameter c is the minimum pore half width below which adsorbate
molecules can not penetrate due to the steric effect, that is only pores having spacing
greater than or equal to the diameter of the adsorbate molecule will allow the
adsorption to proceed.

4.5.2 DA Local Isotherm and Gamma Micropore Size Distribution

Using DA as the local adsorption isotherm, and Eo = k/x, Jaroniec et al. (1988)
assumed the following micropore size distribution:

to obtain the following overall isotherm equation:

9 = [l + (A/Pqk)np

The distribution has the following properties:

r[-

r

u + 2^

n /

(-]
Vnv

rf-)+\\

n )

'-)

(4.5-12)

(4.5-13)

(4.5-14)

Due to the simplicity of the overall isotherm equation (4.5-13), this equation
has been used to fit many experimental data to obtain the structural parameters n, q
and v. Knowing these parameters, the micropore size distribution can be calculated
from eq. (4.5-12).

Like other isotherm equations developed in this section, the micropore size is
assumed to take a certain form and then the isotherm equation derived from such
assumed pore size distribution is fitted with equilibrium data to obtain the relevant
structural parameters. This method must be used with some precaution because if
the true micropore size distribution does not conform to the assumed form the
derived micropore size distribution can be erroneous.
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4.6 Other Approaches

Since the development of the DR equation in 1947, many versions of Dubinin
type equations have appeared in the literature, such as the DA equation which
allows for the solid heterogeneity and the DS equation which allows for
heterogeneity in terms of micropore size distribution. These equations, however,
suffer from the disadvantage of zero Henry constant at zero pressure. This difficulty
in incorrectly describing the adsorption behaviour at low pressure has been
addressed by a number of workers. Here we will present a number of studies.

4.6.1 Yang's Approach

Adsorption isotherm in microporous solids such as activated carbon is described
well by the now well known Dubinin equation, such as the Dubinin-Radushkevich
equation or its generalised version the Dubinin-Astakhov equation. These equations
are suitable to describe the isotherm of solids having micropore size ranging from 4
to about 40 A. Although they are popular in their use to describe numerous systems
with activated carbon in the literature, they suffer from one problem, that is it does
not exhibit the Henry law isotherm at very low pressure, a requirement demanded
often by thermodynamics (Talu and Myers, 1988). Therefore, when using the
Dubinin equations to predict multicomponent adsorption equilibria using the
solution thermodynamics models, large errors may result. Recognising the potential
of the Dubinin equations in their description of isotherms in microporous solids,
various researchers have attempted to modify it, usually in an empirical way, to
enforce the Henry law behaviour at very low pressure. For example, Kapoor et al
(1989) used the following empirical equation:

9 = P^xp
PEO

•p2KP (4.6-1)

Implicit in this equation is that the two modes of adsorption mechanisms, pore
filling (Dubinin) and site adsorption (Henry law) are operative simultaneously at all
range of pressure. Clearly this equation has a Henry law slope as the contribution of
the Dubinin at zero pressure is zero. The coefficients Py and P2 are obtained
empirically by Kapoor et al (1989) and Kapoor and Yang (1989):

(4.6-2a)

(4.6-2b)
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where a is a constant determined by fitting eq. (4.6-1) with experimental data. This
value of a was found to fall in a very large range, ranging from 15 to about 10000, a
range too large to deduce any significant meaning of that parameter.

4.6.2 Schlunder 's Approach

Schlunder and co-workers proposed a theory based on a DA equation and they
allowed for the end of micropore filling by introducing a limiting potential A^.
Eiden and Schlunder (1990) modified the DA equation as follows:

W = Wo exp
A - A Gr

PEC

(4.6-3)

The advantage of this model is that for A approaching A^ the limiting volume
is reached (at pressure less than the vapor pressure), before the capillary
condensation is setting in. This is because the DA equation is not meant to cover
such capillary condensation.

This limiting potential, A^., is independent of adsorbent but is a function of
adsorbate. Using the capillary condensation theory, the limiting pore radius r^
corresponding to A^ is calculated from:

r = 2^0030 + d (

AGr

In this equation, the radius is corrected for the thickness of one preadsorbed layer.

4.6.3 Modified Antoine Equation

Hacskaylo and LeVan (1985) adapted the concept of micropore filling of
Dubinin in microporous solids and with the assumption that the state of adsorbed
molecule in the pores is in liquid form, they utilised the Antoine equation, which
expressed the vapour pressure versus temperature, to express the isotherm as a
function of pressure with the constants assumed to be dependent on loading. The
form is chosen so that it has the correct limit of Henry law at low loading.

The Antoine equation for the vapor pressure above a flat liquid surface is:

(4.6-5)

where A, B and C are constants specific to the species. This equation is valid for
completely filled pores. For a partially filled pore, the modified adsorption isotherm
equation will be:
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lnP=A'(9)-c,^T (4.6-6)

where A1, B' and C are function of loading and they take the form such that A' = A,
B' = B and C = C when the pores are saturated. With this form of equation, the
isosteric heat is evaluated as (from the Van Hoff equation):

F ( 6 ) (4.6-7,

In the limit of low loading, the modified equation must reduce to the Henry law
form0 = KP, that is:

lnP = ln9-lnK, K = Ktt expMM (4.6-8)
vRgTy

Comparing this equation with the above modified Antoine equation, the
parameter A' must contain a logarithm term, and the parameters B1 and C must be
bounded. The choice of these parameters now rests with the asssumption on how
the isosteric heat would vary with loading.

For the heat of adsorption to be independent of loading, B' = B and C = C, and

A'=A + ln9 (4.6-9)

If the heat of adsorption increases linearly with loading, we have:

A'=A + ln9 ; B'=B + b ( l -9 ) ; C = C (4.6-10)

If the dependence on loading varies in a complex way, we can have:

A'=A + ln9 ; B'=B + b ( l -9 ) ; C = C + c ( l -9 ) (4.6-11)

The parameter A' given in eq. (4.6-9) can take another form and still satisfies the
Henry law behaviour at zero loading, for example A'= A + hi9 - ln(l - 9) .

4.7 Concluding Remarks

This chapter has addressed a number of isotherm equations developed mainly
for microporous carbon type solids. The concept of micropore filling is the basis for
the derivation. The simplest equations, like the DR and DA, are the first choice for
describing the isotherm data, and when the information on the micropore size
distribution is required, eq. (4.5-10) is a convenient equation for the determination
of the micropore size distribution. Although those equations have been developed
for carbonaceous type solids, they can be used to describe other microporous solids
such as zeolite. For zeolitic particle, other approaches developed from the statistical
thermodynamics approach (Ruthven, 1984) are also applicable.
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Multicomponent Adsorption

Equilibria

5.1 Introduction

The last three chapters deal with the fundamental and empirical approaches of
adsorption isotherm for pure components. They provide the foundation for the
investigation of adsorption systems. Most, if not all, adsorption systems usually
involve more than one component, and therefore adsorption equilibria involving
competition between molecules of different type is needed for the understanding of
the system as well as for the design purposes. In this chapter, we will discuss
adsorption equilibria for multicomponent system, and we start with the simplest
theory for describing multicomponent equilibria, the extended Langmuir isotherm
equation. This is then followed by a very popularly used IAS theory. Since this
theory is based on the solution thermodynamics, it is independent of the actual
model of adsorption. Various versions of the IAS theory are presented, starting with
the Myers and Prausnitz theory, followed by the LeVan and Vermeulen approach
for binary systems, and then other versions, such as the Fast IAS theory which is
developed to speed up the computation. Other multicomponent equilibria theories,
such as the Real Adsorption Solution Theory (RAST), the Nitta et al.'s theory, the
potential theory, etc. are also discussed in this chapter.

5.2 Langmuirian Multicomponent Theory

5.2. / Kinetic approach

The treatment of the extended Langmuir isotherm of a binary system is due to
Markham and Benton (1931). Here, we present the general treatment for a
multicomponent gaseous system containing N species. The assumptions made by
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Langmuir in the treatment of pure component systems in Chapter 2 are applicable to
multicomponent systems as well, that is each site occupying only one molecule, no
mobility on the surface, and constant heat of adsorption. We assume that the rate
constants for adsorption and desorption for all species are invariant.

The rate of adsorption of the species i onto the solid surface is

where 6j is the fractional coverage of the species j and k^ is the rate constant for
adsorption and from the kinetic theory of gases it is given by

in which we have assumed that the rate of adsorption is due to the rate of collision
of molecules towards the surface. Here ctj is the sticking coefficient of the species i.

Here, the rate of adsorption of the species i is proportional to the partial
pressure of that species and to the fraction of the vacant sites on the surface, namely

(5.2-lc)

The rate of desorption of the species i is proportional to its fractional loading

Rd-k^ (5.2-ld)

Here the rate of desorption of a species is unaffected by the presence of all other
species. In general, one would expect that the rate constant for desorption kdi is a
function of fractional loadings of all other species. However, it is treated as a
constant in this analysis because of the one molecule per site and the no lateral
interaction assumptions in the Langmuir mechanism.

At equilibrium, the rate of adsorption of the species i (eq. 5.2-la) is equal to the
rate of desorption of that species (eq. 5.2-ld):

b i P i ( l - e T ) = 0i (5.2-2a)

where b; is the ratio of the rate constant for adsorption to that for desorption, and 6T

is the sum of fractional loadings of all species:

b j = ^ - (5.2-2b)
Kd,i



Multicomponent Adsorption Equilibria 193

eT=£0j (5.2-2c)
j=i

Summing eq. (5.2^2a) with respect to i over all species, we can solve for the
total fractional coverage in terms of the partial pressures of all components:

(5.2-3a)

and hence the fraction of the vacant sites is:

1 -6 T = 1 (5.2-3b)

Knowing this total fractional coverage (eq. 5.2-3), the fractional coverage
contributed by the species i is then obtained from eq. (5.2-2a), that is

9i = b / j (5.2-4a)

H

or written in terms of molar concentration, we get

p±= b/ j (5.2-4b)

This equation is known in the literature as the extended Langmuir isotherm
equation, which gives the adsorbed concentration of the species "i" in the
multicomponent system. For a binary system, Figure 5.2-1 shows plots of the
fractional coverage of the component 1 versus b ^ with the parameter b2P2 as the
varying parameter. We see that the presence of the additional component 2 causes a
decrease in the surface concentration of the component 1 and vice versa due to the
competition of the two species. The reduction in the adsorbed concentration of the
species 1 is

1 + b ^ +b2P2
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Figure 5.2-1: Plot of the fractional loading of the component 1 versus b,P,

The selectivity of species "i" in relation to the species "j" is defined as:

S : : = •

which is equal to the ratio of the affinities of the corresponding two species.
Eq. (5.2-4b) has assumed that each species maintains its own surface area (i.e.

the area covered by one species is not affected by the others). The thermodynamic
consistency of eq. (5.2-4b) is only possible when the monolayer capacity is the same
for all species, that is

C = C

Discussion of this thermodynamic consistency is given in Section 5.3.6.
For binary systems where C^tl * C^ 2, the following formula might be used to

calculate the monolayer capacity:
1 "V "V
1 Ai Ai

where x j and x2 are mole fractions of the adsorbed species, defined as

X i = •
^H,l + ^ % 2

X , = •
'H .2

(5.2-5a)

(5.2-5b)

(5.2-5C)
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It is reminded that the extended Langmuir isotherm is derived assuming the
surface is ideal and the adsorption is localised, and one molecule can adsorb onto
one adsorption site.

5.2.2 Equilibrium Approach

Although the extended Langmuir equations can be derived from the kinetic
approach presented in the last section, it can be derived from thermodynamics,
which should be the right tool to study the equilibria (Helfferich, 1992). The two
approaches, however, yield identical form of the equilibrium equation. What to
follow is the analysis due to Helfferich.

At constant temperature and pressure, the change in the free energy must be
zero at equilibrium:

N ^Q

dG = V dn: =0 at equilibrium (5.2-6)

The rate of change of the free energy with respect to the number of mole of the
species i is the chemical potential of that species, that is

= Uj = |ij + RgTlnCj for ideal systems (5.2-7a)

Let us consider a reacting system

with the convention that the stoichiometry of product is positive and that of reactant
is negative. The above reaction would require that the change in the number of
mole of the species i is proportional to the stoichiometry coefficient, that is

dni oc Vi (5.2-7b)

Substituting eqs. (5.2-7) for the chemical potential and the stoichiometry coefficient
into eq. (5.2-6) we get:

^ j ^ O (5.2-8)
j=i

Recognising the following property of logarithm

V j l n C j =
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eq. (5.2-8) can be rewritten as:

Y\C? = = constant (5.2-10)

since the standard chemical potentials JLL J are constant. This is basically the mass
action law, commonly used in chemical reaction equilibrium.

In this thermodynamic formulation, there is no mention of the nature of the
chemical bonds and the status of the species involved. Therefore, this
thermodynamic derivation is applicable to adsorption as well. As a matter of fact, it
is applicable to any process in which something is converted into something else.

Now, we apply this thermodynamics approach to the adsorption system where
there is a reversible reaction between the free adsorbate and the bound species as
shown below:

C j + S o (5.2-11)

where S denotes the adsorption site, Cj is the free adsorbate and [Cj - S] is the bound
adsorbate.

We rewrite this adsorption equilibrium equation in the standard reaction
equation format as follows:

[Cj-S]-Cj-S = O (5.2-12)

Applying the thermodynamic equation (eq. 5.2-10) to the above specific
equation, we have:

= fy (constant) (5.2-13)

where 0; is the fractional loading of species i, and 11 — ^ v • I is the fraction of the
free sites.

Rewrite eq. (5.2-13) as follows:

which is basically the statement of the equality between the rate of adsorption and
the rate of desorption obtained in Section 5.2.1 (eq. 5.2-2a). Solving for the
fractional coverage of the species i, we obtain:
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6; = bf{ (5.2-14)

The concentration of the adsorbed species i will be proportional to the fractional
coverage occupied by that species, that is:

(5.2-15)

which is identical to the formula obtained by the kinetic approach of Langmuir.
This lends support to the fundamental Langmuir equation, which can be derived
from either the kinetic approach or the thermodynamic approach. Although it is
fundamentally sound, the assumptions associated with its derivation, such as one
molecule - one site interaction, no interaction among adsorbate molecules, and
constant heat of adsorption with loading are too restrictive and do not readily apply
to practical systems and hence very often that it does not describe well
multicomponent adsorption equilibria. Since there are no particular models which
are superior in the description of equilibria, empirical approaches are frequently
applied especially in the dynamics studies of adsorber columns such as fixed bed or
PSA column. These empirical approaches are usually based on the extended
Langmuir equations by allowing some parameters to relax in order to fit
multicomponent equilibrium data. One approach is to vary the affinity constant and
the other is to adopt the exponent on the partial pressure. This is done in the next
section.

5.2.3 Empirical Approaches Based on the Langmuir Equation

When there are lateral interactions between adsorbed species, which are
generally different from the self interactions among molecules of the same type, the
following empirical equation is recommended (Yang, 1987):

(5.2-17)
N

Zbj/TlJPj '

The parameter r^ allows for interaction among molecules of the same type, and nf

allows for other effects of heterogeneity. Eq.(5.2-17) can be viewed as the
generalization of the Langmuir-Freundlich (Sips) isotherm.
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5.3 Ideal Adsorption Solution Theory (IAS)

5.3.1 The Basic Thermodynamic Theory

Recognizing the deficiency of the extended Langmuir equation, despite its
sound theoretical footing on basic thermodynamics and kinetics theories, and the
empiricism of the loading ratio correlation, other approaches such as the ideal
adsorbed solution theory of Myers and Prausnitz, the real adsorption solution theory,
the vacancy solution theory and the potential theory have been proposed. In this
section we will discuss the ideal adsorbed solution theory and we first develop some
useful thermodynamic equations which will be used later to derive the ideal
adsorbed solution model.

Sircar and Myers (1973) have shown that the theories associated with the ideal
solution are based on the same principle, that is the assumption of ideal adsorbed
solution. The difference among them is simply the choice of the standard states.

The Gibbs free energy of the mixture per mole of adsorbate is:

g = X x j g j + 8 m (5-3" la)

where gj is the molar Gibbs free energy of the pure j-th component measured at the
same value of the intensive variable I, to be defined later, and gm is the Gibbs free
energy of mixing. The variable I defines the standard states of the pure adsorbate.
The free energy per unit mole, g, is

g = l T - (5-3-lb)

with nj' being the number of moles of the adsorbate, and

G = U - T S (5.3-lc)

The isothermal Gibbs free energy of mixing per mole, gm, is:

N

() (5.3-ld)

where y} is the activity coefficient (=1 for ideal solution).
The starting thermodynamic equation is (Bering et al., 1970)
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jn- =0 (5.3-2)

The above equation mimics the following thermodynamics equation for the bulk
phase:

N

^ j n - = 0

Here U is the internal energy, S is the entropy, m is the mass of adsorbent, <|> is the
surface potential of the adsorbed phase per unit mass of the adsorbent, and Uj is the
chemical potential, related to the fugacity as follows:

U j ^ + R g T l n f ; (5.3-3)

where (I j is the standard chemical potential at 1 arm, and f; is the fugacity of the
species i.

Combining eqs. (5.3-1) we get:

M (5-3-4)
JLJ n j j

j

Replacing U - TS of the above equation by that of the thermodynamic equation (5.3-
2) yields the following relationship between the surface potential and the chemical
potential of all species

Note that gj0 is the molar Gibbs free energy of the pure component j .
It is convenient from the measurement point of view that the chemical potential

is expressed in terms of the fugacity. Thus by combining eqs. (5.3-5) and (5.3-3)
we obtain

£ , j j ( ? ) 0 (5.3-6.)
n j l Y J X jJ j

where

£ (5.3-6b)
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m
(5.3-6c)

Here n is the total number of moles per unit mass of the adsorbent. Before arriving
at the desired equation, we now need to express the molar Gibbs free energy in
terms of the fugacity of the pure component. We have:

8? =
G? U°-TS

L_ + ^ = J ^ + ^ o ( 5 3 _ 7 )

" j " j xl'j n j

where n° is the number of mole of pure component j per unit mass of the adsorbent

and cj) j is the surface potential of the pure component j .

Combining eqs. (5.3-6) and (5.3-7) we obtain the following fundamental
equation for the mixture

fj 4>
j=inj

= 0 (5.3-8)

where f ° is the fugacity of the pure component j at the reference state, n is the
number of moles per unit mass of adsorbent, nj is the number of moles of pure j-th
component per unit mass at the same reference state, and Zj is defined as:

(5.3-9)
n°RgT

where <J)j is the surface potential of the pure j-th component at the reference state.

One of the possible solutions to the fundamental equation (5.3-8) is to force
each term in the LHS of that equation to zero, and we get:

f j=f] )exp(z j)x j (5.3-10a)

i=\ H:
(5.3-10b)

This special solution in fact defines an ideal adsorbed solution.
The fugacity in the adsorbed phase is equal to the fugacity of the gas phase and

when the gas phase pressure is low the fugacity can be written in terms of the total
pressure and the mole fraction as follows (this is reasonable unless the gas phase
pressure is very high):



Multicomponent Adsorption Equilibria 201

fj = Pyj (5.3-11)

Combining eqs. (5.3-10a) and (5.3-11), we get:

Py j=PJ°x jexp(z j) (5.3-12)

Eqs. (5.3-10b) and (5.3-12) define the ideal adsorbed solution theory. The surface
potential, <|>, is calculated from the Gibbs adsorption isotherm equation (Bering et
al, 1970):

For pure components, the surface potential of the pure component i is:

- ± L = -fn?dlnP1
0 (5.3-14)

8 0

Thus, if the pure component isotherm n{ (P{ ) is known, the surface potential of

the pure component i can be obtained from the integral given by eq. (5.3-14).

5.3.2 Myers and Prausnitz Theory

The theory presented in the previous section involves a standard state. This
standard state can be defined in a way that the surface potential of the mixture is the
same as the surface potentials of all pure components, that is:

RgT RgT
(5.3-15)

for all j . If this is the case, z} = 0 (defined in eq. 5.3-9), and hence eq. (5.3-12) will
become:

Py j=P J°x j (5.3-16)

which basically mimics the Raoult's law in vapor-liquid equilibrium. The mole
fractions in the gas phase and in the adsorbed phase must satisfy:

2>j=l (5.3-17a)

(5.3-17b)
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For clarity sake, we rewrite below the basic equations of the Myers and
Prausnitz theory

, NX-

- = S - ^ (5-3-18a)
n j=1 rij

•^F = ^ F = - f - T ^ d P J ° f o r a l lJ (5-3"18b>
R g T R g T o pj

p y =P? X . for all j (5.3-18c)

N

Xj = 1 (5.3-18d)

The number of equations of eqs. (5.3-18) are shown in Table 5.3-1.

Table 5.3-1. The number of equations in the Myers-Prausnitz theory

Eq. no.
(5.3-18a):
(5.3-18b):
(5.3-18c):
(5.3-18d):

Number of equations
1
N-1
N
1
Total = 2N +1

We have a total of 2N+1 equations in the ideal adsorption solution theory. Let
us now apply this ideal adsorption solution theory to the usual case of adsorption
equilibria, that is we specify the total pressure and the mole fractions in the gas
phase and wish to determine the properties of the adsorbed phase which is in
equilibrium with the gas phase. For such a case the number of unknowns that we
wish to obtain is given in the following table:

Table 5.3-2. Total number of unknowns when the gas phase is specified

Variable Number of variable

Pure component pressure, Pj :

Adsorbed phase mole fraction, Xj N
Total adsorbed phase concentration, n 1

Total unknown variable = 2N + 1
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The total number of unknown variables is 2N+1, which is the same as the
number of equations given by the ideal adsorption solution theory; thus the problem
is properly posed. Once the total adsorbed amount is determined, the adsorbed
phase concentration of the component i is:

ni = nxi (5.3-19)

In this theory of Ideal Adsorption Solution, adsorption isotherm equation for pure
components can take any form which fits the data best (Richter et al., 1989). Two
isotherms commonly used are Toth and Unilan equations (Chapter 3), although Toth
equation is the preferable equation from the computational point of view because it
usually gives faster convergence than the Unilan equation does. When DR equation
is used to describe pure component data, the application of the IAST in this case has
some special features (Richter et al., 1989) and it was used by Lavanchy et al.
(1996) in the description of equilibria of chlorobenzene and tetrachloride on
activated carbon.

The IAS theory is thermodynamically consistent and exact at the limit of zero
pressure (Valenzuela and Myers, 1989). The success of the calculations of IAS
depends on how well the single component data are fitted, especially in the low
pressure region as well as at high pressure region where the pure hypothetical
pressure lies. An error in these regions, in particular the low pressure region, can
cause a large error in the multicomponent calculations..

5.3.3 Practical Considerations of The Myers-Prausnitz IAS Equations

The IAS theory developed in the previous section is now recast here in the form
convenient for the purpose of computation. For a system containing N species, the
IAS equations are given below.

The analog Raoult's law for an ideal adsorption system is:

p y . = p. = XjPjV) for i = 1, 2, •••, N (5.3-20a)

and

f>j=l (5.3-20b)

where F^°(7t) is the hypothetical pressure of the pure component that gives the same
spreading pressure on the surface, that is:
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The spreading pressure is the negative of the surface potential. For a given total
pressure (P) and the mole fraction in the gas phase (ys), eqs. (5.3-20) provides N+l
equations, and eq. (5.3-21) gives N equations, a total of 2N+1 equations. With this
set of 2N+1 equations, there are 2N+1 unknowns.

1. N values of mole fractions in the adsorbed phase (x{),
2. one value of the spreading pressure 7c, and

3. N values of the hypothetical pressure of the pure component, P° ,

which gives the same spreading pressure as that of the mixture.

Thus, solving numerically eqs. (5.3-20) and (5.3-21) will give a set of solution for
the adsorbed phase mole fractions and a solution for the spreading pressure.

Knowing the mole fractions in the adsorbed phase (Xj) and the hypothetical
pressure of the pure component ( Pj° ) that gives the same spreading pressure as that
of the mixture (71), the total amount adsorbed can be calculated from the equation:

7^- = Zd~ (5.3-22a)
^HT j=i Cw-

where C^ is the adsorbed amount of pure component j at the hypothetical pressure

P°, that is

(5.3-22b)

Knowing the total amount adsorbed (C^T), the amount adsorbed contributed by the
component "i" is given by:

C î = XiC^T (5.3-23)

Eqs. (5.3-20) to (5.3-23) form a set of powerful equations for the IAS theory,
that is if the total pressure and the mole fractions in the gas phase are given, the
adsorbed phase mole fractions, the spreading pressure, the pure component pressure
that gives the same spreading pressure as the mixture, the total amount adsorbed and
the component amount adsorbed can be calculated. The inverse problem of this
situation is that if the amounts of the adsorbed phase are given, the total pressure as
well as the mole fraction in the gas phase can also be calculated.

Although the set of eqs. (5.3-20 to 5.3-23) define the fluid-solid equilibria, there
is another way to determine this equilibria. If the spreading pressure is known
explicitly as a function of the gaseous partial pressures, P b P2, ..., PN , then the
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multicomponent equilibria can be determined by noting the Gibbs adsorption
equation for a mixture:

N Q
d7i = ^ - ^ ^ d P i (5.3-24)

i=l P i

which means that

This is the approach used by LeVan and Vermeulen (1981) which we will discuss in
Section 5.5.

5.3.4 The Lewis Relationship

Before we proceed further with the computational illustration of the IAS theory,
it is worthwhile to have another look at eq. (5.3-22a). For a binary system, we can
rewrite that equation in the following form:

t|i«l (5.3-26.)

where

= f°(Pj°) for j = 1 and 2 (5.3-26b)

Eq. (5.3-26a) is known as the Lewis relationship. It has been tested with a
number of systems involving silica gel and activated carbon. This equation relates
the amounts adsorbed in multicomponent system (Cw) to those for pure component
systems ( C ^ ) evaluated at the hypothetical pressure P?.

Although eq. (5.3-26) were derived from thermodynamic analysis (Section 5.3-
2), the Lewis relationship can be derived by the following alternative approach,
which assumes the adsorption is by a micropore filling mechanism. The derivation
of this equation is as follows. The maximum volumetric capacity for micropore
filling is Wo, which is assumed the same for all sorbates. Therefore, the maximum
number of moles of adsorbed species is:

C , , T = — (5-3-27)
v m

where vm is the molar volume of mixed adsorbate. If there is no volume change
during mixing in the adsorbed phase (ideal adsorbed solution), the partial molar
volume is thence additive, that is
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Substituting eq. (5.3-28) into eq. (5.3-27), we get:

C , T = - N ^ - (5-3-29)

£XJVJ

By noting that

C w = C ^ X j (5.3-30a)

and

C%=— (5.3-30b)

eq. (5.3-29) will become
N r

which is the Lewis equation given in eq.(5.3-22a). This equation is valid provided
that adsorbates are adsorbed by the micropore filling mechanism and the adsorbed
phase is ideal, that is no mixing between species. It has been found to be applicable
for solids such as activated carbon, zeolites, and silica gel.

We have completed the theoretical description of the IAS theory, now we turn
to the algorithm for the purpose of computation with the various forms of pure
component isotherm. We start first by considering the problem where the gas phase
conditions (P and y) are specified, and the adsorbed phase conditions are required.
Next, we will consider the inverse problem, that is the adsorbed amount and the
mole fractions x are given, and the gas phase conditions are required.

5.3.5 General IAS Algorithm: Specification ofP andy

The set of equations presented in the previous section (5.3.3) in general can not
be solved analytically; hence it must be solved numerically. Even if the spreading
pressure equation (5.3-21) can be integrated analytically, the inverse of the
hypothetical pure component pressure versus spreading pressure is not generally
available in analytical form with the exception of the Langmuir, Freundlich and Sips
equations (see Table 5.3-3).
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For general case, the IAS equations must be solved numerically and this is quite
effectively done with standard numerical tools, such as the Newton-Raphson
method for the solution of algebraic equations and the quadrature method for the
evaluation of integral. We shall develop below a procedure and then an algorithm
for solving the equilibria problem when the gas phase conditions (P, y) are given

(Myers and Valenzuela, 1986).
Eqs. (5.3-20) can be combined together to yield the following equation

(5.3-31a)

where z is called the reduced spreading pressure

z =
RgT

(5.3-3 lb)

Eq. (5.3-3la) is a function of only the reduced spreading pressure as the
hypothetical pressure Pj°(z) is a function of the spreading pressure and it is
calculated from eq. (5.3-21), from which the hypothetical pressure can be obtained
either analytically or numerically depending on the isotherm equation used to
describe the pure component equilibria.

To solve eq. (5.3-3la) for the reduced spreading pressure we need to resort to a
numerical procedure. An effective tool to meet this goal is the Newton-Ralphson
method, which is an iterative method to obtain z. The iteration formula for the
reduced spreading pressure is given below:

=(k) F(^<k))
Ff

(5.3-32)

where the upperscript denotes for the iteration number, and F and F1 = dF/dz are
given below:

Jt Pv
• - 1 (5.3-33a)

F'(z(k>) =
N dPj°(z)

dz

N

•z (5.3-33b)

In obtaining eq.(5.3-33b), we have used the following formula
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P?(z)

dz
(5.3-34)

which is obtained by differentiating eq. (5.3-21).
The algorithm 5.3-1 presented below is for the evaluation of the reduced

spreading pressure (eq. 5.3-3la):

Algorithm 5.3.1

Step#
1

2

3

4

Action
la. First the input parameters are supplied: the parameters for the single

component isotherm, the total gaseous pressure and the mole

fractions in the gas phase.

2a. Estimate the reduced spreading pressure as the molar average of the

following integral

z UA - Y y J ^ d P : (5.3-35)RgT £ y ' J P j '
Note that the total pressure is used as the upper limit of the integral.

2b. The RHS of the above equation can be evaluated because all

variables (y, P, and the single component isotherm equations) are

known. If the pure component isotherm can be approximated by a

Langmuir equation, then the initial estimate of the spreading pressure

can be taken as:

z = C^sln ll + XbiPiJ (5.3-36)

where CMS can be taken as the average of the maximum adsorbed

concentration of all species.

3 a. Knowing the estimated reduced spreading pressure from step 2,

evaluate the pure component pressure f" that gives that reduced

pressure (using eq. 5.3-21), and then evaluate the amount adsorbed

for the single component from the single component isotherm at that

hypothetical pressure Pj°

3b. Next evaluate F(z(k)) and F'(zOO) from eq. (5.3-33) and thence

calculate the reduced spreading pressure for the next iteration step

from eq. (5.3-32).

Continue step 3 until the method converges
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In step 3, we need to evaluate the pure component pressure from the reduced
spreading pressure. This is fine if the integral for the reduced spreading pressure
(eq. 5.3-21) can be obtained analytically, for example when the single component
isotherm takes the form of Langmuir equation:

b ip i

C = C : — L J — (5.3-37a)
1 + bjPj

The spreading pressure for the pure component isotherm of Langmuir form is:

z = CWJln(l + bjP])) (5.3-37b)

Hence, the pure component pressure can be obtained explicitly from the above
equation as:

. exp(z/C^ s j)- l

b j

(5.3-37c)

Such an explicit expression for the pure component pressure is only possible
with Langmuir and very limited number of other isotherms (see Table 5.3-3). When
the pure component isotherm takes a general form, the pure component pressure,
P°, as a function of z must be obtained iteratively. Myers and Valenzuela (1986)

presented an algorithm to perform this task iteratively. For a given spreading
pressure, eq. (5.3-21) can be put in the form of Newton-Raphson format as follows:

G(pj°)= f i r d p j " z = o (53"38)

o J

The iteration formula for the solution of the hypothetical pressure is then:

pf+ 1 )=pfk )- Y { (5.3-39.)

where the function G is given in eq. (5.3-38) and G' = dG/d P° is given by:

C°
G'(p,°) = - r (5.3-3%)
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The integral in eq. (5.3-38) must be evaluated numerically for a general pure
component isotherm. The algorithm to calculate the pure component pressure for a
given reduced spreading pressure is as follows:

Algorithm 5.3.2

Step# Action
Input the parameters for the single component isotherm equation
2a. First estimate the pure component pressure

p,° =
H: ex - 1 (5.3-40)

where Hf is the Henry constant, C^ J =HjPj ) . This estimate

basically comes from the form of Langmuir isotherm equation, that

Next, calculate C^fP? j , and then the next estimate for the pure component

pressure from eq. (5.3-39a). Repeat this step until the method converges

Once z is obtained numerically from the algorithm 5.3-1, the hypothetical
pressure Pj° is then calculated from eq. (5.3-21) or the algorithm 5.3-2. Once this is
done the mole fractions in the adsorbed phase are calculated from eq. (5.3-20a) and
the total amount adsorbed is calculated from eq. (5.3-22a); hence the individual
adsorbed amount is from eq. (5.3-23).

The following table 5.3-3 shows the various formula for the spreading pressure
and the pure component hypothetical pressure for various commonly used
isotherms. Some isotherms such as Langmuir, Freundlich, LRC have analytical
expressions for the spreading pressure as well as the pure component hypothetical
pressure. Other isotherms, such as O'Brien & Myers, Ruthven, Toth and Nitta have
analytical expression for the spreading pressure, but the pure component
hypothetical pressure expressed in terms of the reduced pressure must be determined
from a numerical method. For other general isotherms, such as Unilan, Aranovich,
Dubinin-Radushkevich, Dubinin-Astakhov, Dubinin-Stoeckli, Dubinin-Jaroniec,
one must resort to a numerical method to obtain the spreading pressure as well as
the pure component hypothetical pressure.
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Table 5.3-3a: Isotherm equations and their respective Henry constant.

Isotherm

Langmuir

Freundlich

Sips

Dual
Langmuir

O'Brien
and Myers

Toth

Nitta

Ruthven

Unilan

Isotherm expression

c.

c.

nbP

-c bp
— us

_ JQ>1 /n

c (bP)1 / n

"S 1 + ( b p ) 1 / n

b,P

r b p |CT
2

- L l + W 1
 2

bP
US •• i

r t I

. 0

M

c j=1

l + XA^bP)

C f l „ /> + ««•
^S 2s ^1 + be~

, b2P
^2 l+b2P

bP(l-bP)

(1 + bP)3

P l lS PJJ

Henry law

C^ = C^sbP

-

C^ = C^bP

C^C^nbP

CM=CMSbP

c (Q b s inh(s)V

Note that the reduced spreading pressure has the units of the adsorbed
concentration and it increases logarithmically with the pure component hypothetical
pressure.
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Table 5.3-3b: Formula for Spreading Pressure and Pure Component Pressure

Isotherm

Langmuir

Freundlich

Sips

Dual
Langmuir

O'Brien and
Myers

Toth

Nitta

Ruthven

Unilan

Spreading pressure

Z = C ( l sln(l + bP°)

z = nK(p°)I/n

••M"K)"]

C^2ln(l + b2P°)

z = C^S

U = Ks

It

[ 1 I DJr ) I n

2(1+ bP)2

•) 9"'ln(l-e) 1
) t

, ^ e ( 1 + k t )

2 = Cj(n-l)e + (2-n)ln^-j-y

z = 0 ^ In
M

numerical

Pure component pressure

P ° = I
b

"inKJ

b
cxnf Z 1 1UcJ I

n

numerical

numerical

numerical

numerical

numerical

numerical

For Unilan equation, the spreading pressure must be evaluated numerically.
The integration to evaluate the reduced pressure in eq. (5.3-21) converges slowly
(Myers, 1984). Since the Unilan equation is the result of the integration of a local
Langmuir equation over a uniform energy distribution (see Chapter 6 for more detail
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of energy distribution concept), one could interchange the order of the integration
by taking the spreading pressure of the local Langmuir isotherm and then taking the
integration of the local spreading pressure over the energy distribution as done
below. Thus, instead of

.2* . f'£, . Si f'iJil^LLp (5.3.42)
RT * P 2s * P U + be"spJRT * P 2s U J

we can use the following integral

z = - ^ - f Infl + bezp)dz (5.3-43)
2s J-s v /

The last equation converges rapidly. Myers (1984) used the Unilan equation to
fit the data of Ziegler and Rogers, and the predictions of the binary data were done
with the IAS theory. The prediction is reasonable, but they are not very good when
the loading is more than 50% of the maximum saturation capacity (occurred when
the total pressure increases). Myers postulated a number of reasons:

1. The data are incorrect
2. Imperfection in the vapor phase, since ideal gas law was used in high

pressure data
3. No adsorbate-adsorbate interaction
4. Heterogeneity is ignored.

Among these reasons, the first two are dismissed. The third is not so easily
dismissed. The fourth seems to be the reason for the discrepancy between the
prediction and the data. In IAS theory the surface is assumed uniform in
composition, although it is recognized that the surface is heterogeneous, with
different selectivities on different parts of the surface. It has been shown by Myers
(1983) that when surface heterogeneity is ignored some apparent deviations are
observed. However, it is still difficult to point exactly to the source of discrepancies
until more experimental data are carefully collected and the IAS is fully tested.

5.3.6 Thermodynamic Justification of the Extended Langmuir Equation

We have shown in the last few sections the IAS theory as well as its
computation implementation to obtain multicomponent adsorption isotherm. Since
this theory is based on solution thermodynamics it can be applied to prove the
thermodynamic consistency of the extended Langmuir equation.

Consider a system containing N components and the pure component isotherm
of each component can be described by the following Langmuir equation



214 Equilibria

b-Pi0

- 1 (5.3-44)
^ 1 + biPi

All components have the same saturation capacity C ŝ.
At the mixture reduced spreading pressure, the hypothetical pure component

pressure is given by (Table 5.3-3)

expf^-j-1 (5.3-45)

Substituting this hypothetical pure component pressure into eq. (5.3-3la) to solve
for the reduced spreading pressure, we get

N

l = S b J P J (5.3-46)

Knowing this reduced spreading pressure, eq. (5.3-45) can be solved for the
hypothetical pure component pressure in terms of the gas phase partial pressures

pi°=r-Zbjpi <5-3-47>
b* H

Substituting this hypothetical pure component pressure into the Raoult's law
equation (5.3-20a), we get the mole fraction of the adsorbed phase

x i=^Pj- (5.3-48)

The total amount adsorbed is obtained by substituting eqs. (5.3-47), (5.3-48), (5.3-
44) into eq. (5.3-22a):

N

(5.3-49)

Then the adsorbed amount contributed by the component i is

C î = CVxj = C,s — ^ (5.3.50)
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which is the extended Langmuir isotherm. Thus, the extended Langmuir isotherm is
only thermodynamically correct when the saturation capacities of all species are the
same.

| i | | | | Multicomponent Sips equation

The above conclusion for the Langmuir equation does not readily
apply to other isotherms. For example, if the pure component isotherm is
described by the Sips equation

r° . =r ^iPi ^ '* i * ^

the multicomponent adsorption isotherm does not necessarily follow the
form

„. (5-3-52)

even though C ŝ and n are the same for all components we shall show this
below.

It is not difficult to show from eq. (5.3-3la) and the corresponding
equation for Sips isotherm in Table 5.3-3 that the hypothetical pure
component pressure is given by

pi°=-jri>jpj (53-53)
D i j=l

which has the same form as that in the case of Langmuir isotherm (eq. 5.3-
47).

From the Raoult'law, we get the mole fraction for the adsorbed phase:

X i=-^i- (5.3-54)

Combining eqs. (5.3-51), (5.3-53) and (5.3-54) into eq. (5.3-22a) gives the
following solution for the total adsorbed amount.



216 Equilibria

C.T-C ^ ' „ (5.3-55)
l + (I>kPk)

Hence the adsorbed amount contributed by the component "i" is:
\ l/n-l
)E \ l

b k P k )
7 ^ TUT- (5.3-5

which is not the same form as one would conjecture in eq. (5.3-52).
Further applications of the Sips equation to multicomponent systems are
detailed in Rudzinski et al. (1995).

5.3.7 Inverse IAS Algorithm: Specification ofC^T and JC,:

The last sections show that the IAS as given in eqs. (5.3-20) to (5.3-23) can be
used to determine the adsorbed phase compositions and amounts from the
information of the gas phase conditions (namely the total pressure and the gas phase
mole fractions). In this section, we will show that the same set of equations can be
used to solve the inverse problem, that is what are the total pressure and the gas
phase mole fractions when the adsorbed phase information (C^T and x) are given.

We write eq. (5.3-22a) as follows:

fN xA i
F(z) = X~o" = ° (5.3-57)

The pure component adsorbed amount is a function of P?, but Pj° is a function of

the reduced spreading pressure, z, according to eq. (5.3-21). Thus, eq. (5.3-57) is a

function of the reduced spreading pressure.
Applying the Newton-Raphson formula to eq. (5.3-57), we obtain the following

iteration formula for the reduced spreading pressure

( 5 3 . 5 8 )

where F(z) is given in eq. (5.3-57), and F'(z) = dF / dz is:

N x .pp d c o
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The algorithm for solving this inverse problem now is given as follows.

Algorithm 5.3-3

Step#

1

2

3

4

Action

Estimate z
Calculate the pure component pressure from eq. (5.3-21) and hence obtain

Cw- and dC^j / dPj . The calculation of the pure component pressure is

carried out with the algorithm 5.3-2.

Obtain the next estimate for z from eq. (5.3-58). If convergence is
satisfied, go to Step 4; else go back to Step 2.

4a. Knowing the pure component pressure of Step 2, the total pressure is

calculated from eq. (5.3-20) by noting that ^T Vj = 1, that is

N

P = X P J ° X J (53-6°)
j=l

4b. The mole fraction of the gas phase is then calculated from eq. (5.3-20a):

PJ°XJ

y}=~Y (53-61)

5.3.8 Numerical Example of the IAS Theory

In this section, we apply the IAS theory to calculate the multicomponent

adsorption equilibria using only pure component data. The data are taken from

Szepesy and Illes (1963).

Ethane/ ethylene /activated carbon

tFsing the pure component data of ethane and ethylene at 293 K tabulated

in Valenzuela and Myers (1989), we fit the data with the Toth equation and

the following table lists the optimized parameters.

C^ (mmole/g)
bOcPa1)
t(-)
Residual

Ethane
8.327
0.06942
0.3996
0.1366

Ethylene
9.823
0.04426
0.3716
0.1243

The MatLab code IAS provided with this book is used for the calculation
of binary data, and the following table tabulates the reduced spreading
pressure, the pure component hypothetical pressure, the adsorbed phase
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mole fraction, and the adsorbed concentrations for a given gas phase
condition (total pressure and gas mole fractions).

PT

101

101

101

101

101

101

101

101

101

101

yi

0.115

0.197

0.288

0.388

0.478

0.563

0.646

0.708

0.766

0.805

7t/RT

5.768

5.857

5.973

6.087

6.186

6.280

6.371

6.435

6.494

6.533

P°i

73.5

75.8

79.0

82.1

85.0

87.7

90.2

92.2

94.0

95.2

P°2

106.5

109.8

114.3

118.8

122.8

126.4

130.3

133.0

135.6

137.3

0.1584

0.2621

0.3692

0.4783

0.5696

0.6500

0.7249

0.7777

0.8253

0.8562

cw
0.4674

0.7807

1.1133

1.4591

1.775

2.0208

2.2723

2.4528

2.6169

2.7248

2.4835

2.1980

1.9023

1.5917

1.3262

1.0880

0.8625

0.7010

0.5542

0.4576

CUT

2.951

2.979

3.016

3.051

3.081

3.109

3.135

3.154

3.171

3.182

Figure 5.3-la shows a plot of the calculated adsorbed mole fraction
versus the gas mole fraction of ethane as continuous line, and Figure 5.3-lb
shows the total adsorbed concentration versus the gas mole fraction.
Experimental data are also included in the figure as symbols. The
agreement between the theory and the data is very good due to the similar
nature of the two adsorbates used. Figure 5.3-2a presents the reduced
spreading pressure vs the gas mole fraction of ethane, and Figure 5.3-2b
shows the hypothetical pure component pressures vs the gas mole fraction.

3L5i = : 1 •

25

20

Total adsorbed
concentration
(mmole/g)

00 02 04 06 Q8 10

y

Figure 5.3-1 a: Plot of the adsorbed amount Figure 5.3-lb: Plot of the total adsorbed
versus gas mole fraction concentration versus the gas mole fraction
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Figure 5.3-2a: Plot of the reduced spreading Figure 5.3-2b: Plots of the hypothetical
pressure versus the gas mole fraction pure component pressure vs gas mole fraction

The IAS theory is a convenient tool to calculate the multicomponent adsorption
equilibria, but its predictability is limited, which is mainly due to the assumption of
treating the adsorbed phase as one thermodynamic entity. It is this reason that the
IAS theory can not predict the azeotropic behaviour commonly encountered in
practice, especially systems involving hydrocarbons and carbon oxides in zeolitic
adsorbents. One simple way of treating the azeotropic behaviour is to treat the
adsorbed phase as a combination of two indendent different adsorbed phases,and the
IAS is applied each adsorbed phase. We demonstrate this concept in the following
example.

Azeotropic behaviour

We consider an adsorption of two components on a solid, and the
adsorbed phase is composed of two indendent phases. The adsorption of
pure adsorbate 1 occurs only in the adsorbed phase 1, while the adsorption
of pure adsorbate 2 occurs in both adsorbed phases.

In the adsorbed phase # 1, the adsorbate 1 is preferentially adsorbed to
the other component. The pure component adsorption of these two
adsorbates on the adsorbed phase # 1 is described by the following
equations:
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02P°
C' =2—4- (5.3-62a)111 1 + 0.2P,0 V '

0.08P2°

The component 1 is strongly adsorbing compared to the component 2 as
seen in the affinity constant 0.2 for the component 1 compared to 0.08 for
the other.

For the adsorbed phase # 2, only the weaker component 2 is adsorbing
and its equilibria is described by the following equation:

0.02P2°
C " 2 ^ < 3 6 3 >

Note that the affinity of this component 2 on the adsorbed phase # 2 is even
weaker than its affinity towards the adsorbed phase # 1.

Now to calculate the binary adsorption equilibria for this system with
the partial pressures of the two components being P! and P2, we apply the
IAS theory to the adsorbed phase # 1. It has been shown in the Section
5.3.6 that if the saturation capacities of the adsorbates are the same, the
adsorption of these adsorbates in the binary mixtures can be described by
the extended Langmuir equation, that is:

. = 2 O2P, (5.3-64a)

^ 1 + 0.2P, + 0.08P2

0.08P2
C ^ 2 <5

For the adsorption phase # 2, the adsorption equilibria is just that of the
component 2, that is:

0.02P2

1 + 0.02P2
(5.3-65)

Thus the total number of mole adsorbed in the adsorbed phase is:

0.2P,+0.08P2 + 2 0.02P2

^T 1 + 0.2P, + 0.08P2 1 + 0.02P2

Therefore the mole fraction of the component 1 in the adsorbed phase is the
ratio of eqs.(5.3-64) to (5.3-66), that is:
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0.2y

0.2y + 0.08(1 - y) + 0.02(1 - y)[l + 0.2Py + 0.08P(l - y)] / [l + 0.02P(l - y)]
(5.3-67)

in which we have used P, = Py and P2=P(l-y), with P being the total
pressure. Figure 5.3-3 shows plots of the adsorbed phase mole fraction
versus the gas mole fraction with the total pressure being the varying
parameter. At low pressure P=10, the solid preferentially adsorbs the
component 1. This is expected because at this low pressure the adsorption
mainly occurs in the adsorbed phase # 1, where the component 1 is more
favourable. When the pressure increases, the adsorbed phase # 2 begins to
contribute to the total adsorption capacity and since only component 2
exists in the adsorbed phase # 2 we start to see the azeotropic behaviour,
that is the selectivity switches from the component 1 to the component 2.
Any further increase in the pressure will result in the system more
preferentially favourable towards the component 2.

1.0

0.0 0.2 0.4 0.6 0.8

Figure 5.3-3: Plot of the adsorbed phase mole fraction versus gas mole fraction

If the adsorbed phase is treated as one entity instead of two distinct
adsorbed phases, and the IAS theory is applied the x-y plot will not exhibit
the azeotropic behaviour. Rather it will exhibit the component 1
preferential behaviour at low pressures and the component 2 preferential
behaviour at high pressures, and no azeotropic is observed. We shall leave
this calculation to the reader.
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5.4 Fast IAS Theory

The IAS theory presented in Section 5.3 provides a convenient means to
calculate the multicomponent equilibrium. It has a number of attractive features,
that is the theory does not require any mixture data, it is independent of the actual
model of physical adsorption since the IAS theory is an application of the solution
thermodynamics. The form of adsorption isotherm equation for pure component
data is arbitrary in the IAS theory; hence any equations that best fit the data can be
used. Furthermore, different solutes can have different forms of the isotherm
equation.

Despite the versatility of the IAS theory, one disadvantage is the evaluation of
the reduced spreading pressure given in eq. (5.3-21), rewritten below for clarity

1 d p l d p 2 f d p N
D T P P P N
K g x 0 l 0 2 0 N

With the exception of few isotherm equations, this integral equation is generally
evaluated numerically because equations generally used for best describing pure
component data do not allow the above equation for the spreading pressure to be
evaluated analytically. Even when the spreading pressure can be analytically
evaluated, the inverse problem of obtaining the pure component "hypothetical"
pressure in terms of the reduced spreading pressure is not always available
analytically. The exception to this is the Langmuir equation, but unfortunately that
equation rarely describes well experimental data of many practical systems because
it contains only two fitting parameters.

An isotherm, introduced by O'Brien and Myers (1984), is obtained as a
truncation to two terms of a series expansion of the adsorption integral equation in
terms of the central moments of the adsorption energy distribution. The isotherm
equation takes the form:

C - C
1 + bP 2(1 + bP)3

bP Vbpa-bP) (5_4_la)

where a2 is a measure of the width of the adsorption energy distribution, made
dimensionless using the thermal energy parameter RgT. This isotherm equation is a
three-parameter model, like the Toth and Unilan equations, and is capable of
describing many experimental data fairly well. The behaviour of the O'Brien and
Myers equation at zero loading is

( ) (5.4-lb)
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The temperature dependence of the isotherm parameter b is:

b = bmex-' Q (5.4-lc)

The advantage of this model over the Toth and Unilan from the IAS theory
point of view is that the reduced spreading pressure can be obtained analytically,
which is:

z = C. ln(l + bP)-
a2bP

2(1 + bP)2
(5.4-2)

Any isotherm that has explicit expression for the spreading pressure can be used
in the FastLAS formalism, which we will describe in details below. Langmuir,
O'Brien and Myers, Sips, and dual Langmuir equations fall to this class (Table 5.3-
3). Another isotherm, called the statistical model obtained by Ruthven (Ruthven
and Goddard, 1986) also belongs to this class:

C - C

lAjW/j!
H

with Ax =1 (5.4-3)

This model was developed for zeolite, and the parameter M of the model is the
number of molecules that can fit into a cavity of the zeolite. The corresponding
reduced spreading pressure of the Ruthven model is:

(5.4-4)

5.4.1 Original Fast IAS Procedure

With the isotherm equations, such as the Langmuir, Myers-O'Brien and
Ruthven equations, we shall present below the fast IAS theory first proposed by
O'Brien and Myers (1985) and later refined by the same authors in 1988. Although
the refined version is more efficient from the computational point of view, it is
worthwhile to show here the original version of the Fast IAS theory so that readers
can see the improvement.
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The method essentially makes use of the analytical expression for the reduced
spreading pressure in terms of the hypothetical pure component pressures. Since the
reduced spreading pressure, z, is the same for all components, we let:

z = fi(Tii) (5.4-5a)

where

rii = b;P° (5.4-5b)

The functional form f{ takes any form given in the reduced spreading pressure
column of Table 5.3-3. It is interesting to note the logarithm dependence of all the
isotherm equations in the table. Eq. (5.4-5a) represents (N-l) equations in terms of
N unknown b ^ 0 (i = 1, 2,..., N). We rewrite eq. (5.4-5a) as follows:

fiOli) = fi+i(ii+1) (5-4-6)

for i = l , 2 , 3,..., N-l.

The fast IAS procedure is to solve firstly for the variable r|j (i = 1, 2,..., N)
rather than the reduced spreading pressure in the traditional IAS theory.
Written in terms of the variable r\h the Raoult law (eq. 5.3-20a) becomes:

p i = x i 7 T (5-4-7)
b i

in which we have made use of eq. (5.4-5b).
Since the sum of the adsorbed phase mole fraction is unity, eq.(5.4-7) can be

rearranged and summed with respect to all species, leading to the following
equation:

Z ^ = l (5.4-8)
H ^

This equation together with the N-l equations (eq. 5.4-6) will form a set of N
equations in terms of N unknown variables r\. Once r| are known, the adsorbed
phase mole fractions are calculated from the Raoult's law (eq. 5.4-7), the total
adsorbed concentration is calculated from eq.(5.3-22a) and the component adsorbed
concentration are calculated from eq. (5.3-23).

Both the Fast IAS and IAS theories require the numerical computation for the
solution. So what are the difference and the advantage of the FastlAS? The
difference is that the Fast IAS involves the solution of N variables of pure
component pressure, bjPj0, while the solution for the spreading pressure is sought in
the IAS theory (see Section 5.3.3). Once the spreading pressure is known in the IAS
theory, the hypothetical pure component pressures can be obtained as the inverse of
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the integral equation as given in eq. (5.3-21). Thus, solving directly for the
hypothetical pressures of pure component makes the computation using the Fast IAS
faster than the IAS theory.

Putting the set of equations (5.4-6) and (5.4-8) in vector form, we have:

g(H)=Q (5.4-9a)

where the underline denotes vector of N dimension. The elements of the vector g
are:

gi(Tl) = fi(Tli)-fi+1(Tii+1) fori=l,2,3,. . . ,N-l (5.4-9b)

gN(Tl) = S — - 1 (5'4"9c)

Solution for this set of equations (5.4-9) is obtained by the Newton-Raphson
method, the algorithm of which is given below.

5.4.1.1 A Igorithm for the Original Fast IAS Method:

The iteration formula for the pure component pressures obtained by the
application of the Newton-Raphson method to eq. (5.4-9a) is

T,(k+i)=I,(k)_5(k) (5.4-10a)

where the upperscript k denotes the k-th iteration step, and 6 is determined from the
following linear equation:

£ - 5 = g (5.4-10b)

The matrix O is the Jacobian matrix obtained by differentiating the vector g with

respect to vector r|. It is given by the following equation

O i ^ f i ' O l i ) fori=l,2,. . . ,N-l (5.4-lla)

<Bi.i+i =-fi+iI(T)i+i) fori=l,2,3,. . . ,N-l (5.4-1 lb)

®N,i = -y^TT «* i = 1, 2, 3,..., N (5.4-1 lc)

The derivatives of the function f for a number of isotherm equations are given in
Table 5.4-1.
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Table 5.4-1 Analytical reduced spreading pressures and their derivatives with respect to r)=bP for a

number of adsorption equilibrium models

Isotherm equation z = f(r\)
Langmuir

C - C

Z = '

Tl)

O'Brien-Myers

c -c
•"[1 + 1 2(1 H-,,)3

l /n

Sips

Dual Langmuir

1 + Tl

•/b,)r)

-(b2/b,)n

z =

Z = I

2(1+ n)2

cMS,, cM S > 1 (b2 /b, )
++ il) (l + M/b,)

A,

U.1VI/JL1

p

= 1

M

j=l
M

+ ^Aj(r | ) J

z = (

/ j .

V n
M

1 + ZAjN J/J!
L J-1 J

M

The Jacobian matrix O is zero everywhere, except the diagonal terms, the

superdiagonal terms and the last row as shown in Figure 5.4-1. Such a matrix can
be utilized numerically to speed up the computation.
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o =

X

0

0

0

X

X

0

0

0
X

X

0

0

0

X

X

0 •••

0 •••

0 •••
x •••

0 0
0 0

0 0

0 0
(5.4-12)

0 0 0 0 0 ••• x 0

0 0 0 0 0 ••• x x

X X X X X X X X

Figure 5.4-1 Schematics of the Jacobian structure of the original Fast IAS method

This is the essential idea behind the FastlAS theory of Myers and O'Brien. What
we shall present next is their modified version of the FastlAS theory.

5.4.2 Modified Fast IAS Procedure

Although the matrix O shown in eq. (5.4-12) is sparse (that is many of its

components are zero), its form could be made more amenable to simpler
computation by choosing the proper form of the vector g . Instead of choosing the

vector g as defined in eq. (5.4-9), another form could be chosen as follows (O'Brien

and Myers, 1988)

g(r|) = 0 (5.4-13a)

where

g i (n) = f i(Ti i)-fN(TiN) fori=l,2,3,...,N-l (5.4-13b)

(5.4-13c)

The difference between this modified method and the original one is the
definitions of equations (5.4-9) and (5.4-13). In the modified version, they define g{

as the difference between the function fj and the function fN, that is the spreading
pressure of the component i is compared with that of the N-th component. While in
the original version this function & is the difference between f{ and fi+1.

Having defined the function g in terms of N pure component hypothetical

pressures P° (or r|j = b{ Pj°, eq. (5.4-13) is readily subject to the Newton-Raphson



228 Equilibria

method to solve for the hypothetical pressures. This is done in an algorithm
presented below.

5.4.2.1 Algorithm for the Modified Fast IAS Method:

For a set of nonlinear algebraic equations (eq. 5.4-13), the Newton-Raphson
method can be applied, and the iteration formula for the pure component pressures
at the (k+l)-th iteration is

3 ! I ( 5 4 . 1 4 )

where the vector 5 is determined from the following linear equation:

£ - 5 = g (5.4-15a)

Here the vector g is given in eq. (5.4-13), and O is the Jacobian matrix (obtained

by differentiating eq. (5.4-13) with respect to r\ and is given below:

Oij =f i
l(ri i) fori=l ,2, . . . ,N-l (5.4-15b)

®i,N = - V 0 1 N ) fori=l ,2,3, . . . ,N-l (5.4-15c)

for i= 1,2, 3,...,N (5.4-15d)

In this modified method, the Jacobian matrix O is zero everywhere, except the

diagonal terms, the last column and the last row, as shown in Figure 5.4-2.

<D =

X

0

0

0

0

X

0

0

0

0

X

0

0

0

0

X

0 •••
0 •••

0 •••

0 •••

0 x
0 x

0 x

0 x

0 0 0 0 0 ••• 0 x

0 0 0 0 0 ••• x x

x x x x x x x x

(5.4-16)

Figure 5.4-2 Schematics of the Jacobian structure of the modified Fast IAS method
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With the peculiar structure of the Jacobian matrix of the form in Figure 5.4-2, it
can be reduced to a form such that all the last row of the reduced matrix contains
zero elements, except the last element of that row. Such a reduction operation is
standard in matrix algebra, and it is done by using the first row to make the first
element of the last row to zero, and the second row to make the second element of
the last row to zero, and so on. In so doing the last term of the last row is replaced
by:

O ^ N =O^d
N - ^ — ̂ jfN (5.4-17)

j=i j.j

After this transformation, the reduced Jacobian matrix will then take the form
(Figure 5.4-3), which is more convenient for the computation of 5

NEW

X

0

0

0

0

X

0

0

0

0

X

0

0

0

0

X

0 •••
0 •••

0 •••

0 •••

0 x
0 x

0 x

0 x
(5.4-18)

0 0 0 0 0 ••• 0 x

0 0 0 0 0 ••• x x

0 0 0 0 0 O O y

Figure 5.4-3 Schematics of the reduced Jacobian structure of the modified Fast IAS method

With the transformation carried out for the last row of the Jacobian matrix O , such

transformation also changes the last element of the vector g and that element is

replaced by

new _ old

N - g N
(5.4-19)

With the new reduced Jacobian matrix (eq. 5.4-18) and the vector g, the solution

for 5 is simply:
new

5 N = - ^ — (5.4-20a)
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^ N - l . N - l
(5.4-20b)

5N.2=^-^^i (5.4-20C)

and so on, until the last one

^ = gi ~ *>N N (5.4-20d)

Having obtained the vector 6 the iteration formula (5.4-14) can be executed

with some proper initial guess until the solution converges. We will show in the
next section how this initial guess can be made.

5.4.3 The Initial Guess for the Hypothetical Pure Component Pressure

Like any iteration formula, the rate of convergence depends on a good choice of
the initial guess. In this section, a choice of the initial guess is suggested and this is
based on the behaviour of the isotherm at low pressures. We illustrate this with the
O'Brien and Myers equation.

At low pressures, the O'Brien-Myers equation has the following limit

(5.4-21)

If this is an estimate for the amount adsorbed of the component i, the total adsorbed
amount is

N

(5.4-22)
z j

and the adsorbed phase mole fraction is

C M : ^
(5-4-23)

Using this mole fraction in the Raoult law (eq. 5.4-7), we get the following
initial estimate for the reduced spreading pressure or r\{
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(5.4-24)

Thus the initial guess for the reduced spreading pressure is

(5.4-25)

^f is i

5.4.4 The Amount Adsorbed

Once the hypothetical pure component pressures are obtained, the mole
fractions in the adsorbed phase are obtained from the Raoult law (Eq. 5.4-7) and
then the total adsorbed concentration can be calculated from

1 N x
TT- = Y-7T (5-4-26)

where C ĵ is the adsorbed amount of the pure component j at the hypothetical

pressure P?, that is

£ ^ 0 ) (5.4-27)

Knowing the total amount adsorbed (C^T), the amount adsorbed contributed by
the component "i" is given by:

C^ = XjC^ (5.4-28)

5.4.5 The FastlAS Algorithm

The algorithm to calculate the adsorbed concentrations can now be summarised
below for the case of Myers-O'Brien isotherm equation.

Algorithm 5.4-1

Step no.

1
Action

1 a. Supply the adsorption equilibrium parameters of all components
C^ s i , b{, and <J{ (i = 1, 2,---, N)

lb. Supply the partial pressures of all components in the gas phase
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Calculate the initial guess for the pure component hypothetical pressures
C N

; where C..T = > 0^:0^1 + d I

F o r i = 1, 2, . . . , N , calculate fi5 f\

M li) + - • f ' . - C •
' * 1 ~ Ws,l

1 afO-tiO

gi=f i - f N fori = l , 2 , - , N -

8 N = 2-"
Vj=i

- 1

Calculation of the matrix <D

4a. Initialization

0 = 0

4b. Assign values to some elements of the matrix <X> as shown in eqs.

(5.4-15)

Calculation of the modified matrix <J)NEW as follows:

5a. Initialization <DNEW = 0
= =

5b. Assign values to some elements of this modified matrix

Modify the last element of the vector g with eq. (5.4-19)

Solve for 5 according to eq.(5.4-20)

Obtain the next estimated for r\ according to eq. (5.4-14), and calculate

the relative error. If the error is acceptable, go to step 9; else go back to

step 3

Calculate the mole fraction of the adsorbed phase from eq.(5.4-7), the pure

component adsorbed concentration from eq. (5.4-la), and then the total

adsorbed concentration from eq.(5.4-26).
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A programming code FastlAS is provided with this book, and readers are
encouranged to use the code to perform calculation of multicomponent equilibria.
We illustrate this with the following example.

Ethane/Ethylene/Activated carbon
We use the ethane/ethylene/ activated carbon system of Szepesy and Illes.
The adsorption equilibrium data are tabulated in Valenzuela and Myers.
Using the ISOFIT1 program code, we fit the pure component data with
the Myers-O'Brien equation, and the following table lists the optimally
extracted parameters at 293 K:

Cu« (mmole/g) MkPa1) a2 (-)
ethane 5.808 0.01476 1.497
ethylene 5̂ 985 0.00980 13]9

For partial pressures of ethane and ethylene of 11.64 and 89.61 kPa, the
code FastlAS is used and the following results are obtained:

Ethane = 0A62> CnT = 3.027 mmol / g

The experimental values for the mole fraction of ethane in the adsorbed
phase and the total amount adsorbed are 0.162 and 2.928 mmol/g,
respectively. The relative errors of the model predictions are 0.12% and
3.4% for these two quantities.

5.4.6 Other Cases

We have described in the last sections about the original IAS and the modified
IAS for the case where the gas phase conditions are specified, that is the total
pressure and the gaseous mole fractions are given. Other given conditions such as

1. The total pressure and the adsorbed phase mole fractions
2. The total amount adsorbed, and the adsorbed phase mole fractions

can also be dealt with by the Fast IAS method. More details in terms of initial
guesses for those cases can be found in O'Brien and Myers (1988).

5.4.7 Summary

Although the FastlAS is attractive in terms of its utilization of the sparse matrix O

to obtain the set of solution for the hypothetical pressures, the applicability of this
theory is restricted to only a few equations which yield analytical expressions for the
reduced spreading pressure. For other equations, the IAS theory has to be used
instead.
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5.5 LeVan and Vermeulen (1981) approach for binary systems

The approach of IAS of Myers and Prausnitz presented in Sections 5.3 and 5.4
is widely used to calculate the multicomponent adsorption isotherm for systems not
deviated too far from ideality. For binary systems, the treatment of LeVan and
Vermeulen presented below provides a useful solution for the adsorbed phase
compositions when the pure component isotherms follow either Langmuir equation
or Freundlich equation. These expressions are in the form of series, which
converges rapidly. These arise as a result of the analytical expression of the
spreading pressure in terms of the gaseous partial pressures and the application of
the Gibbs isotherm equation.

The adsorption isotherm of pure component is assumed to take the form of
Langmuir equation.

bP°
c ° = c - T 7 ^ (5M)

At constant temperature, the Gibbs adsorption isotherm equation is

-AdTt + ^ C ^ d u ^ O (5.5-2)

This is the Gibbs-Duhem equation for a two-dimensional system with volume and
pressure being replaced by area and spreading pressure, respectively. For three
dimensional systems where all components experience the same total pressure at
equilibrium, all components in the two dimensional systems will experience the
same spreading pressure.

At equilibrium, the chemical potential of the adsorbed phase of the species i
must be equal to the chemical potential of the fluid phase of the same species:

m^+RgTlnP, (5.5-3)

Substituting the above equation into the Gibbs isotherm equation (5.5-2) for pure
component systems we have:

drt = -^-dPj (5.5-4)
PRgT ;

When the gas phase pressure is zero, the spreading pressure is zero, and at a
pressure Pj° the spreading pressure is n. Integration of eq. (5.5-4) subject to these
two limits gives:
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(5.5-5)

This is the spreading pressure equation in terms of the pressure of the pure

component, Pj°.

For multicomponent systems obeying the ideal adsorption solution theory, the
spreading pressure of the adsorbed mixture is 71. The partial pressure of the species i
in the gas phase is related to the hypothetical pure component pressure which gives
the same spreading pressure n as that of the mixture according to the Raoult's law
analogy:

P i=x iP i°(7c) (5.5-6)

Since the sum of mole fraction is unity, we then have:

% + 7̂T = l (5-5-7)
1 *2

This means that from the knowledge of the partial pressures Pj and P2 we can solve
eq. (5.5-5) and (5.5-7) for the spreading pressure as a function of partial pressures Pj
and P2. Knowing this, the adsorption isotherm of the species i in the binary mixture
can be obtained by applying the Gibbs isotherm eq. (5.5-4), that is:

(5.5-8)

This equation is useful to determine the amount adsorbed if the spreading pressure is
known explicitly as a function of the partial pressures.

5.5.1 Pure Component Langmuir Isotherm

For Langmuir isotherm of the form (5.5-1), the integration of the spreading
pressure equation (5.5-5) gives:

(5.5-9)

from which we can obtain the pure component pressure Pf
0 in terms of the reduced

spreading pressure z:

, r ( _ ̂  1
(5.5-10)
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Substitute this into eq. (5.5-7), we have:

P,

1
exp - 1 ex I

(5.5-11)

from which we can solve for the reduced spreading pressure, z, as a function of the
gaseous phase pressures, Pj and P2. Knowing this function, the adsorption
equilibrium isotherm is simply obtained by applying eq. (5.5-8).

Investigation of eq.(5.5-ll), we note that if the saturation capacity of the
component 1, CMlJ is different from that of the component 2, C 2̂, an analytical
solution for the reduced spreading pressure is not possible. For such a case, we need
to resort to the IAS or FastlAS theory. When the two saturation capacities are equal,
an analytical solution for the reduced spreading pressure is possible and the analysis
for this case will be presented next. Also when the two saturation capacities are
very close to each other, a perturbation method can be applied to obtain the
asymptotic solution for the reduced spreading pressure and thence the adsorbed
concentrations.

5.5.1.1 Equal Saturation Capacities

When the maximum saturation capacities of the two components are the same,
we can solve for the reduced spreading pressure (from eq. 5.5-11) exactly as
follows:

z = C^s ln(l + bx?x + b2P2) (5.5-12)

This is the spreading pressure of the mixture. Knowing this analytical expression
for z, we can determine the adsorption isotherm for each component in the mixture
by using the Gibbs equation (5.5-8):

(5.5-13)

which is the usual looking extended Langmuir isotherm. Thus, the extended
Langmuir isotherm is only thermodynamically consistent if the maximum saturation
capacities of all components are the same.

Knowing the reduced spreading pressure given as in eq. (5.5-12), the pure
component pressure that gives the same spreading pressure as the mixture is (from
eq. 5.5-10):
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po = b1P1+b2P2 ( 5 5 1 4 )

that is

p o = P i + ^ p 2 (5.5.15)

P2°=P2+^LPi (5.5-16)
b2

Thus, one can see that the hypothetical pressure of a pure component which
gives the same spreading pressure as that of the mixture is always greater than its
partial pressure in the gas phase. If the partial pressures of the two components are
of the same order of magnitude, the hypothetical pressure is larger than its partial
pressure by a factor which is the ratio of the affinity of the other component to its
affinity. This means that under the conditions of comparable partial pressures, the
hypothetical pressure of the weaker component is much greater than its partial
pressure while the hypothetical pressure of the stronger component is about the
same as its partial pressure. The following analysis illustrates this point. If the
component 1 is assumed to be stronger adsorbing species than the other component
in the sense that

b , P , » b 2 P 2 (5.5-17)

eq. (5.5-15) and (5.5-16) give:

P^P, (5.5-18)

( 5 - 5 - i 9 )

that is the hypothetical pure component pressure Pj° (strong component) is about

the same as its partial pressure, while the hypothetical pure component pressure of

the weaker component, P2 , is much greater than its partial pressure P2. This means

that the weaker component requires a much larger hypothetical pure component
pressure than its partial pressure to achieve the same spreading pressure as that of
the mixture.

5.5.1.2 Very close Saturation Capacities: Two Term Expansion

When the saturation capacities of the two components are very close to each
other, eq. (5.5-11) can be expanded using Taylor series to obtain a series solution
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for the reduced spreading pressure in terms of the partial pressures; hence the
component isotherm can be evaluated by substituting it into the Gibbs equation (5.5-
8).

When two terms are kept in the series solution, the explicit solution for z in
terms of gas phase partial pressures is:

z = C^sln(l + b1P1 +b2P2) (5.5-20)

where

_ C M t l b , P 1 + C ^ 2 b 2 P 2

" s = b , p 1 + b 2 p 2
 ( 5 - 5 - 2 1 )

The multicomponent adsorption isotherm for the component 1 is obtained by
the application of the Gibbs equation:

c ^^ i + b l P^b 2 p 2
+ A L 2 ( 5 - 5" 2 2 a )

where

AL2 =(C,S1 - C , s 2 ) b l b 2 ? l P 2 ln^ + b.P, + b2P2) (5.5-22b)
/ (b 1 P 1 +b 2 P 2 )

The multicomponent adsorption isotherm of the second component is obtained
by simply interchanging the subscripts 1 and 2 in the above equation.

5.5.1.3 Very close Saturation Capacities: Three Term Expansion

If three terms are kept in the Taylor series expansion, the explicit expression for
the spreading pressure is:

z = C^sln(l + b1P1+b2P2) (5.5-23)

where

b,P,+b2P2

b [ b 2 p l P 2

(5.5-24)
Next, substitute this expression for the spreading pressure into the Gibbs equation,
we obtain:
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C u l = C u (5.5-25a)

where

r — r 1

C ^ + C ^ 'b,P1+b2P2

(b2P2)2+2(b2P2)-4(b1P1)-(b1P1)2

b,P,+b2P2

+ b2P2)-

+ b,P, + b2P,P, + b2P2

(5.5-25b)
and AL2 is defined in eq. (5.5-22b).

5.5.2 Pure component Freundlich Isotherm

If the pure component isotherm takes the form of Freundlich equation:

(5.5-26)

the spreading pressure equation written in terms of the partial pressures is:

f^-l Pjexpf-—lnz|+[ — I P2exp|-—lnzUl (5.5-27)
VnJ I n , ) \n2) \ n2 ;

5.5.2.1 Same Freundlich Exponent:

If the Freundlich exponent of the two components are the same (^ = n2 = n),
the spreading pressure can be obtained analytically (from eq. 5.5-27):

z =

1/n 1/n

(5.5-28)

Using the Gibbs equation, we can obtain the multicomponent isotherm as follows
for the first component:

l/n

— I Pi
(5.5-29)

-il-n

For the second component, simply interchange 1 and 2 in the above equation.
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5.5.2.2 Unequal Freundlich Exponent

When the two exponents are very close to each other, the spreading pressure
equation can be solved for its solution by using the Taylor series expansion with the
following small parameter:

8 = • (5.5-30)

The two term expansion obtained by LeVan and Vermeulen (1981) is:
l/n,

ni^M P,

where

AF2 = (n{ - n 2 )
l/n,

n =

^M P ,+ ^ - P

l/n,
11-n

l/n, 2-n
In

l/n,
K,

l/n,

For the component 2, simply interchange the subscripts 1 and 2.

(5.5-31)

(5.5-32)

(5.5-33)

5.6 Real Adsorption Solution Theory (RAST)

The ideal adsorption solution theory presented in previous sections provides a
useful means to determine the multicomponent adsorption equilibria. The procedure
is simple and the method of calculation is also straight forward. The method,
unfortunately, only works well when the adsorption systems do not behave too far
from ideality. For example, adsorption of the same paraffin hydrocarbon gases on
activated carbon can be described well by the IAS theory. However for systems
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such as hydrocarbon and carbon oxides adsorption onto zeolitic material, the IAS
theory is inadequate to describe those systems, in particular in the prediction of
azeotropic behaviour sometimes encountered in those systems. This deviation could
be attributed to the nonideality of the adsorbed phase. The Raoult's law of eqs.
(5.3-20a) is now replaced by

Pyi =x iy iP i° (5.6-1)

where y{ is the activity coefficient, accounting for the adsorbed phase nonideality.
There are numerous equations available for the calculation of the activity
coefficient. For example, for binary systems, the following table tabulates some
equations for evaluating the activity coefficients.

Table 5.6-1: Equation for activity coefficient

Regular Solution lny, = Ax2 (5.6-2)

lny2 = Ax2

Two constant Margules Iny, = (2B - A)x2 + 2(A - B)x2 (5.6-3)

(Glessner & Myers, 1969) lny 2 = (2A - B)x2 + 2(B - A)xj*

r x x A i
Wilson (1964) lnyj = l - l n ( x ! + x 2 A 1 2 ) - l- + • 2-^—'L1-rX2A12 X ,A 2 1 +X 2

X <5 X i / V 1 'j

x ,A 2 1 x 2 A 1 2 + x , J

(5.6-4)

Among these equations for activity coefficients, the Wilson equation is the widely
used correlation and it involves only binary interaction parameters A12 and A21. This
equation can be readily extended to multicomponent mixture:

) k 2jXJAHJ
j

The activity coefficients so defined satisfy the following restrictions.

(a) the activity coefficient of the component i must approach unity when the
mole fraction of that species approaches 1, that is
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l i m y ^ l (5.6-6)
Xj->1

(b) For low surface coverage, that is ideal condition, the spreading pressure
approaches zero and the activity coefficient of all species must approach
unity (Talu and Zwiebel, 1986)

Yi (5.6-7)
7t->0

(c) The thermodynamic consistency test of the Gibbs Duhem equation;

at constant temperature

Using the condition (c), the total amount adsorbed is calculated from:

E 4 Z
V dz

(5-6-9)

where z is the reduced spreading pressure.
Thus the complete set of equations for the RIAST is written below for

completeness

" z) (5.6-10a)

(5.6-10b)

z = —— = f Z —^-dP° (5.6-lOc)
RgT i> P° K '

^ • t ^ H ^ l <5-6-Od>

C ^ = C M T X { (5.6-10e)

The real adsorption theory has been used by a number of workers with a good
degree of success (Glessner and Myers, 1969; Costa et al., 1981; Talu and Zwiebel,
1986; Chen et al., 1990; Karavias and Myers, 1991; Dunne and Myers, 1994; Yun et
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al., 1996). The difference between the IAST and the RAST models is the
introduction of the activity coefficients in the RAST model. These coefficients can
be either calculated from known theoretical correlations or from binary equilibrium
data. The activity coefficients are a function of the composition of the adsorbed
phase and the spreading pressure. To calculate them, we need the binary
experimental data:

(a) the total pressure of the gas phase and its compositions
(b) the compositions of the adsorbed phase
(c) the spreading pressure of the mixture

Knowing these activity coefficients, they are then used in some theoretical
models, such as the Wilson equation presented in Table 5.6-1 to derive the binary
interaction parameters of that model. After this step is done, eqs. (5.6-10a) to (5.6-
10c) represent 2N+1 equations in terms of the following 2N+1 unknowns

N pure component hypothetical pressures
N mole fractions of the adsorbed phase
1 reduced spreading pressure.

Solving this set numerically, we will obtain the above 2N+1 variables. Then the
amount adsorbed can be calculated from eqs.(5.6-10d) and (5.6-10e). Applications
of the RAST are shown in Yun et al. (1996), Chen et al. (1990), Talu and Zwiebel
(1986), Costa et al. (1981) and Glessner and Myers (1969).

5.7 Multi site Occupancy Model of Nitta et al.

In Section 2.4, we presented a model of Nitta et al. to allow for an adsorbing
molecule to occupy more than one site on the surface. Localized adsorption is
assumed in the Nitta et al.'s model. Using the statistical thermodynamics, Nitta
derived the following equation for the description of pure component adsorption
equilibria.

ln(nbP) = In 8 - nln(l - 0) - — n 8 (5.7-1)
kT

where n is the number of site occupied by one adsorbate molecule, b is the
adsorption affinity, u is the interaction energy among adsorbate molecules and 0 is
the fractional coverage, written in terms of the adsorbed concentration

e = <vq, s (5.7-2)

The saturation concentration C^ is related to the active site concentration Co as
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CMS = — (5.7-3)
n

When dealing with multicomponent systems, Nitta et al. suggested the
following equation to describe the adsorption equilibria of the component "i"

(5.7-4)

The interaction energy of two different types of molecule can be calculated
using the following arithmetic mean:

ui +u i
L J )

The Nitta et al.'s equation (5.7-4) works satisfactorily for activated carbon and
molecular sieving carbon with adsorbates of similar physical and chemical nature
such as lower order paraffin hydrocarbons. This is exemplified with the
experimental data of Nakahara et al. (1974) using methane, ethane, propane and n-
butane on molecular sieving carbon 5A. The following table shows some typical
parameters obtained using the Nitta et al. equation (5.7-1) assuming the interaction
energy to be zero.

Table 5.7-1: Parameters of methane, ethane and propane on MSC 5A (Nitta et al., 1984)

CH4

C2H6

C,H8

C o = 1 0

n

2.81
3.22
4.17

.9 mmol/g

b (kPa1)

5.4C
3.8 xlO3

0.199
1.67

20°C
1.78 x
6.05 x
0.827

io-3

io-2

51C

2.54 x 10"2

0.363

Using these parameters in eq. (5.7-4) for the prediction of the multicomponent
data, the agreement is not excellent but is quite satisfactory.

This approach can be extended to heterogeneous surface. The reader is
suggested to read Nitta et al. (1984, 1991) and Nitta and Yamaguchi (1991, 1993)
for further details.
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5.8 Mobile Adsorption Model of Nitta et al. (1991)

When the adsorbed molecules on a surface are mobile and the free area is
governed by the scaled particle theory, Nitta and his co-workers have derived the
following adsorption isotherm equations (see Section 2.5)

where b is the adsorption affinity, <|) is the fugacity coefficient, r| is the

dimensionless surface density, u is the adsorbate-adsorbate interaction parameter
defined as

u = ̂  (5.8-2)

The parameters a and (3 are defined in eqs. (2.5-4b) and (2.5-3), respectively.
Applying the above equation to a multicomponent mixture, the following mixing
rule is applied

IZ¥i j (5.8-3)

P=5>,Pi (5-8-4)

a^Ka/O-k,) (5.8-5)

where k̂  is called the binary interaction parameter. The adsorption isotherm
equation is given by

4y
(l-T!)2 Y k T (5.8-6)

where P is the total pressure, yx is the gas phase mole fraction, T̂  is the surface
density of species i, r| is the total surface density, and û  is calculated from

2(X::

u i j = - ^ L (5.8-7)

Further details as well as the application of this theory are given in Nitta et al.
(1991) and Nitta and Yamaguchi (1992, 1993).
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5.9 Potential Theory

The extension of the potential theory was studied by Bering et al. (1963),
Doong and Yang (1988) and Mehta and Dannes (1985) to multicomponent systems.
We shall present below a brief account of a potential theory put forward by Doong
and Yang (1988). The approach is simple in concept, and it results in analytical
solution for the multicomponent adsorption isotherm. The basic assumption of their
model is that there is no lateral interaction between molecules of different types and
pure component isotherm data are described by the DA equation. With this
assumption, the parameters of the DA equation (Wo, Eo, n) of each species are not
affected by the presence of the other species, but the volume available for each
species is reduced. This means that the volume available for the species i is:

(5.9-1)
W
>i

For a given volume "available" to the species "i" as given in the above equation, the
volume taken up by that species at a pressure of Pj is simply:

wi =
J=1

x exp
PE0

(5.9-2)

where Aj is the adsorption potential of the species "i"

We now rewrite eq. (5.9-2) by adding _ w e x p

equation:

A,

PE 0 > i

(5.9-3)

to both sides of that

= |W0,i-|>jUexp (5.9-4)

Solving for the volume of the micropore occupied by the species "i", we get:
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W: =

WOii exp

1 -exp

{ Ai )
lPE 0 ) iJ

" fAi T i liPEoJ

exp

f

(j

Bl
vPJ

- e x p

\ ni

V - I1 v
R
'--' o,i /

A j

N

2mu j

i1 j

(5.9-5)

We now note that the LHS is the volume occupied by the species "i" (Wj) and the
N

RHS contains the sum of volumes contributed by all species ^ Wj ; thus this sum

of volumes can be found by simply summing the above equation with respect to all
species and we get:

W0>i exp
N
y

j 1 - exp

[ fAi r "lPE 0 > J

" \Ai r i
lPE0J

exp
N

f A{ r

jl exp[ fA i V
IPEOJ 1

(5.9-6)

Knowing this sum of volumes contributed by all species, the volume occupied
by the species "i" is given as in eq. (5.9-5). Thence the amount adsorbed is
calculated by dividing the volume by the liquid molar volume, assuming the
adsorbed state is liquid-like and there is no interaction between species. The
following equation can be used to calculated the liquid molar volume if the values
are known at the normal boiling point and the critical temperature

for T < T,nbp

M ,c

VM - vM,nbp

= -VM,nbP)[(Tc-T)/(Tc-Tnbp)] for T n b p < T < T c

M,c for T > Tc

where Tnbp and Tc are normal boiling point and critical temperature, respectively.
The liquid molar volume at the critical condition can be taken as the van der Waals
constant RgTc/8Pc.

For super-critical gases, the following equation can be used to calculate the
"vapor" pressure used in the DA equation
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Po = Pc x exp
Tc

Tnbp | lnP c (5.9-8)

Eq. (5.9-5) for N = 2 has been tested with Doong and Yang (1988) for a number
of adsorption systems. The prediction of this theory is reasonable, and it is claimed
to be comparable to that of the IAS theory.

5.10 Other Approaches

Beside the approaches of Langmuir, IAS, RAS, Nitta, potential theory, there are
other approaches available in the literature. The vacancy solution method presented
in Chapter 2 can be extended to deal with mixtures. Readers are referred to Cochran
et al. (1985) for exposition of this method. Other methods such as the Grant-Manes
method (1966) and its modification by Mehta et al. (1985), the multi-space
adsorption model of Gusev et al. (1996), etc. These methods are not as popular as
the IAST and need to be further tested before they would enjoy wide spread
popularity as the IAS model.

5.11 Conclusions

Theories for adsorption equilibria in multicomponent systems are not as
advanced as those for single component systems. This slow progress in this area has
been due to a number of reasons: (i) lack of extensive experimental data for
multicomponent systems, (ii) solid surface is too complex to model adequately.
However, some good progress has been steadily achieved in this area.
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6.1 Introduction

Adsorption in practical solids is a very complex process owing to the fact that
the solid structure is generally complex and is not so well defined. The complexity
of the system is usually associated with the heterogeneity between the solid and the
adsorbate concerned. In other words, heterogeneity is not a solid characteristic
alone but rather it is a characteristics of the specific solid and adsorbate pair.

The direct evidence of the solid heterogeneity is the decrease of the isosteric
heat of adsorption versus loading. This is because sites of highest energy are
usually taken up by adsorbate first (unless the highest energy sites are so restricted
that the time scale for adsorption on such sites is much longer than that required on
lower energy sites) and then sites of lower energy are progressively filled as the gas
pressure is increased. A behaviour of constant heat of adsorption versus loading is
not necessary, however, to indicate that the solid is homogeneous because this
constant heat behaviour could be the result of the combination of the surface
heterogeneity and the interaction between adsorbed molecules.

One practical approach in dealing with the problem of heterogeneity is to take
some macroscopic thermodynamic quantity and impose on such quantity a statistical
attribute (that is a distribution function). Once a local isotherm is chosen, the
overall (observed) isotherm can be obtained by averaging it over the distribution of
that thermodynamic quantity. Many local isotherms have been used, and among
them the Langmuir equation is the most widely used. Topography of adsorption
sites is usually taken as the patchwise model, whereby all sites having the same
energy are grouped into one patch and there is no interaction between patches.
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Other local isotherm equations such as Volmer, Fowler-Guggenheim, Hill-deBoer,
DR, DA, and BET have also been used in the literature.

The parameters used as the distributed variable can be one of the following:

1. the interaction energy between the solid and the adsorbate molecule,
2. the micropore size
3. the Henry constant and
4. the free energy of adsorption.

Among these, the interaction energy between the solid and the adsorbate molecule is
the commonly used as the distributed variable.

When the micropore size is used as the distributed variable, a relationship
between the interaction energy and the micropore size has to be known, and this can
be determined from the potential energy theory, or if. the local isotherm used is the
DR or DA equation, the relationship between the characteristic energy and the
micropore size proposed by Dubinin and Stoeckli could be used (see Section 4.5).

The contribution of solid toward heterogeneity is the geometrical and
energetical characteristics, such as the micropore size distribution and the functional
group distribution (they both give rise to the overall energy distribution which
characterizes the interaction between the solid and the adsorbate molecule), while
the contribution of the adsorbate molecule is its size, shape and conformation. All
these factors will affect the system heterogeneity, which is macroscopically
observed in the adsorption isotherm and dynamics. Therefore, by measuring
adsorption equilibrium, isosteric heat, and dynamics, one could deduce some
information about heterogeneity, which is usually characterized by a so called
apparent energy distribution. The inverse problem of determining this energy
distribution would depend on the choice of the local adsorption isotherm, the shape
of the energy distribution, and the topography of the surface (that is whether it is
patchwise or random) as the observed adsorption isotherm is an integral of the local
adsorption isotherm over the full energy distribution. Let us address these two
factors one by one.

The choice of the local isotherm depends on the nature of the surface. If the
fluctuation of energy on the surface is periodic (Figure 6.1-1) and the magnitude of
this fluctuation (AE) is less than the thermal energy kT of the adsorbate molecule,
then we talk of the mobile adsorption. If there is no lateral interaction among the
adsorbed molecules, then the Volmer equation is the proper equation to describe the
local adsorption; on the other hand, if there is a lateral interaction, the Hill-deBoer
equation is the proper choice.

If the energy fluctuation of the solid surface is much larger than the molecular
thermal energy kT, and the distance between the troughs (D) is larger than the
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diameter of the molecule, the active site is considered as localised (Figure 6.1-1) and
the Langmuir equation is proper for the case of no lateral adsorbate interaction while
the Fowler-Guggenheim equation is the one when there is interaction. If the
distance between the troughs is smaller than the adsorbate molecule, then we might
have the situation whereby the molecule might adsorb onto more than one active
site. The multi-site mechanism proposed by Nitta et al. (1984) could describe this
situation well (Section 2.4).

AE

Figure 6.1-1; Fluctuation of energy on the solid surface

The surface topography (that is how surfaces of different energy are arranged
between themselves) might also be an important factor in the calculation of the
overall adsorption isotherm. These surfaces of different energy can distribute
between the two extremes. In one extreme, the solid is composed of patches,
wherein all sites of the same energy are grouped together, and there is no interaction
between these patches. Here, we talk of the patchwise topography (Figure 6.1-2).
The other extreme is the case where surfaces of different energy are randomly
distributed. Of course, real solids would have a topography which is somewhere
between these two extremes.

Figure 6.1-2: Schematic diagram of the surface topography composed of patches of sites, of which each
patch contains sites of the same energy
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If there is no interaction among the adsorbed molecules, then the surface
topography is irrelevant, as the adsorption equilibria is simply the direct interaction
between the adsorbate molecule and the surface atoms (vertical interaction). This
means that the topography is only important when we deal with the case whereby
the interaction between adsorbed molecules is important. Adsorption equations
such as the Fowler-Guggenheim, the Hill-deBoer, and the Nitta et al. equations are
capable of describing the adsorbate-adsorbate interaction. The energy accounting for
this interaction depends on the number of neighbouring adsorbed molecules. In the
patchwise topography, the average number of neighbour molecules is proportional
to the fractional loading of that particular patch (that is local fractional loading),
while in the random topography, the average number of neighbouring molecules is
proportional to the average fractional loading of the solid, that is the observed
fractional loading, in contrast to the local fractional loading in the case of patchwise
topography.

6.2 Langmuir Approach

The simplest model describing the heterogeneity of solid surface is that of
Langmuir (1918). He assumed that the surface contains several different regions.
Each region follows the usual Langmuir assumptions of one molecule adsorbing
onto one site, homogeneous surface and localized adsorption. The further
assumptions are that there is no interaction between these regions, i.e. they act
independently, and within each region there is no interaction between adsorbed
molecules.

If there are N such regions, the adsorption equation is simply the summation of
all the individual Langmuir equations for each region, that is:

£ biP

where the adsorption affinity constant bj reflects the characteristics of the patch j ;

E:
(6.2-lb)

For low enough pressures, the above equation reduces to the usual Henry law
relation, that is

lirnC^ = 2 . C ^ j b j P = 2 . H J P = H P ( 6 2" 2 a)
P ~ > 0 H j=i
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where the overall Henry constant is the sum of all individual Henry constants

H = ^ H j (6.2-2b)

If all the patches are very different in terms of energy, then the overall Henry
law constant is approximately equal to that of the strongest patch, that is to say at
low pressures almost all adsorbed molecules are located in the patch of highest
energy.

Eq. (6.2-1) is a special case of a general case of energy distributed model which
we will present later. The energy distribution for the multiple Langmuir equation
(6.2-1)is:

N

F(E) = ]T aj5(E - Ej) (6.2-3a)

where F(E) dE is the fraction of adsorption sites having energy between E and E +
dE, and the fraction of the patch j is:

(6.2.3b)

k=l

When N=2 in eq. (6.2-1) we have a dual Langmuir isotherm occasionally used
in the literature. This semi-empirical equation contains 4 parameters, and if the
purpose is to fit experimental data the three-parameter models learnt in Chapter 3
such as the Toth equation is a better choice because it contains one less parameter
and the four-parameter dual Langmuir equation very often does not provide any
better fit than the three-parameter Toth equation.

6.2.1 Isosteric Heat of Adsorption

The isosteric heat for the Langmuir isotherm equation (6.2-la) can be
calculated from the van't Hoff equation:

R g T 2 V a r JC(i

Taking the total derivative of the Langmuir equation (eq.6.2-1), we have:

(6.2-4)
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b:dP N b':dT3 I J
H (l + bjP) j-i

where

J (6.2-Sa)

db, E:
'j = —J- = -b j }-y (6.2-5b)J dT J R T !

At constant loading (dC^ = 0), we can solve for (SlnP / dT)c from eq.(6.2-5):

b,E,
T

Hence, combining eqs. (6.2-4) and (6.2-6) gives the following expression for the
isosteric heat of adsorption

N h F

Yc . j j

j=l

( )

j - .

The above equation shows the variation of the isosteric heat with loading as the
pressure P is related to loading via the Langmuir equation (6.2-1).

The equation for the isosteric heat (6.2-7) does not show explicitly the variation
with loading but it is possible to derive from such an equation the limits at low and
high loadings. At low and high loadings, the isosteric heat (eq. 6.2-7) reduces to:

(6.2-8)

and
N p

V ZL

X ^
(6.2-9)
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respectively. Note that bj takes the form of eq. (6.2-lb). If patches have widely
different energies, the isosteric heats given in eqs. (6.2-8) and (6.2-9) will reduce to:

lx (6.2-10)AH

and

(6.2-11)

where Ej is the energy of interaction of the strongest sites, and EN is that of the
weakest sites. The above equations basically state that the adsorption process
proceeds with molecules adsorbing preferentially to sites of highest energy (Ej) and
then filling sites of progressingly lower energies. The pattern of isosteric heat
variation with loading depends on the magnitudes of C^-, bj and Ej. Figure 6.2-la
shows typical plot of the amount adsorbed versus fyP (eq. 6.2-1) for a solid having
two patches of energy with patch # 1 having an affinity 10 times that of the patch #
2. The relative contributions of each patch are also shown on the same figure,
where it is seen that the weaker sites (patch 2) have a slower rise in adsorption
density with pressure than that of the stronger sites (patch 1).

Fractional 0.6
loading

0.4

fractional loading

Fractional loadiirig of site 1

Fractional loading of site 2

0 1 2 3 4 5 6 7 8 9 10

b,P

Figure 5.2-1 a: Fractional loading of a dual Langmuir isotherm

The isosteric heat (6.2-7) versus loading is shown in Figure 6.2-lb, where the
monotonic decrease is the indication of progressing adsorbing onto sites of lower
energies. Here we use E} = 40 kJoule/mole and E2 = 20 kJoule/mole.
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Figure 6.2-lb: Heat of adsorption versus loading (Ei = 40 kJ/mole and E2 = 20 kJ/mole)

Figure 6.2-2 shows the heat of adsorption versus fractional loading for a solid
having three different patches of different energy. The first patch is the strongest
while the third one is the weakest. The affinity of the first patch is ten times that of
the second patch, which is also ten times that of the third patch. We use E^ = 60, E2

= 40 and E3 = 20 kJ/mole. Here we note that the heat contributed by the first patch
decreases with the loading and that contributed by the third patch increases with the
loading. The heat contributed by the second patch shows a maximum as one would
expect because at low loadings adsorption on the first patch dominates while at very
high loadings adsorption on the weakest patch dominates.

Heat of
adsorption
(kJ/mole)

0.2 0.4 0.6 0.8 1.0

Fractional loading

Figure 6.2-2: Heat of adsorption versus loading (E{ = 60, E2 = 40 and E3 = 20 kJ/mole)
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6.3 Energy Distribution Approach

Adsorption of molecule in surfaces having constant energy of interaction (one
of the assumptions of the Langmuir equation) is very rare in practice as most solids
are very heterogeneous. In this section, we will discuss the degree of heterogeneity
by assuming that the energy of interaction between the surface and the adsorbing
molecule is governed by some distribution. We first discuss the surface topography,
the saturation capacity, and then the local isotherm and the form of energy
distribution.

6.3.1 Random Topography

The observed adsorption equilibria, expressed as the observed fractional
loading 0obs (which is defined as the amount adsorbed at a given pressure and
temperature divided by the maximum adsorption capacity), can be in general written
in terms of the following integral, with the intergrand being the product of a local
adsorption isotherm and an energy distribution:

0o b , = J0(P,T;E,u,6obs) F(E)dE (6.3-1)
all patches

where 0 is the local isotherm (which is the isotherm of a homogenous patch where
the interaction energy between that patch and the adsorbing molecule is E), P is the
gas pressure, T is the temperature, u is the interaction energy between adsorbed
molecules, and F(E) is the energy distribution with F(E)dE being the fraction of
surfaces having energy between E and E+dE.

Eq. (6.3-1) is written for the case of random topography, where the interaction
between the adsorbed molecules is characterized by the interaction energy u and the
average number of neighboring adsorbed molecules, which is proportional to the
overall fractional loading (note the variable 0obs in the RHS of eq. 6.3-1). This is
because in the case of random topography the concentration of adsorbed molecule
around a particular adsorbed molecule is proportional to the overall loading rather
than the local loading as is the case of patchwise topography dealt with in the next
section.

6.3.2 Patchwise Topography

For patchwise topography where all sites having the same energy are grouped
together in one patch and there are no interaction between patches, the extent of
interaction between an adsorbed molecule and its neighbours will depend on the
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local fractional loading of that particular patch. In such a case, the adsorption
isotherm equation is:

0o b , = j9(P>T;E,u)F(E)dE (6.3-2)
all patches

These equations (6.3-1 and 6.3-2) are used to serve two purposes. If the local
isotherm and the energy distribution are known, eqs. (6.3-1) and (6.3-2) can be
readily integrated to yield the overall adsorption isotherm. This is a direct problem,
but the problem usually facing us is that very often the local isotherm is not known
and neither is the energy distribution. Facing with these two unknown functions,
one must carry out experiments (preferably at wider range of experimental
conditions as possible), and then solve eqs. (6.3-1) and (6.3-2) as an inverse
problem for the unknown integrand. Very often, we assume a form for the local
isotherm and then solve the inverse problem for the energy distribution. There are a
number of fundamental questions about the energy distribution obtained in this
manner:

1. what physical meaning does it have?
2. does it vary with temperature?
3. does the form of the distribution vary with the adsorbate used?

Due to the associated experimental error of equilibrium data, there exists a
uncertainty of the solution of this inverse problem, and hence attempts have been
carried out to determine the energy distribution from a sounder theoretical footing,
for example from an independent information of micropore size distribution. We
shall address this point later in Section 6.10.

Misra (1970) used the Langmuir equation as the local isotherm (which is also
used by many because of the simplicity of the such equation), and for some specific
overall isotherms they obtained the energy distribution by using the method of
Stieltjes transform to solve the inverse problem.

6.3.3 The Maximum Adsorption Capacity

Once the overall fractional loading is calculated from either eq. (6.3-1) or (6.3-
2), the amount adsorbed can be obtained by multiplying it with the maximum
adsorbed concentration C ŝ. In the case of microporous solids where the adsorption
mechanism is by micropore filling (that is the adsorbate inside the micropore
volume is assumed to behave like a liquid), it can be obtained from the information
of the solid micropore volume and the liquid state of adsorbed molecule. It means
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that if the micropore volume is Vu, then the maximum saturation capacity is then
given by:

VM

C M S = - J L (6-3"3)
V M

where vM is the liquid molar volume of the adsorbate. The maximum adsorption
capacity in terms of moles/g of solid is not the same for all adsorbates as the liquid
molar volume is different for different adsorbates. Another factor could contribute
to the different maximum adsorbed amount of different species is the size exclusion,
that is large molecules are excluded from entering pores having size smaller than the
molecular size.

| | l i | } i | | | | | [ ; : Langmuir local isotherm & Kronecker energy distribution

We will first consider the simplest case of the energy distribution
approach. The energy distribution takes the following form of Kronecker
delta function:

E j) (6.3-4a)

where otj is the fraction of sites having energy E,- and

i>j=l (6-3-4b)

The local adsorption isotherm takes the form of the Langmuir
equation:

0(E) = b ( E ) P ; b(E) = b^ expf — I (6.3-5)
' l + b(E)P v ' °° {RgTJ

Using eqs. (6.3-4) and (6.3-5) in either eq. (6.3-1) for random topography
or (6.3-2) for patchwise topography, we obtain:
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The reason why either eq. (6.3-1) or (6.3-2) can be used because there
is no interaction between the adsorbed molecules; hence the arrangement of
sites on the surface is irrelevant.

Eq. (6.3-6) is exactly the form (6.2-1) proposed by Langmuir (1918),
and it is considered as the earliest isotherm equation proposed in the
literature to address heterogeneous solids.

p l * | i S Langmuir local isotherm & uniform energy distribution
We now consider next the case of local isotherm of the Langmuir type

and a uniform energy distribution. The local fractional loading takes the
form of eq. (6.3-5). The energy interaction between adsorbate and solid is
assumed uniform, that is equal density of sites of all energy between Emin

and Emax:

F(E) = K E m a x ~ E m i n ) for

[ 0
min <E< Ema* (6.3-7)

[ 0 elsewhere

Since there is no interaction between adsorbed molecules for this case of
Langmuir local isotherm, the surface topography is irrelevant. Hence, by
substituting eqs.(6.3-5) and (6.3-7) into eq.(6.3-2), we get:

e0bs= ~( -Y-JZ — ^ d E (6.3-8)
Emk 1 + b w exp(E / RgT)P (Emax - E n

Integrating this equation gives:

where E is the mean energy and s is a measure of the energy variation

E = E m i n + E m a x ; s =
E m a x - E m i n (6.3-10)

and b is the mean adsorption affinity

(6.3-11)
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Eq. (6.3-9) has two parameters: b (mean affinity between the solid
and the adsorbate) and s if it is used to correlate the experimental data at
one temperature. Fitting one temperature data is not sufficient to determine
the minimum and maximum energies, unless b^ is known a-priori.
However, if the experimental data of more than one temperature are used to
extract parameters we can use eq. (6.3-9) to fit those adsorption data
simultaneously and if we assume that Emax and Emin are temperature
independent, it is then possible to determine the parameters b^, E, AE (=
Emax - Emin) m addition to the maximum adsorbed concentration. Once AE
and E are optimally extracted, the minimum and maximum energies can
be readily determined using eq. (6.3-10).

Eq. (6.3-9) is known as the Unilan equation (Uniform energy
distribution & Langmuir local isotherm) and is used extensively in the
literature for the description of adsorption data of heterogeneous solids
such as activated carbon (Valenzuela and Myers, 1989). It gives the proper
Henry law constant at low loading, that is

l i m 6 0 b s = H P (6.3-12a)
P->0

where H is the Henry constant given by

H = b f ^ (6.3.12b)
V s /

The Henry constant is equal to the affinity constant evaluated at the mean
energy ( b ) multiplied by a factor (sinh s/s) which characterises the energy
variance (or the degree of heterogeneity). The following table shows the
magnitude of this factor as a function of s

s
0
1
2
3

sinhs/s
1
1.17
1.81
3.34

It is seen that the higher is the energy variance, the larger is the
heterogeneity factor and the Henry constant is contributed more by the
higher energy sites. Take the case of the energy variance (s = 3), the Henry
constant H is 3 times the affinity b evaluated at the mean energy. This
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Henry constant is dominated by high energy sites. For comparison, the
affinity of the strongest site

b(Emax) = b M expM^I=be s

For this example of s = 3, the affinity of the strongest site is b.e3 = 20b ,
about 20 times higher than the affinity evaluated at the mean energy.

It must be borne in mind that this model should be treated at best a
semi-empirical model for describing the adsorption isotherm data because
of the assumption of local Langmuir equation and uniform energy
distribution. One would expect in general that the energy distribution is
not uniform and the adsorption mechanism may not follow the assumptions
of the Langmuir equation. Despite the choice of ideal local adsorption
equation (Langmuir) and a simple uniform energy distribution, the
resulting Unilan equation fits many data of activated carbon and zeolite
reasonably well. This could be attributed to the "cancelling-out"
phenomenon, that is the error associated with the choice of the local
Langmuir equation cancelled out (or at least partially) the choice of the
uniform energy distribution. This, however, should not be treated as a
general rule.

6.3.4 Other Local Adsorption Isotherms & Energy Distribution

Recognising that the local adsorption isotherm is not Langmuir and the energy
distribution is not uniform, the other forms of local isotherm as well as energy
distribution can be used in eq. (6.3-1) or (6.3-2). Such a combination is infinite;
however we will list below a number of commonly used local adsorption isotherm
equations and energy distributions.

6.3.4.1 The Local Adsorption Isotherm

The local adsorption isotherm equations of the form Langmuir, Volmer,
Fowler-Guggenheim and Hill-de Boer have been popularly used in the literature and
are shown in the following Table 6.3-1. The first column shows the local adsorption
equation in the case of patchwise topography, and the second column shows the
corresponding equations in the case of random topography. Other form of the local
isotherm can also be used, such as the Nitta equation presented in Chapter 2
allowing for the multisite adsorption.
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In Table 6.3-1, the parameter w is defined as w = zu, where z is the
coordination number and u is the interaction energy between adsorbed molecules.
The choice of the local adsorption isotherm equation given in Table 6.3-1 depends
on the knowledge of the adsorption mechanism of the system at hand. We list
below the mechanism of adsorption behind those equations.

1. Langmuir: localised adsorption and no interaction between molecules
2. Volmer: mobile adsorption and no interaction between molecules
3. Fowler-Guggenheim:localised adsorption and interaction between molecules
4. Hill-deBoer: mobile adsorption and interaction between molecules

Table 6.3-1: Local adsorption isotherm equations for the patchwise and random topography

Local

Isotherm

Patchwise topography Random topography

0 = K =

K,
exp

ROT

F-G

0 = 1 + ——exp
P

1-1
W01

R g T

0 =

H-dB
6 = 1 +

K

1-0 RgT )
0 = —P

0 E + w0obs

For the case of no interaction among adsorbed molecules, there is no difference
in form between the patchwise and random topographies as we have mentioned
earlier that the surface topography is irrelevant for this case (Langmuir and
Volmer); however, for the case of interaction the two topographies give rise to
different local adsorption isotherm equations. The fractional loading for the
interaction factor (appearing in the exponential argument in Table 6.3-1) in the case
of patchwise topography is the local value of the patch under consideration (0),
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while in the case of random topography, this fractional loading is the observed
fractional loading (0obs). In terms of computation, for the case of patchwise
topography, the local fractional loading must be obtained for every value of pressure
and the energy of interaction before the integral (6.3-2) can be evaluated. On the
other hand, in the case of random topography, the overall fractional loading must be
assumed in the local adsorption isotherm equation and the integral (6.3-1) is then
evaluated. If the integral is the same as the assumed overall fractional loading, it is
the desired solution; on the other hand if it is not a new value for the overall
fractional loading must be assumed and the process is repeated until the solution
converges.

6.3.4.2 The Energy Distribution

The energy distribution for real solids is largely unknown apriori, and therefore
the usual and logical approach is to assume a functional form for the energy
distribution, such as the uniform distribution we dealt with in Example 6.3-2. Many
distribution functions have been used in the literature, such as

1. Uniform distribution
2. Exponential distribution
3. Gamma distribution
4. Shifted Gamma distribution
5. Normal distribution
6. log-normal distribution
7. Rayleigh distribution

These distributions have the following form:

Distribution
Uniform

R E ^ - J E - E
 Emin <E<Emax

r\^) - 1 nmax nmin
[0 elsewhere

Exponential distribution

F(E) = J-cxp[-^-] E>0

Gamma distribution
n+l

F(E)- q Ene"qE E>0
r(n + i)

Mean & variance

p" ^ max "*" ^ min

2
F - F

„ *" max *" min

E-Eo

a = E0

E = (n+l)/q

a = Vn + 1/q

Eq.#
6.3-13

6.3-14

6.3-15
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Shifted Gamma distribution

E>E0

n + 1

a = •

6.3-16

Normal distribution

F(E) = -4=exp
s- 2s2

-00< E<00
a = s

6.3-17

Log normal distribution

1
F(E) =

mV27rE 2m2 E>0

Eoexp| —
6.3-18

Ravleigh distribution

If E-Er Eft <E<oo

L6.3-19

a =
4-71

(E,-E0)

Any combination of the above distributions can also be used as the energy
distribution in the evaluation of the overall fractional loading.

6.4 Isosteric Heat

With the observed adsorption isotherm given in eq. (6.3-1) or (6.3-2), the
isosteric heat can be calculated from the van't Hoff equation:

AH _ fd\n?\
RCTT

2 V dT ) ,
(6.4-1)

Substitution of the adsorption isotherm equation (6.3-1 or 6.3-2) into the above
van't Hoff equation yields the following expression for the isosteric heat

AH KI: F(E) dE
(6.4-2)

^ F(E)dE

which is usually evaluated numerically, except for a few special cases such as the
one dealt with in the following example.
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Illfltll Isosteric heat of local Langmuir and uniform energy
distribution

We will illustrate in this example the evaluation of the isosteric heat
when the local adsorption isotherm takes the form of the Langmuir
equation and the energy distribution is uniform. The local Langmuir
equation and the distribution are:

RgT

1 + b^ ex

F(E) = (Emax -

RgT

for

(6.4-3)

< E < Emax (6.4-4)

and F(E) is zero elsewhere.
Substituting the above equations into the isosteric heat equation (6.4-

2), we obtain:

£ bP)'

bP
(6.4-5)

dE

where

b = ex RgT
(6.4-6)

Evaluation of the integral of the above equation (6.4-5) gives the
following expression for the isosteric heat as a function of loading

bP

(es+bp)(e"s+bp)

where

b = b^ exi

AE f

2 {
2 + esbP + e ^P^l AE

e s -e" s j2bP

(6.4-7)

(6.4-8a)
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(6.4-8b)

(6.4-8c)

The term bP in eq. (6.4-7) is related to the overall fractional loading
according to eq. (6.3-9), that is

ese - e"se

b P < 6 4 9 )

F

AE

Emax +

2

= ^ m a x

•^min

s(1-e)_e-s(1-e)

Eq. (6.4-7) for the isosteric heat is identical to eq. (3.2-27a) which was
obtained by applying the van't-Hoff equation directly to the form of the
Unilan equation (6.3-9).

Isosteric heat of multi-modal energy distribution

Here we take an example of a solid where the local adsorption
isotherm takes the form of Langmuir equation (6.4-3) and the energy
distribution has the form of multi-modal distribution:

Substituting the local Langmuir adsorption equation and the above
distribution into isosteric heat equation (6.4-2), we obtain the following
isosteric heat equation:

(-AH) = -
bJ

At very loading (0 -» 0) the isosteric heat is equal to the heat of the
strongest site while at the very high loading it is approaching the heat of the
weakest site.

We have seen the example of isosteric heat (eq. 6.4-2) for the case of local
Langmuir equation and an uniform distribution. For other choices of local
adsorption isotherm and energy distribution, eq. (6.4-2) must be done numerically.
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6.5 Brunauer, Love and Keenan Approach

We have presented a general approach of energy distribution in Section 6.3.
What we shall present in this section and the next few sections are a number of
approaches proposed in the literature. They are presented to show the different
ways of treating the heterogeneity.

The approach dealt with in this section is that of Brunauer, Love and Keenan
(1942). They assumed that the extent of heterogeneity is due to the solid itself, and
is characterized by the variation of the heat of adsorption with the surface coverage.
Their analysis is briefly described below.

The surface is divided into surface elements ds. For a given temperature and
pressure, each of the surface elements is partly covered and the fraction coverage of
each element is governed by the Langmuir equation, with the heat of adsorption
varying as a linear function of s, i.e.

E = E0-ccs (6.5-1)

where Eo is the heat of adsorption at zero loading. If the local fractional loading in
each surface element ds is 0, described by the Langmuir equation:

^pg
6 = \ g \ (6.5-2)

l b f E / R T j P
then the overall adsorption isotherm is simply the summation of all the fractional
loading of each element ds, that is:

1

eobs = je ds (6.5-3)
0

Evaluating the above integral using eqs. (6.5-1) and (6.5-2), we obtain the following
expression for the overall fractional uptake:

R»T m .
(6.5-4a)

a l + a0exp(-ot /RgT)p

where a0 is the affinity at the energy Eo (that is at zero loading) and is defined as

(6.5-4b)



Heterogeneous Adsorption Equilibria 269

This equation has a correct Henry law limit at low pressure as well as a correct
saturation loading at high pressure. This is not unexpected as the overall adsorption
isotherm is the average of the Langmuir local isotherm over the whole surface
element (eq. 6.5-3). We shall denote eq. (6.5-4) hereafter as the BLK equation. The
overall fractional loading is plotted versus a0P for different values of a/RgT = 1, 5,
10, and those plots are shown in Figure 6.5-1. We see that the isotherm is more
favourable when the value of a is small. This is understandable because the
parameter a is a measure of the rate of decline of the adsorption energy (eq. 6.5-1).
Hence when this parameter is smaller, the overall energy of interaction is higher,
resulting a higher overall fractional loading.

Fractional
loading

Figure 6.5-1: Plot of the BLK isotherm equation versus a ^

Under appropriate limit (that is a0P » 1 and a0Pexp(-a/RgT) « 1), the above
equation reduces to the following Temkin equation:

8 -ln(a0P)
a

(6.5-5)

6.5.1 BLK Equation versus the Unilan Equation

The isotherm equation of BLK presented above is in fact identical to the Unilan
equation, derived in Example 6.3-2 (eq. 6.3-9) using a local Langmuir isotherm and
a uniform energy distribution. To prove this, we note from the equation for the heat
of adsorption (6.5-1) that the minimum and maximum heats of adsorption
corresponding to maximum and minimum coverages are
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E m i n = E 0 - a ; Emax = E0 (6.5-5)

respectively. Thus, the mean heat of adsorption is:

E = E m i n + E m a x = Eo - - (6.5-6)

If we now define the mean affinity constant and the energy variance as

b = bm cxpf -^-1 ; s = - 2 — = E ™ * ~ E m i n (6.5-7)
°° U g T J 2RgT 2RgT V '

the BLK equation (6.5-4a) will become:

which is simply the form of the Unilan equation, given in eq.(6.3-9). This
equivalence in fact comes as no surprise as the two approaches use the Langmuir
equation as the local isotherm, and the heat of adsorption varying linearly with the
surface coverage is equivalent to saying that the energy distribution is uniform. The
approach of BLK can be generalised by instead of assuming a linear decrease of the
heat of adsorption with surface element, we can assume any functional form other
than linear to reflect the observation of heat versus loading.

6.6 Hobson Approach (1965,1969)

Using the general approach of the Section 6.3, an overall adsorption isotherm
can be calculated after the local isotherm and the distribution of energy are given.
The inverse problem, which is usually the more difficult problem, is more relevant
in practice as experimental adsorption isotherm is readily measured and the problem
is the one to determine the energy distribution if a local adsorption isotherm is
assumed This type of approach is usually numerical by nature. Hobson (1965)
proposed an approach whereby the distribution of energy function can be obtained
analytically, and this section will briefly present his approach.

To obtain the energy distribution analytically, Hobson has chosen a special
local adsorption isotherm, namely a step-like isotherm, to describe the local
equilibrium. This step-like isotherm has its fractional loading varying linearly with
respect to pressure up to a certain pressure, and then beyond which the fractional
loading is equal to unity. This step-like isotherm is:
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e = K
1

<P'

for p > P1

(6.6-1)

where K is the inverse of the frequency factor b^. Assuming a vibration time of
adsorbed molecule as 10'12 seconds and a monolayer molecular density of 6.2 x 1014

(molecules of nitrogen/cm2), Hobson (1965) obtained the following expression for
the parameter K

K = 1.76xl04VMT(Torr) (6.6-2)

In the isotherm equtaion (6.6-1), Pf is the threshold pressure above which the
surface is saturated, defined as below:

P'=Kexp
(E + w)

RgT
(6.6-3)

where w is the interaction energy between adsorbed molecules. The local isotherm
equation (6.6-1) is shown graphically in Figure 6.6-1. When w = 0, there will be no
vertical (condensation) segment in the local isotherm, that is the local isotherm is
composed of a linear portion and the horizontal line, shown as the dashed line in the
figure.

e

Figure 6.6-1: Hobson's step-like isotherm

The local isotherm proposed by Hobson is an approximation to the Hill-deBoer
equation, where there is a sudden jump in the density of the adsorbed phase.

Having chosen the form for the local adsorption isotherm, the overall
(observed) isotherm is then given by:
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0obs = J0(P,T,E)F(E)dE (6.6-4)
o

Since this equation is written in terms of the interaction energy, we have to
rewrite the local isotherm in terms of energy instead of pressure. From eq. (6.6-1),
it is easy to convert it in terms of the energy of interaction, shown below:

0 = ^lexpl_J for E < E , ( 6 6 5 )

1 for E > Ef

where E1 is the threshold energy. Any sites having energy greater than this
threshold energy are fully covered with adsorbate. The threshold energy is a
function of pressure and is given below:

E ' = E u - w ; E u = - R g T l n — (6.6-6)

The discontinuity in the local isotherm is nicely utilized to determine the
solution for the distribution function F(E). This is done as follows. Substituting the
local isotherm (eq. 6.6-5) into the observed fractional loading equation (6.6-4), we
get:

0obs = I _ J Jexp F(E)dE + |F(E)dE (6.6-7)
o v R g T y E.

Differentiating the above equation with respect to P twice, we will obtain a
differential equation for F(E). Solving such equation, Hobson obtained an explicit
expression for the energy distribution written in terms of the observed loading and
its derivative with respect to E1 . Remember that E1 and P are related to each other
according to eq. (6.6-6).

When w is not zero, Hobson provided the following solution:

F(E) = M±^90bs(E^)|E,=E+A[^(E''T)

g L

A2(l + A) ( A E ^ f ( AE'V ,_, _ ,_, ( AE)A(\ + A),a . _ ,_ . ,
+ r^ e x P exP ^oh^E ,T)dE -exp — 9fth(5(E ,T)L, A

(R T) ARgTJ0
J I RgTJ ARgTJ RgT E

(6.6-8)
where
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exp(w/RpT)
A = ^ *-Lr (6.6-9)

l-exp^w/RgTj

When w = 0, the solution is

T?/"C'\ obs T> T1 obs //: / : I A \

r (b ) = j — R g r — (o.o-lU)

If the experimental data are expressed in terms of energy E' by using eq. (6.6-
6), the above equation can be used to determine the energy distribution. This
requires numerical differentiation of the experimental curve twice, hence accurate
data is absolutely critical.

6.7 DR / DA as the Local Isotherm

When the Dubinin equation is used as the local isotherm in eq. (6.3-1) or eq
(6.3-2), there are a vast literature on the use of this approach. Like other local
isotherm equations, Dubinin equations can be used with many forms of the energy
distribution, and for each combination an isotherm equation can be obtained. In
Chapter 4, we have discussed the use of Dubinin equations as the local isotherm to
describe pure component adsorption in heterogeneous microporous carbon. Readers
should refer to Chapter 4 for further exposition of this application.

6.8 Distribution of Henry Constant

An approach of using the Henry constant as the distributed parameter, instead
of the traditional use of the interaction energy between the solid and the adsorbate,
can also be used (Sircar, 1991). One notes that the Henry constant is related to the
interaction energy between the solid and the adsorbate as follows:

(6*1)

implying that a distribution in b means a distribution in the interaction energy.
The local isotherm was assumed to follow the Langmuir equation, and by

assuming a patchwise topography the overall isotherm can be readily obtained by
averaging the local isotherm over the distribution of the Henry constant. One
should note here that since there is no interaction between the adsorbed molecules
(assumption of the Langmuir adsorption mechanism), the surface topography is
irrelevant. This approach of Sircar yields an isotherm which has a finite slope at



274 Equilibria

zero loading and a finite adsorption heat at zero loading. This is due to the choice of
the local Langmuir equation.

The overall isotherm equation is given by the following equation:

90bs = j6(P,T;b)F(b)db (6.8-2)

where b is the Henry constant and F(b) is its distribution function. The local
isotherm equation is:

" b P (6.8-3)

Thus, by assuming a form of the distribution for the Henry constant, the above
equation can be integrated to give an equation for the observed fractional loading.
Let us try the following uniform distribution for the Henry constant

for bm:n<b<b fn jn{ , , o JX

- b m i n (6.8-4)
0 otherwise

This distribution has the following mean and variance:

b = b m i n + b m a x ; a = b m a x ~ b m i n (6.8-5)

A large value of a does not necessarily mean that the system is very
heterogeneous. To assess the degree of heterogeneity, we must consider the ratio of
the variance to the mean as follows:

The higher is this value, the more heterogeneous is the solid surface. A value of
zero means a homogeneous surface, while a value of unity represents the maximum
degree of heterogeneity. Maximum heterogeneity is possible when bmin is zero or
bmax is infinity.

By substituting the uniform distribution (6.8-4) into the overall isotherm
equation (6.8-2), we obtain the following solution for the overall isotherm:

(6-8-7)
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where the various functions are defined below:

i + bp
(6.8-8a)

f(z) = ̂ - l n f | ^ l - 1 ; z = M/eH (6.8-8b)
2z VI - z/

The slope of this isotherm at zero loading (or zero pressure) is:

^ - = b (6.8-9)

This states that the mean Henry constant ( b ) is the Henry constant of the
heterogeneous surface, which is expected because we use the uniform distribution of
the Henry constant. This is in contrast to the case when we use the interaction
energy as the distributed parameter, and when the distribution function for this
energy is a uniform distribution function the Henry constant of the heterogeneous
solid is equal to the Henry constant evaluated at the mean energy multiplied by the
heterogeneous factor, sinh(s)/s (eq. 6.3-12b), that is the Henry constant of the
heterogeneous solid is affected by the stronger energy sites.

6.8.1 The Energy Distribution

If the distribution in terms of the Henry constant is F(b), the corresponding
distribution in terms of the interaction energy is evaluated from

^ - (6.8-10)
E

where b is related to the interaction energy in eq. (6.8-1).
If the distribution of the Henry constant takes the form of uniform distribution

(eq. 6.8-4), the corresponding distribution for the interaction energy is:

exp(E/RgT)
G(E) = = * —' r (6.8-

RgT [exp(Emax / RgT) - exp(Emin / R j ) ]
l la)

where
' b .

min = R g T l n l T > Emax = R gE D T1«l nun . -c T> T I J ^max I / / r o t i n
min = R g T l n l "T > Emax = R g T l n l "7 I (6.8-1 ID)

Thus, a uniform distribution in the Henry constant is corresponding to an
exponential distribution in the interaction energy.
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6.9 Distribution of Free Energy Approach
We have discussed the treatment of a heterogeneous solid by using an integral

equation written in terms of a local adsorption isotherm and a distribution of the
interaction energy between the solid and the adsorbate (eq. 6.3-1 or 6.3-2). A
distribution in Henry constant is also used and was discussed in Section 6.8. In this
section we will present a free energy approach developed by Aharoni and Evans
(1992).

If the filling of a pore happens at a pressure determined by the free energy of
the sorbate in that pore, the overall adsorption isotherm is then determined by the
distribution of pore volume with respect to the free energy, rather than the
interaction energy between the solid and the adsorbate. The argument for choosing
the probability function for the pore volume in terms of free energy put forwarded
by Aharoni and Evans stems from the fact that porous structure, when they are made
such as activated carbon, is a result of an ensemble of chemical reactions, the extent
to which these reactions take place is controlled by chemical potentials. Hence the
appropriate distribution for the pore volume is written as follows:

VP(Pa) (6.9-1)

where Pa is the characteristic pressure, and V(Pa)dPa is the pore volume associated
with a characteristic pressures between Pa and Pa + dPa. The volume distribution is a
function of the characteristic pressure Pa through the free energy. We write

VG(Ga) (6.9-2)

where the free energy is related to this characteristic pressure as follows:

1° _ D TiJ aG a - G " = R g T l n | ^ - | (6.9-3)

Here Po is the saturation pressure, and G° is the free energy at that pressure.
Any distribution function can be used to characterize the pore volume, but we

use the following Gaussian distribution as suggested by Aharoni and Evans

= -Uxp[-b(Ga-Gm)2] (6.9-4)

where Gm is the free energy at which the volume distribution is maximum. The
parameters of this distribution are b and n.
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We shall present this approach in two separate parts. In the first part, we shall
study the system of water adsorption onto activated carbon, and in the second part
we shall deal with a general adsorption system. The reason for this distinction is
that in the case of water adsorption on activated carbon, water does not fill the pore
at pressures lower than a threshold pressure. At threshold pressure, the pore is
instantaneously filled with water.

6.9.1 Water Adsorption in Activated Carbon

Let us deal with the case of water adsorption on activated carbon first. If the
gas phase pressure is P, then all pores having characteristic pressure Pa less than P
will be filled at the maximum density, while pores having Pa greater than P will still
be empty. This is because the gas phase only have sufficient potential to fill pores
with Pa < P, and it not strong enough to induce the instant filling of pores having Pa

> P. Thus for a given pressure P, less than the saturation pressure, the amount of
water adsorbed by the solid is:

p

M = JDmVp(Pa)dPa (6.9-5)
o

where Dm is the maximum density per unit volume. The maximum loading will
occur when the gas phase pressure reaches the vapor pressure, that is:

= jDmVp(Pa)dPa (6.9-6)
0

Therefore, the fractional loading at any gas phase pressure P is:

p

JDmVp(Pa)dPa

(6.9-7)

D»Vp(P.)dP.
0

The distribution of pore volume in terms of the characteristic pressure Pa is
related to the distribution of pore volume in terms of the free energy as follows:

Vp(P a)dP a=VG(G a)dG a (6.9-8)

where Ga is related to Pa according to eq.(6.9-3). In terms of the free energy, the
fractional loading of eq. (6.9-7) will become:
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jDmVG(Ga)dGa

0 = ̂ 2

JDmVG(Ga)dGa

(6.9-9)

Substituting the Gaussian distribution of the volume distribution function (eq. 6.9-4)
into the above equation, we get:

ln(P/Pm)

Jexp(-Px2)dx

e = ln(P0/Pm)

Jexp(-(3x2)dx

(6.9-10)

where

x = -
RgT

-; P = b(RgT)2 (6.9-11)

Evaluating eq. (6.9-10) analytically, the fractional loading equation can be
written in terms of a closed form Error function as below:

+ erf

6 =

1 + erf

(6.9-12)

Thus, the adsorption isotherm equation has three parameters, Pm, b and the
maximum adsorption capacity. Plots of this isotherm equation for P(/Pm = 2 are
shown in Figure (6.9-1) for three values of VbRgT . The fractional loading curve

has an inflexion point (a characteristic of water adsorption onto activated carbon),
and the slope at the inflexion point depends on the magnitude of the parameter b.
The higher is the value of b, the sharper is the Gaussian distribution (eq. 6.9-4) and
hence the sharper is the isotherm curve at the inflexion point. If b is infinitely large,
that is the pore volume distribution is a Dirac delta function occurring at P = Pm, the
adsorption curve will then be an ideal condensation type of which the condensation
occurs at P = Pm, that is if the pressure is less than Pm, solid is void of any adsorbate
molecule until the pressure in the gas phase reaches Pm, at which the solid is
instantaneously filled.



Heterogeneous Adsorption Equilibria 279

1.0

0.8

Fractional °-6

loading
0.4

0.2 -

0.0
0.0 0.2

Figure 6.9-1: Plots of the Aharoni-Evans isotherm equation versus P/Po

6.9.1.1 Slope of Isotherm

The slope of the adsorption isotherm equation (6.9-12) can be obtained by
differentiating it with respect to pressure. Investigation the resulting equation we
see that the slope of the adsorption equilibrium curve at zero loading is zero,
commonly observed for water adsorption onto hydrophobic activated carbon. It
increases with loading and finally decreases to zero when the solid is approaching
saturation.

To investigate the inflexion point of the isotherm curve, we consider the second
derivative and it is easy to show that the inflexion point occurs when:

Pinf =P m . exp
1

(6.9-13)

Thus the pressure at which the inflexion point occurs is less than the characteristic

pressure Pm.

6.9.1.2 Isosteric Heat

To calculate the isosteric heat, we apply the van't Hoff s equation to the
adsorption isotherm equation (eq. 6.9-12) and obtain the following solution:

(-

where

u = £ | ; u0 = #*{]£) =



280 Equilibria

This equation suggests that the heat of adsorption is infinite at zero loading and
approaches the heat of liquefaction when the solid is saturated. Similar behaviour is
observed with the Dubinin equations (Chapter 4).

6.9.2 Hydrocarbon Adsorption in Activated Carbon

Now we turn to adsorption of hydrocarbon in activated carbon. Unlike the case
of water, the adsorption occurs even in pores having characteristic energy Pa lower
than the gas phase pressure P; however, this adsorption occurs as a partial filling,
and if we assume that this partial filling satisfies the following equation:

iv)
D(P) = Dm ^j-^ (6.9-15)

where Dm is the maximum density and K represents the degree of partial filling. If
K = 0, this case will reduce to the case of water adsorption in activated carbon dealt
with earlier, and if K = 1 we have the linear partial filling.

This partial density equation can be derived based on the following kinetic
argument. For a given micropore having a characteristic pressure of Pa, the rate of
adsorption into this pore is given by:

(|) (6-9-16)

where P/Pa represents the driving force for adsorption, that is for pore of higher
characteristic pressure Pa the gas phase pressure needs to be higher to fill that pore to
a given extent, ka is the rate constant for adsorption, and 6 is the fractional coverage
of that pore.

The rate of desorption is assumed to be proportional to the fractional coverage,
and proportional to (1-P/PJ, that is when the gas phase reaches the value of P^ the
gas phase attains sufficient force to stop adsorbed molecules from desorbing; thus,
the rate of desorption is:

( L ) (6.9.17)

Equating these two rates of adsorption and desorption, we get the following solution
for the fractional loading
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K(P/Pa)
—^ ^(K- l ) (P /P a )

(6.9-18)

which is the same form as that postulated in eq.(6.9-15).
For pores having characteristic pressure Pa less than P, the pores are filled with

adsorbate at maximum density, while pores having characteristic energy Pa greater
than P will have partial filling of which the density is given in eq. (6.6-15). Thus,
the adsorption isotherm equation is:

P Po

|DmVp(Pa)dPa + JD(P)Vp(Pa)dPa

0 = -5 ?- (6.9-19)

jDmVp(Pa)dPa

Defining x and P as in eq. (6.9-11), the fractional loading equation of eq. (6.9-19) is:

(6.9-20)

Special case

When K = 0, the above equation reduces to the isotherm equation applicable for
systems such as water adsorption onto activated carbon (eq. 6.9-12).

When K = 1 (linear partial filling), the integral in the numerator (eq. 6.9-20) can
be integrated analytically, and the result is:

0 =

(6.9-21)
The adsorption isotherm of eq. (6.9-21) is complicated than many empirical or

semi-empirical isotherm equations dealt with in Chapter 3. Because of its limited
testing against experimental data, eq. (6.9-21) does not receive much applications.



282 Equilibria

6.10 Relationship between Slit Shape Micropore and Adsorption Energy

The energy distribution approach presented in the last few sections provides a
useful means to describe the adsorption isotherm of heterogeneous solids. But the
fundamental question still remains in that how does this energy distribution relates
to the intrinsic parameters of the system (solid + adsorbate). In dealing with
adsorption of some adsorbates in microporous solids where the mechanism of
adsorption is resulted from the enhancement of the dispersive force, we can relate
this interaction energy with the intrinsic parameter of the solid (the micropore size)
and the molecular properties of the adsorbate. This approach was first introduced
by Everett and Powl (1976). In this section, we will present their analysis for
micropores having slit geometry. The cylindrical geometry micropores will be dealt
with in Section 6.12.

6.10.1 Two Atoms or Molecules Interaction

The basic equation of calculating the potential energy of interaction between
two atoms or molecules of the same type "k" is the empirical Lennard-Jones 12-6
potential equation.

<Pkk = 4 s kk

12 / \6
akk f akk (6.10-la)

where r is the distance between the nuclei of the two atoms or molecules, e^ is the
depth of the potential energy minimum and a^ is the distance at which cp^ is zero.

The distance akk is called the characteristic diameter or the collision diameter. The

minimum of the potential occurs at 21 /6 akk (= 1.122akk).

The 12-6 potential energy equation exhibits a weak attraction at large separation
(proportional to r"6) and strong repulsion at small separation (proportional to r12),
that is the potential energy has a very sharp decrease when the intermolecular
distance r increases from 0 to 21/6 akk , at which the potential energy is minimum. A

further increase in r will result in an increase in the potential energy at a rate much
slower than that observed when the repulsion force is operative.

Eq. (6.10-la) is the potential energy for the two atoms or molecules of the same
type. For two atoms or molecules of different type (say type 1 and type 2), the
relevant 12-6 potential energy equation is:
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where a12 and e12 are calculated using the Lorentz-Betherlot rule

a 1 2 = ( o 1 , + a 2 2 ) / 2 (6.10-lc)

£12 ==VSH822 (6.10-Id)

Figure 6.10-1 shows a plot of the reduced potential energy cpi2/e*2 versus the

reduced distance r/a12 . Here we see the weak attraction for large separations and

the strong repulsion for short separations.

Figure 6.10-1: Plot of the 12-6 potential and force versus distance between two nuclei

The force of interaction is the change of the potential energy cp12 with respect to the
distance. It is given by the following equation:

F , 2 = -
dcp12 24e

dr
12 M2

12

(6.10-2)

A plot of this force versus the reduced distance (r/cr12) is shown in Figure 6.10-1.
This force is zero when the distance between the two atoms or molecules is equal to
1.122 times the collision diameter. It is positive when r < 1.122 a12, implying
repulsion, and it is negative when r > 1.122a,2, suggesting attraction. At a distance r
about three times the collision diameter, the force becomes negligible.

To show the effect of the collision diameter on the behaviour of the potential,
we show on Figure 6.10-2 plots of the reduced potential energy versus r/a12

0, where
a12

o is some reference collision diameter, and the parameter of the plot is cn/ol2° =
0.95, 1, 1.1. The smaller is the collision diameter, the closer is the equilibrium
position between the two atoms or molecules.
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Reduced
potential
energy

Figure 6.10-2: Plot of the 12-6 potential energy versus distance with cn/(y°i2 as parameter

6.10.2 An A torn or Molecule and a Lattice Plane

We have discussed the interaction between two atoms or two molecules. We
now turn to the problem of a single atom or a single molecule interacting with a
single lattice plane. To calculate the interaction for this system, we need to sum the
pairwise potential energy of the form of eq.(6.10-lb) between the molecule 1 in the
gas phase and all the atoms on the lattice plane. If the distance between the
molecule and the lattice plane is much larger than the distance between two adjacent
lattice atoms, we can replace the summation by the integration, for which the
process will yield analytical expression if the extent of the lattice plane is infinite.
As a result, the potential energy will be written in terms of the shortest distance
between the center of the atom or molecule and the center of the lattice plane
(Figure 6.10-3).

Figure 6.10-3: Interaction between a species and a single lattice plane
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Let n be the number of the interacting centers per unit area of the lattice plane,
the analytical expression for the potential energy between a single atom or molecule
and a lattice plane is (Appendix 6.1):

(6.10-3)

where SLP is the acronym for the single lattice plane. Note the exponents 10 and 4
in the above equation, and this is hereafter called the 10-4 potential.

The 10-4 potential energy equation has a minimum and its depth is given by:

8I,SLP = - (6.10-4)

and this minimum occurs at a distance z*= a12, which is shorter than the distance for
minimum potential to occur between the two single atoms or molecules (1.122 a12).
This is due to the enhancement of attraction between the atom or molecule and all
the atoms on the lattice plane.

The potential energy equation, when written in terms of the minimum potential
energy (eq. 6.10-4), is:

, 1 0 „ x \ 4 ~

<PI,SLP = y i
z

(6.10-5)

A plot of this 10-4 potential energy equation is shown in Figure 6.10-4a.

5

4

Reduced
potential
energy

0.8 1.0 1.2 1.4 1.6

r/cr12 or z /a 1 2

1.8 2.0

Figure 6.10-4a: Comparison between 12-6,10-4, 9-3 potentials versus the reduced distance

It has a similar shape to that in the 12-6 potential between two single atoms or
molecules (also plotted in the same figure for comparison). The difference between
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the case of a single atom and a lattice and the case of two single atoms is that the
minimum for the former case occurs at a distance shorter than that in the case of two
single atoms or molecules.

6.10.2.1 Number Density per Unit Area 'n':

Compared to the 12-6 potential, the additional parameter that the 10.4 potential has
is the number density per unit area (n) of the lattice layer. In this section, we will
calculate this number density per unit area for the case of graphite lattice layer.
Graphite lattice layer is composed of carbon atoms arranged in the hexagonal form
with the distance between two carbon centers being a = 0.142nm. The area
occupied by one carbon center has a triangular shape as shown in Figure 6.10-4b,
and this area is:

A = (a + a. sin 30)(a cos 30)

Figure 6.10-4b: Diagram of a graphitic lattice layer

Thus we calculate the area using the carbon-carbon length a = 0.142 nm

A = 0.026194 nm2/carbon center

The number density per unit area is the inverse of the above area, that is

n = 38.2 centers/nm2

Example 6 J$:J: Minimum potential energy of krypton and a graphite

layers
This example shows a calculation of the minimum potential energy of

krypton and a graphite layer. We denote 1 for krypton and 2 for carbon.
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The collision diameter and the energy 8 for pure component are (Bird et.
al., 1960):

CJU = 0.3498 nm

cr22 = 0.34 nm

28K
k

Using the Lorentz-Berthelot rule, we calculate

° n + ° 2 2 0.3498 + 0.34CJ12 = —Li ££_ = = 0.3449 nm

~ = J ( i r X l f ) = V^5X28) = 79.37 K.
Having the Boltzmann constant k = 1.38 x 10'23 Joule/molecules/K, the

characteristic energy e12 is calculated as:

= 1.096 x 10
_2i Joule

molecule

For graphite layer, the number density per unit area n = 38.2 centers/nm2,
the minimum potential energy between a krypton atom and the graphite
layer is

* 6 * 2
8l.SLP = — 7 t n e l 2 a 1 2

= -7 i (38.2) (1.096 x 10"21) (0.3449)2

J o u l e

molecule

6.10.3 An Atom or Molecule and a Slab

We have obtained the useful equation for the potential energy between the
single atom or molecule and the lattice plane. Now we turn to the case whereby the
solid is composed of stacked lattice layers, which we hereafter call it slab (Figure
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6.10-5). The interaction between a single atom or molecule and a slab is calculated
by integrating the interaction between the species and the single lattice (eq. 6.10-3)
over the thickness of the slab.

Figure 6.10-5 Distance between a species and a single slab

The result of the integration gives the following the potential equation:

v 9 / \ 3 1
2_

15
M2 OJ2

Z

(6.10-6)

where n' is the number of interacting centres per unit volume of solid. This
potential equation is called the 9-3 potential because of the exponents 9 and 3 in the
equation. The subscript 1,S denotes the interaction between the atom or molecule of
species 1 and the slab object. The plot of this 9-3 potential energy equation is
shown in Figure 6.10-4.

The minimum of the potential energy is obtained by taking the derivative of the
above equation and setting the result to zero. This gives the minimum potential
energy of:

which occurs at a distance

-7in e 1 2 a 1 2

1 2 = 0.858 a12

(6.10-7)

(6.10-8)



Heterogeneous Adsorption Equilibria 289

which is shorter than the distance where the minimum occurs for the case of
interaction between the two molecules or for the case of interaction between a
molecule and a single lattice plane (see Figure 6.10-4a).

Written in terms of the minimum potential energy of eq. (6.10-7), the 9-3
potential energy equation becomes

<Pi,s =
a12 (6.10-9)

6.10.3.1 Number Density per Unit Volume for Graphite.

The additional parameter we have in the 9-3 potential is the number density per
unit volume, nf • I*1 this section, we calculate this value for the case of graphite.
Knowing the area occupied by one carbon center in one lattice layer is 0.026194
run2 (Section 6.10.2.1). The volume contains one such center is simply this area
multiplied by the spacing between the two adjacent graphite lattice layers. Since
this spacing for graphite is 0.335nm, the volume occupied by one carbon center is

V = (0.026194)(0.335) = 0.008775 nm3/center

Thus, the number density of carbon center per unit volume of graphite slab is

n'= — = 114 centers/nm3

V '

Minimum potential energy of krypton and a graphite slab
Taking the same system as in Example 6.10-1, we calculate the

minimum potential energy for a krypton atom and a graphite slab as

2VTo
9

2>/T0

A*

n (114) (1.096 x 10"21) (0.3449)3

SiS = U 3 2 x 1 0 -20 Joule

molecule
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The potential energies of interaction for the three cases considered so far are
summarised in Table 6.10-1 and are plotted in Figure 6.10-4. The potential energy
of each case has been scaled with respect to their minimum potential energy; thus,
the minimum of these plots occur at minimum reduced energy of -1. We see in the
figure that due to the stronger interaction between the molecule and the slab than
between two molecules, the distance where the minimum potential energy occurs
will be smaller for the case of molecule and slab interaction. The distance for the
case of interaction between a molecule and a lattice plane falls between the other
two cases.

Table 6.10-1: Potential energy equations and their characteristics

A

B

C

Potential function

91,2

<Pl,SLP

<Pl,S =

lOelsLpfir^V0

- 3 [ s l z J

3 .
= —j=e,s

ISTZ2]

, z

-i

-r]
< z

z y

Minimum
Potential

6 • 2
el,SLP -~ 7 m E 12 C T 12

* 2VlO , • 3
C1,S Q 7 m C 12 C T 12

Minimum
Position

r*=2 1 / 6 a 1 2

z* = o I 2

Case A: Two single atoms or molecules
Case B: One single atom or molecule and a single lattice plane
Case C: One single atom or molecule and a slab object

6.10.4 A Species and Two Parallel Lattice Planes

We have considered the potential energy of interaction for the three cases:

1. between two molecules (12-6 potential)
2. between a molecule and a single lattice plane (10-4 potential)
3. between a molecule and a slab (9-3 potential)

We now consider the case where a molecule is located between two parallel
lattice planes with a distance of 2d apart. This distance 2d is the distance between
two fictitious planes passing through the centers of the surface atoms. This case
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represents the situation where a single nonpolar adsorbate molecule resides inside a
slit-shaped micropore of infinite extent. Activated carbon is known to have slit-
shaped micropore, and hence the analysis here is applicable to the adsorption of
nonpolar molecule in activated carbon.

We denote z being the distance between the molecule and the central plane as
shown in the Figure (6.10-6). The limit on z is -d < z < d. Note that the distance z
defined in the last two sections is the distance between the single atom or molecule
and the lattice layer or slab.

Central plane
2d

/Adsorbate molecule

Figure 6.10-6: A molecule and two parallel lattice planes

The potential energy of interaction between a molecule and two lattice layers is
simply the summation of the potential energies between the molecule and each of
the two lattice layers, that is:

<Pl,= = <Pl,SLp(d + z ) + <Pl,SLp(d " Z) (6.10-10a)

where the functional form of cp1>SLp is given in eq. (6.10-5). Rewriting the above
equation explicitly, we get

Cp1_(z,d) = y 8
d + z. d-z.

1
2 U + z.

Ji2 y
1-zJ

(6.10-10b)

where 8I>SLP* is given in eq. (6.10-4). Figure 6.10-7 shows plots of the above
potential energy versus z/a12 with the reduced half-width d/a12 as the varying
parameter. We see that when the distance between the two lattice planes is far apart
(d/a12 = 2) we have two local minima and the minimum of the potential energy is
essentially the same as the minimum for the case of single lattice plane (that is no
enhancement in energy because of the large separation between the two lattice
planes). However, when the two planes are getting closer, the two minima coalese
and the minimum of the potential energy is enhanced. This enhancement is



292 Equilibria

m a x i m u m w h e n the half width o f the parallel planes is equal to the col l i s ion
diameter a 1 2 (that is 6VCT12 = 1). A t this m a x i m u m enhancement the m i n i m u m
potential energy is twice the m i n i m u m o f the potential energy for the case o f a
single lattice plane. W e n o w discuss the properties o f this case in more details.

*liSLP

"1 1 :
; 1 I

— —

* • — •

37-

d/o,
,0.95
-1
.1.25

1.5
2

-1.5 -1.0 -0.5 0.0

z/o12

0.5 1.0 1.5

Figure 6.10-7: Plots of the reduced potential energy versus Z/CT12

6.10.4.1 Central Potential Energy

First we consider the potential energy at the central plane, and this is obtained
by setting z = 0 in eq. (6.10-10b) and we get:

2 5 l d
(6.10-11)

The central potential energy is a function of the pore half width d. Figure 6.10-8
shows the plot of the reduced central potential energy

E1,SLP

versus the reduced half width d/a12. It shows a minimum of -2 and approaches zero

when the spacing is large (d/a12 > 3). There are four particular half-widths that

define the characteristics of the central potential energy. The first two half widths

are those at which the central potential energies are zero and - E^SLP > respectively.

The third is the half-width at which the central potential energy is minimum, and the
fourth is the half-width at which the two local minima coalesce into one. The latter
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happens when the second derivative of the central potential energy is zero. We now
further elaborate these four particular half-widths.

Reduced
central
potential
energy

0.0 <

-0.5

-1.0 -

-1.5 •

-2.0 -

-2.5 -

J (0.8584,0):
: y

., (0.8885<M)

T /
/\ /(1.1404,

di-2) ;

-1.6123)

1.0 2.5 3.01.5 2.0

d/a12

Figure 6.10-8: Plot of the reduced central potential energy for the two parallel lattice layers

1. When the central potential energy is zero, the pore half width is denoted as d0:

d (2\m

—2- = \±\ * 0.8584 (6.10-12a)
o I 2 V5J

2. When the central potential energy is equal to the minimum potential energy

corresponding to a single lattice layer, - e j S L P , the pore half width is denoted

as d,/a12 and is a solution of (obtained by setting eq. 6.10-11 to -1)

, 20 (on

(6.10-12b)

3 l d ,

Solving this nonlinear algebraic equation, we get

- ^ - = 0.8885
a12

3. The half width at which the central potential energy is minimum is denoted as
d2/a12. It is obtained by setting the first derivative of eq. (6.10-11) to zero, and
we have:

d2
= 1 (6.10-12c)

M2

The central potential energy at this pore half-width is - 2s*SL? .
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The last pore half width is the half width at which the two local minima of the
potential energy profile (eq. 6.10-10b) coalesce into one at the central plane of
the pore. This point is the inflexion point of the central potential energy. Thus
by setting the second derivative of the central potential energy equation to zero,
we get:

d f l l V / 6

_3_= _ ~ 11404 (6.10-12d)
a12 \5J

The central potential energy at this point is

S1,SLP n) = -1.6123 (6.10-12e)

The following table lists these four half-widths and the corresponding values of the
central potential energies.

d/orr 1 = (0,d)/e1 S L P

0.8584
0.8885
1.0000
1.1404

0
-1
-2
-1.6123

6.10.4.2 Local Minimum of Potential Energy Profile.

What we have analysed on the central potential energy provides useful
information on the subsequent determination of the local minimum of the potential
energy profile (eq. 6.10-10b).

When the pore half width is less than the "inflexion" pore half width d3/a12 (eq.
6.10-12d), the minimum of the potential energy profile of eq. (6.10-10b) occurs
at the center of the pore, and the minimum potential energy is simply the central
potential energy. Thus if the interaction energy (E) between a molecule and the
pore is taken as the negative of the minimum potential energy, we have

1.

E _20(a12y
M.SLP

I2n
SK d

(6.10-12f)

for
a 2

= 1.1404

2. When the pore half width is greater than the "inflexion" pore half width d3/a12,
there are two local minima and these minima must be found by solving
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numerically eq. (6.10-10b). This is done with an iterative produce, such as the
Newton-Ralphson method. The initial guess for the position where the
minimum occurs is done as follows. Since the minima will occur
approximately at a distance of a12 from the wall of the pore, the initial guess for
z in searching for the local minimum is

z « » = d - a 1 2

With this, we will get a tabular relationship between the minimum potential
energy and the pore half width. We shall discuss more about this in Section
6.10.6.

6.10.4.3 Enhancement in the Interaction Energy.

If the energy of interaction between the adsorbent (represented as two parallel
planes) and the adsorbate molecule is taken as the negative of the minimum of the
potential energy, this energy of interaction will have values ranging between s*1>SLP

(when the distance between the two planes is far apart) and 2e*1SLP (when the
distance is twice the collision diameter), that is:

To illustrate the enhancement in energy, we compare the affinity of a molecule
towards a single lattice layer and that in the case of two parallel lattice layers having
a half spacing equal to the collision diameter a12. The interaction energy between
the adsorbate molecule and the single lattice plane is e*! SLP and that for the case of
two parallel lattice layers is 2e*1SLP. The adsorption affinity takes the following
form:

Thus the ratio of the two affinities for these two cases is

'1,SLP
exp kT

£1,SLP

~kf"
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To illustrate the enhancement in adsorption, we take the example of krypton in
Example 6.10-1. We have the following values:

S*I,SLP = L 8 8 x 10'2° Joule/molecule

T = 300 K

The ratio of the two affinities calculated as 94, an enhancement of about 100 fold in
adsorption density within two parallel layers compared to that of a single lattice
layer. This enhancement is even more significant at lower temperatures. If we take
T = 200K, the enhancement is about 900 fold. This is only correct when the density
of adsorbate within the two lattice layers is very low, that is there is no interaction
between adsorbate molecules and when the interaction between the adsorbate and
the two lattice planes is much stronger than that between adsorbate molecules.

6.10.5 A Species and Two Parallel Slabs

For the case of interaction between a molecule and two parallel slabs, the
potential energy of interaction is calculated from the following equation, which is
simply the sum of the two potential equations between a single atom or molecule
and a single slab (from eq. 6.10-9).

9l,ss(z'd) = -7=r£

Vio w is d + zJ A d - z . d + zJ Vd-z.
(6.10-13)

where z is the distance between the atom or molecule and the central plane, and d is
the half spacing. Figure 6.10-9 shows plots of the reduced potential energy
cp i ss / e l s versus the reduced distance z/cr12. The behaviour of this potential

energy is very similar to that of the case of a molecule and two parallel planes dealt
with in Section 6.10-4, except that the maximum of the enhancement is achieved at
a shorter distance (d/au = 0.858) compared to d/cm = 1. We now first study the
behaviours of the central potential energy, and then study the minimum of the
potential energy profile (6.10-13).

6.10.5.1 Central Potential Energy

The potential energy at the central plane is obtained by setting z to zero in
eq.(6.10-13), and we get:



Heterogeneous Adsorption Equilibria 297

1.5

Figure 6.10-9: Plots of the reduced potential energy versus z/a12 for two parallel slabs

(6.10-14)

Figure 6.10-10 shows a plot of the central potential energy versus the reduced pore
half-width d/a12. Four particular pore half-widths of interest are listed below

0.5

0.0

Reduced "°-5

central
potential
energy _{5

-1.0

Figure 6.10-10: Plot of the reduced central potential energy for two parallel slabs

1. When the central potential energy is zero, the pore half width is

_2_ = f _ j « 0.7148 (6.10-15a)
cr12 V15/
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2. When the central potential energy is equal to - e* s (minimum potential energy

of a single slab), the pore half width is denoted as d{/(jn and is a solution of

15Ui

Solving this nonlinear algebraic equation, we get:

- ^ = 0.7446 (6.10-15b)
a1 2

3. The half width at which the central potential energy is minimum is denoted as
d2/a12. It is obtained by setting the first derivative of eq. (6.10-14) to zero, and
we have:

- ^ - = 0.8584 (6.10-15c)
o 1 2

The central potential energy at this pore half-width is - 2e* s .

4. The last pore half-width of interest is the pore half width at which the two local
minima of the potential energy profile (eq. 6.10-13) coalesce into one. This
occurs at the central plane, and this pore half width is the inflexion point of the
central potential energy (eq. 6.10-14). By setting the second derivative of eq.
(6.10-14) to zero, we get

d,
(6.10-15d)

The central potential energy at this point is

91,5s 26

5>/l(J
-1.6444

We summarise these four half-widths and their corresponding central potential
energies in the following table. We also include those values for the two parallel
lattice layers in the same table for comparison purpose.

Two parallel

d/a12

0.8584
0.8885
1
1.1404

lattice layers

(pi-(O,d)/eJ>SLP

0
-1
-2
-1.6123

Two parallel

d/a12

0.7148
0.7446
0.8584
1

slabs

<Pi,ss(°>d)/ei,s
0
-1
-2
-1.6444
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6.10.5.2 Local Minimum of Potential Energy Profile.

What we have done in the analysis of the central potential energy provides
useful information for the determination of the local minimum of the potential
energy profile (eq. 6.10-13).

1. When the pore half width is less than the inflexion pore half width d3/a12, the
minimum of the potential energy of eq. (6.10-13) occurs at the center of the
pore, and the minimum potential energy is simply the central potential energy.
Thus if the interaction energy (E) between a molecule and the pore is taken as
the negative of the minimum potential energy, we have

1
2 ( a

(6.10-15e)

for

_d_

, a 1 2 y o 1 2

2. When the pore half width is greater than the inflexion pore half width d3/a12,
there are two local minima and these must be found by solving numerically eq.
(6.10-13). This is done with an interative procedure, such as the Newton-
Raphson method. The initial guess for the position at which the minimum
occurs is done as follows. Since the minima will occur at a distance about
0.858 a12 from the slab surface (see eq. 6.10-8), the initial guess for z in
searching for the local minimum is

z(0) =d-0.858a1 2

Solving this, we will get a relationship between the minimum potential energy
and the pore half width for any pore half-width greater than d3.

What we will do in the next section is to apply what we have learnt so far in the last
two sections to study the adsorption behaviour inside a slit-shape pore.

6.10.6 A dsorption Isotherm for Slit Shape Pore
We have addressed the potential energy for a number of cases in the last

sections (Sections 6.10-1 to 6.10-5). The analysis of the last two cases: (i) a
molecule and two parallel lattice planes and (ii) a molecule and two parallel slabs,
are particularly useful for the study of adsorption of nonpolar molecules in slit-
shaped micropore solids, such as activated carbon.
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Using the results obtained in Sections 6.10-4 and 6.10-5, an overall adsorption
isotherm can be obtained from the local adsorption isotherm and a micropore size
distribution. Let us denote the micropore size distribution as f(r) such that

i

Jf(r)dr (6.10-16)

is the volume of the micropores having half width from rmin to r, where V^ is the
micropore volume. The minimum micropore half width rmin is defined as the
minimum micropore size accessible to the adsorbate, hence it is a function of the
adsorbate.

If the local adsorption in a micropore having a half width of r is denoted as

6(E(r),P,T) (6.10-17)

where E is the interaction energy between the adsorbent and the adsorbate (which is
a function of pore half-width), then the overall adsorption isotherm is taken in the
following form:

= ^ }e(E(r),P,T)f(r)dr (6.10-18)

where rmax is the maximum half width of the micropore region. In writing eq.(6.10-
18), we have assumed that the state of the adsorbate in the micropore is liquid-like
with vM being the liquid molar volume (nrVmole). We could write eq. (6.10-18) as
follows:

6(E(r),P,T) f(r) dr (6.10-19)

The integral in eq.(6.10-18) or (6.10-19) can only be evaluated if the
relationship between the energy of interaction E and the pore half width r is known.
This relationship is possible with the information learnt in Section 6.10-4 for two
parallel lattice planes and Section 6.10-5 for two parallel slabs. The depth of the
potential minimum is the interaction energy between the micropore and the
adsorbate.
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6.10.6.1 Interaction Energy versus the Half- Width for two Parallel Lattice Planes

Interaction energy between a molecule and the pore formed by two parallel
lattice layers is taken as the negative of the minimum potential energy. When the
half-width is less than 1.1404 a12, the interaction energy is calculated from eq.
(6.10-12f), and when it is greater than 1.1404 aJ2 the interaction energy is obtained
numerically from eq. (6.10-10b). Figure 6.10-11 shows a plot of the reduced
interaction energy

M,SLP M,SLP,

(6.10-20)

versus the reduced half width, d/a12. Results are also tabulated in Table 6.10-2.

A (1,2)

Reduced
interaction

energy

2.0

1 C

1.0

0.5

0 0

T

i

/ j \ D (1.1404,

Bj(0.8885, 1)

C| (0.8584,0)

1.6123)

II

0.5 1.0 1.5

d/c12

2.0 2.5

Figure 6.10-11: Plot of the reduced interaction energy versus d/a12 for two parallel lattice layers

When the two parallel planes are widely separated (d/a12 > 2), the energy of

interaction is 6*SLP. This energy of interaction increases when the distance

between the two lattice planes is getting smaller, and it reaches a maximum of 2
8I,SLP* when the half width is equal to the collision diameter a12 (point A). When the
distance decreases below cr12, the energy of interaction decreases due to the
repulsion and it has a value of zx SLP* when the half width is 0.8885 a12 (point B), and
when the half width is 0.8584 a12 the energy of interaction is zero (point C).

For the purpose of computing the adsorption isotherrft later, it is convenient to
obtain an analytical expression for the reduced interaction energy versus the reduced
half width, d/a12. When the reduced half width is less than 1.14043, the reduced
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interaction energy is simply the negative of the central potential energy given as in

eq. (6.10-12f), that is

M.SLP

K)

3

10

(6.10-21)

for d / a 1 2 < 1.14043.

For d/a12 > 1, the following approximate solution reasonably describes the

reduced interaction energy as a function of the reduced half-width.

, 3

M.SLP

= 2-1.05676191 1- - exp
2.7688274

(d/a1 2)-0.6165728
(6.10-22)

Table 6.10-2 Values of the scaled energy of interaction versus the scaled half width

d/a12

0.8885
0.8996
0.9108
0.9220
0.9331
0.9442
0.9554
0.9666
0.9777
0.9888
1.0000
1.0375
1.0750
1.1125
1.1500
1.1875
1.2250

E/SLSLP

1.0000
1.2496
1.4498
1.6086
1.7323
1.8268
1.8965
1.9456
1.9774
1.9947
2.0000
1.9542
1.8491
1.7170
1.5775
1.4627
1.3748

d/a12

1.2625
1.3000
1.3375
1.3750
1.4125
1.4500
1.4875
1.5250
1.5625
1.6000
1.6375
1.6750
1.7125
1.7500
1.7875
1.8250
1.8625

E/<SLP

1.3068
.2534
.2112
.1773
.1500
.1277
.1094
1.0943
.0817
.0711
.0622
.0546
1.0482
1.0427
1.0379
1.0338
1.0302

d/o12

1.9000
1.9375
1.9750
2.0125
2.0500
2.0875
2.1250
2.1625
2.2000
2.2375
2.2750
2.3125
2.3500
2.3875
2.4250
2.4625

E/<SLP

.0271
1.0244
1.0220
1.0199
1.0180
1.0164
1.0149
1.0136
1.0125
1.0114
1.0105
1.0097
1.0089
1.0082
1.0076
1.0070

6.10.6.2 Interaction Energy versus the Half Width for two Parallel Slabs

When the pore half-width is less than a12, the interaction energy is calculated

from eq. (6.10-15e), and when it is greater than a12 the interaction energy is
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calculated as the negative of the minimum of the potential energy profile (eq. 6.10-

13). The results are plotted graphically in Figure 6.10-12 as a plot of the reduced

interaction energy

- ? - (6.10-23)
si,s

versus the reduced half width, d/a12.

Reduced
interaction
energy

2.0

1.5

1.0

0.5

0 0

A (0i584, 2) ;

l / M D ( 1 , 1.6444)

1 ^-^J1

B (O.?446, 1) :

;

C (0.7148,0) ;
0.5 2.0 2.51.0 1.5

d/c12

Figure 6.10-12: Plot of the reduced interaction energy versus d/a12 for two parallel slabs

The behaviour of this plot is very similar to that for the case of two parallel lattice

planes. The maximum enhancement in the potential energy occurs at

12

(6.10-24)

below which the enhancement starts to dissipate very rapidly due to the strong

repulsion of the two slabs onto the molecule.

For the purpose of computation of adsorption isotherm, we obtain the

relationship between the reduced interaction energy versus the reduced half width.

When the half width is less than a12, the interaction energy is given by eq. (6.10-

15e) or written again below for completeness.

Vfo 15 l d
(6.10-25)

for d / a 1 2 < 1.
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For d / a12 > 1, the following approximate solution can be used to describe the

relationship between the reduced interaction energy versus the reduced half width:

E
= 2-1.04417153

Si

1 - - '12

5) d

3

exp
2.41519301

( d / a 1 2 ) - 0.4954486
(6.10-26)

6.10.6.3 Adsorption Isotherm

Having the relationship between the interaction energy and the pore half width
(eqs. 6.10-21 and 6.10-22 for two parallel lattice planes or eqs. 6.10-25 and 6.10-26
for two parallel slabs), the integral of eq.(6.10-19) can be integrated to obtain the
amount adsorbed versus pressure. This can be done by using the quadrature method

C^ = C ^ X W j e(E(rj),P,T) f( r j) (6.10-27)
j

where Wj is the quadrature weights and xy are the quadrature points.

6.10.6.4 Micropore Size-Induced Energy Distribution

Knowing the relationship between the energy of interaction versus the pore
size, the energy distribution can be obtained from the micropore size distribution by
using the following formula:

F(E)dE = f (r)dr (6.10-28)

where F(E)dE is the fraction of the micropore volume having energy of interaction
between E and E+dE. Thus, we have:

(6.10-29)

where dE/dr is the slope of the curve in Figure 6.10-11 or Figure 6.10-12. Since for
a given value of the energy of interaction E, there are two values of r and hence two
values of the slope dE/dr. One slope is positive while the other is negative. To deal
with this problem, we consider the case of two parallel lattice planes (as similar
procedure will apply to the case of two parallel slabs) and split the integral of eq.
(6.10-19) into three integrals as follows:

C r 0.8885o12 a r

•£L = j6(E,P,T)f(r)dr= j9(E,P,T)f(r)dr + Je(E,P,T). f(r)dr+ Je(E,P,T)f(r)dr
^ rmin rinin 0.8885<JI2 a 1 2

(6.10-30)
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The first integral covers the range of micropore size where the interaction energy is
less than that of a single surface. The contribution of this range is usually very
small and we could neglect its contribution. Hence, eq (6.10-30) becomes:

Q CT12 W

- i L = Je(E,P,T).f(r)dr+ Jo(E,P5T) • f(r)dr (6.10-31)
^ O.8885a12 CT12

Within the limits of the first integral, the interaction energy increases with r while
within the limits of the second integral it decreases with an increase in r. Applying
the chain rule of differentiation to these two integrals, we get:

C n 1
7^= J

e<E'P'T) G l 7 y dE+7e(E,P,T) y g - l dE (6.10-32)

where the subscripts I and II denote the branches I and II as shown in Figure 6.10-
11, respectively. Now the integrals are written in terms of the energy of interaction,
the lower and upper limits of these two integrals are replaced by values as shown in
the following table.

Pore size Corresponding energy of interaction
0.8885 a12 e l i S L P ^
CT12 2 £ I , S L P

rmax E ^

Here Emin is the energy of interaction corresponding to the pore size rmax, which is
read from the branch II of Figure 6.10-11. Thus, eq.(6.10-32) will become:

^ = T ^ ' ^ y ^ ) , ^ Te(E,P,T)(^)dE (6.10-33)
^ E1,SLP l 26 i > S L p "

We note that (dE/dr)n in the second integral is negative, and the upper limit Emin is
smaller than 2s, SLP*, we then can rewrite the above equation as follows:

2el,SLP f f( \ \ 2 e l,SLP

E1,SLP
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If the maximum micropore size is sufficiently large (that is the half width of the

largest micropore size is twice larger the collision diameter such that Emin is

approximately equal to S{ SLP , eq.(6.10-34) will be reduced to:

- * - = J 0(E,P,T)
El.SLP

dE (6.10-35)

This equation can be written in terms of the energy distribution as:

p 2el,SLP

—^-= j9(E,P,T)F(E)dE (6.10-36)
^ el,SLP

where the energy distribution takes the form

(6.10-37)

having a domain of energy between 81)SLP*
 anc* 2e1SLP*. Eq. (6.10-37) is the desired

energy distribution induced by the micropore size distribution. It is obtained as
follows. For a given value of the interaction energy E between 6j SLP and 2 ex SLP ,

there will be two values of pore half-width, obtained from eqs. (6.10-21) and (6.10-
22) (or from Figure 6.10-11). Knowing these two values of r, the slopes dE/dr can
be calculated and two values for f(r) can be obtained from the micropore size
distribution. Substituting these values into eq. (6.10-37), we then obtain the energy
distribution.

A typical plot of the energy distribution versus energy is shown in the following
figure. This distribution exhibits a pattern (Figure 6.10-13) such that it is infinite at
E = 2ej SLP* because at this energy the slope (dE/dr) is zero.

6.10.6.5 Evaluation of the Adsorption Isotherm

To evaluate the adsorption isotherm for a microporous solid having a known
micropore size distribution, we use eq.(6.10-18) or (6.10-19). Here, for the purpose
of illustration, we use the following Gamma distribution to describe the micropore
size distribution

n+l n -o r

( 6 1 0 - 3 8 a )
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which has the following mean and variance as:

r = - a = •
VnTT

a a
and we use the Langmuir isotherm as the local isotherm as given below:

6(E,P,T) =
b,-exp[E(r)/RgT]p

F(E)

- •
81,SLP E 2 81,SLP

Figure 6.10-3: Typical plot of the energy distribution derived from

Eq.(6.10-19) then can be written as:

C,, =C,,
an+1rnexp(-ccr)

(6.10-38)

(6.10-39)

dr (6.10-40)

This equation contains two parameters for the micropore size distribution, and three

parameters for the adsorbate-adsorbent interaction, C^, b^ and £*SLP • Thu s by

fitting the above equation to adsorption equilibrium data, we will obtain the optimal
values for the above mentioned parameters. Using the adsorption data of propane
on an activated carbon at 303 K tabulated in Table 3.2-1, we carry out the
optimization and obtain the following optimal parameters:

a
n

b.*
p
bl,SLP

20 nm1

89
6 mmol/g
9x lO-'kPa-1

16.7kJoule/mole
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Using these values of a and n in the above table, we plot the micropore size
distribution as shown in Figure 6.10-14 where we see that the mean micropore size
is 9 A, which falls in the range determined by experimental methods for many
samples of activated carbon.

f(r)

0.2 0.4 0.6 0.8
Half-width, r (nm)

1.0

Figure 6.10-14: Plot of the micropore size distribution

Concerning the local adsorption isotherm, we have used the Langmuir equation.
Other fundamental equations discussed in Chapter 2 can be used as the local
isotherm. For example, Jagiello and Schwartz (1992) used Hill-de Boer as the local
isotherm equation. Equation such as the Nitta equation can be used as it allows for
the multiple sites adsorption and adsorbate-adsorbate interaction.

6.10.7 An Atom or Molecule and two Parallel Lattice Planes with sub-lattice layers

In Sections 6.10-2 to 6.10-5, we have dealt with cases of interaction between a
species and a lattice plane, a slab, two parallel lattice planes and two parallel slabs.
Here, we will extend to the case of two parallel lattice planes with sublayers
underneath each lattice layer. This case represents the case of activated carbon
where the walls of slit-shaped micropore are made of many lattice layers. Although
real micropore configuration is more complex than this, this configuration is the
closest to describe activated carbon micropore structure. Before we address
molecular interacts with two lattice layers with sub-lattice layers underneath, we
consider first the interaction between one atom or molecule with one lattice layer
with sub-lattice layers.



Heterogeneous Adsorption Equilibria 309

6.10.7.1 An Atom or Molecule and one Lattice Plane with Sub-Lattice Layers

We denote z as the distance from the molecule to the solid surface, and A is the
distance between the two planes passing through the nuclei of the surface atoms of
the lattice layer and those of the adjoining sublayer (Figure 6.10-15).

Figure 6.10-15: Schematic diagram of two lattice layers with sub-lattice layers

Starting with the fluid-fluid interaction potential as given in eq.(6.10-l), Steele
(1972) obtained the fluid-solid interaction potential between a species "k" and a
lattice layer with its sublayers as given below:

<Pk,A = < P w

10
If a ks

6A(z + 0.61A)3
(6.10-44a)

where aks is the collision diameter between the molecule of type k and the surface
atom, and the wall potential energy parameter (p w is given by

(6.10-44b)<Pw = — T

Here ps is the number density of surface center per-unit volume and e^ is the
Lennard- Jones well-depth of the molecule and the surface atom.

The potential equation of the form in eq. (6.10-44a) is called the 10-4-3
potential. This potential energy exhibits a behaviour similar to that of the 10-4 or 9-
3 potential energy equations. The minimum potential energy of the 10-4-3 is
obtained by taking the first derivative to zero, that is

<P
dz 2A(0.61A + z)4

= 0 (6.10-45)
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from which we can solve for the distance from the lattice layer, at which the
potential energy is minimum

(6.10-46)

There is no analytical expression for the functional form f. It must be found
numerically from the solution of eq. (6.10-45).

Knowing zmin, the minimum potential energy is obtained by substituting eq.
(6.10-46) into the potential energy equation (6.10-44a), we get

) dgf q), (6.10-47)

The following table tabulates the functions f and g as a function of the parameter

A/<Tks

0.2
0.25
0.5
0.75
1
2
3
oo

f(A/ata)

0.9159
0.9336
0.9750
0.9884
0.9940
0.9991
0.9998
1

g(A/aks)

-0.9744
-0.7809
-0.4546
-0.3727
-0.3402
-0.3076
-0.3025
-0.30

The special case (A -> oo) of the 10-4-3 potential is simply the 10-4 potential we
have dealt with in Section 6.10-2.

6.10.7.2 An atom or a Molecule and two Lattice Planes with Sub Lattice Layers

Having understood the behaviour of the single lattice layer with sub-lattice
layers, we now turn to the case where there are two lattice layers and sub-lattice
layers underneath each of those layers. An atom or a molecule residing inside the
slit pore has to interact with two surface layers including their sub-lattice layers. In
this case, the potential energy of interaction is the sum of the potentials for each
surface, that is

<Pk,AA =9k,A(d + z) + (Pk,A(d-z) (6.10-48a)
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where d is the half-spacing between the two lattice layers (Figure 6.10-15) and z is
the distance of the atom or the molecule from the central plane between the two
surface layers. Writing eq. (6.10-48a) explicitly we get

d + z 1-zJ

10
>ks

d + z. d - z
(6.10-48b)

6A(d + z + 0.61A)3 6A(d - z + 0.61A)3

Like the case of two parallel lattice layers (Section 6.10-4) and two parallel
slabs (Section 6.10-5), we now investigate the behaviour of the potential energy
equation (6.10-48) by first studying the central potential energy. By setting z = 0
into eq. (6.10-48b), we obtain the following central potential energy equation

5\ d 3A(0.61A + d)3
(6.10-49)

This central potential energy is a function of the pore half width d, and it has a
minimum when the half width is equal to some threshold value. But first let us
consider the situation when the central potential energy is zero. We denote this half
width as do, that is

_2
5

of which the solution is

3A(0.61A + d0)3
= 0 (6.10-50)

(6.10-51)

When the central potential energy is equal to the minimum potential energy
corresponding to the case of single lattice layer and its associated sub-layers (eq.
6.10-47), the half width is denoted as dj and it is a solution of

5U,

CTks

3A(0.61A + d,)3
= cpwg(A/aks) (6.10-52)

Solving the above equation gives:
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(6.10-53)

The central potential energy has a minimum with respect to the half width. This is
obtained by setting the first derivative of eq. (6.10-49) with respect to the half-width
d to zero, that is

d(pk l A A (0;d)_2(pw

d(d) >ks

+ 2
2A(0.61A + d)J

= 0 (6.10-54)

We note that the solution for the minimum of the central potential energy (eq. 6.10-
54) is identical to the solution for the minimum of the potential energy for the case
of a single lattice layer (eq. 6.10-45). Thus we write

>ks >ks

(6.10-55)

where d2 is the half width that gives the minimum central potential energy and f2 is
the same functional form as f in eq. (6.10-46). The minimum central potential
energy at d = d2 is

cpk A A(0;d2) = 2cpw g ( A / a k s ) (6.10-56)

The function g has the same functional form as that defined in eq. (6.10-47). This
means that the minimum of the central potential energy is twice the minimum
potential energy corresponding to the single lattice layer.

Another half width of interest is the one at which the two local minima of the
potential energy profile (eq. 6.10-48b) coalesce. This coalescence occurs at the
central plane of the pore, and when this occurs the second derivative of the central
potential energy with respect to the pore half-width is zero, that is

d2(pk>AA(0;d) _ <pw

d(d)2 cr2
s < xl2 , x6

^ A2?) -
4

A(0.61A

Solving the above equation, we get

= 0 (6.10-57)

(6.10-58)
' k s

The central potential energy at this half width is
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d3 J 3A(0.61A + d3)3
def(Pw.g3(A/aks)(6.10-59)

The following table tabulates the functional values of f0, f,, f2, f3 and g3 as a
function of ,

_&_
0.3
0.4
0.5
0.7
1
2
0 0

0.8038
0.8203
0.8308
0.8427
0.8506
0.8570
0.8584

0.8337
0.8505
0.8611
0.8730
0.8810
0.8872
0.8885

0.9467
0.9642
0.9750
0.9867
0.9940
0.9991
1

1.0871
1.1057
1.1169
1.1286
1.1355
.1399

1.1404

-1.0848
-0.8615
-0.7422
-0.6236
-0.5520
-0.4970
-0.4837

Like the last two cases of parallel lattice layers and parallel slabs, what we have
done so far provides useful information on the determination of the local minimum
of the potential energy profiles (eq. 6.10-48b).

1. When the pore half-width is less than the inflexion pore half-width d3, the
minimum of the potential energy equation (6.10-48b) occurs at the center of the
pore. Hence the minimum potential energy is simply the central potential
energy. If we take the energy of interaction as the negative of the minimum
potential energy, it is then given by:

10

4
3A(0.61A + d)3

(6.10-60)

for d < d3, where d3 is given by eq. (6.10-58).
2. When the pore half-width is greater than the inflexion pore half-width d3, there

are two local minima for the potential energy profile (eq. 6.10-48b). These
minima must be found numerically by some iterative method, such as the
Newton-Raphson method. The initial guess for the position where the
minimum occurs is:

z ( 0 ) = d - a k s f ( A / a k s ) (6.10-61)
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where ak s f(A / ak s) is the distance from the layer where the minimum occurs

if there is only one lattice layer and its associated sub-layers (see eq. 6.10-46).
Once the position where the minimum is found from the iteration process, the
local minimum potential energy is obtained from eq. (6.10-48b) and the energy
of interaction is the negative of that minimum potential energy.

Figure 6.10-16 shows schematically the energy of interaction as a function of the
reduced pore half-width (d/cjjj. This relationship between the interaction energy
and the pore half-width can then be used to calculate the adsorption isotherm exactly
the way we have done for the two parallel layers and two parallel slabs in Sections
6.10.6.4 and 6.10.6.6.

2g(A/aks)

g(A/aks)

d0 d{ d2 d3

<*ks a k s a k s CTks
Figure 6.10-16: The energy of interaction between a molecule and two layers with sub-lattice layers

(10-4-3 potential)

Activated carbon is made of many graphite-like microcrystalline units and in each
unit there exists many graphite layers. The spacing between these units is usually
small enough to form micropore space for adsorption. Because of the existence of
these graphite layers that the 10-4-3 potential is usually used with good success to
describe the adsorption of many gases or vapours in activated carbon.
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6.11 Horvath and Kawazoe's Approach on the Micropore Size Distribution

In the last sections, we presented the Lennard-Jones potential method, where we
can relate the interaction energy to the micropore size. Knowing this information
and the local isotherm, we can either calculate the overall adsorption isotherm or
with the given experimental equilibrium data we can obtain the information about
the micropore size distribution.

In this section, we show another approach but very similar to what we did in
Section 6.10, that of Hovarth and Kawazoe (1983), to obtain the average potential
energy for a slit shape pore, from which a method is derived to determine the
micropore size distribution from the information of experimental isotherm data.
What to follow is the brief description of the theory due to Horvarth and Kawazoe.

6.11.1 The Basic Theory

Starting with the equation for the molar integral change of the free energy of
adsorption at constant temperature

AG = AH-TAS (6.11-1)

Hovarth and Kawazoe obtained the following equation relating the gas phase
pressure to the potential functions as follows:

RgTln(^J=U0+Pa (6.11-2)

where Uo is the potential function describing the adsorbent-adsorbate interaction,
and Pa describes the adsorbate-adsorbate-adsorbent interactions.

The potential function of a gas molecule over a graphite layer of infinite extent
is:

= 3.07^
\ 10 f \ 4

(6.11-3)

where a is the distance between the gas molecule and the surface which gives zero
interaction energy, and z is the distance from the gas molecule and the surface.
Eq.(6.11-3) was derived in Section 6.10 (see eq. 6.10-5). The distance where the
interaction energy is zero is obtained by setting eq.(6.10-5) to zero, and we obtain:

= {-j a12 (6.11-4)
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Hence using this parameter a into eq.(6.10-5), it will become:

• l f -1 -[zj

which is the equation (6.11-3) obtained above by Hovarth and Kawazoe. Here <|)* is
the minimum energy, and is given in terms of molecular parameters:

•• =
N2A2

3.07 (2a)4

where N2 is the number of atoms per unit area of surface, A2 is the constant in the
Kirkwood-Muller equation.

The potential function between one adsorbate molecule and the two parallel
planes is given by (cf. eq. 6.10.10)

(2a) ' d + z

10

d - z

10

d + z d -
(6.11-6)

where a is defined as in eq.(6.11-4), 2d is the distance between the two nuclei of the
two parallel layers, and z is the distance of the gas molecule from the central plane.

Knowing the potential energy between the parallel planes and one molecule, the
potential function between the two parallel layers filled with adsorbates is:

• =
N1A1+N2A2

(2a)4 id + zJ
10

d - z

10

d + z d - z
(6.11-7)

where Nj is the number of molecules per unit area of the adsorbate and A, and A2

are defined as follows:

6mc2 3mc2a1x1

Xi

U 2

%2

Here m is the electron mass, c is the speed of light, ct2 is the polarizability and %2 *
s

the magnetic susceptibility of an adsorbent atom, a, and Xi are the polarizability and
magnetic susceptibility of an adsorbate molecule.

The potential given as in eq. (6.11-7) varies with the distance z away from the
central plane. Averaging this potential over the available distance within the slit
(Figure 6.11-1), and substituting the result into eq. (6.11-2), we get:
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RgTln|— | = K J^-. '] [r j_ i \ r j _ r -f-̂ -v -r J-V i *
d-z

where K is the Avogadro's number, and z* is given by
(6.11-9a)

(6.11-9b)

+ a2)/2

Adsorbate molecule

Surface atoms

Figure 6.11-1: Schematic diagram of a slit composed of two parallel lattice planes

Integration of eq.(6.1 l-9a) gives:

a4[2d-(a,+a2)]
a10 a*

- +

(6.11-10)
where 2d should be greater than (CT, + CT2)-

Eq.(6.11-10) relates the gas phase pressure in terms of the width of the slit-
shape pore (2d). Thus, by measuring the adsorption isotherm as a function of the
reduced pressure

C = C u s x f ( P / P ° ) (6.11-11)
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we can derive the relationship between the amount adsorbed and the effective pore
width by using the relationship between the relative pressure versus the effective
pore width (2d-a2) of eq. (6.11-10).

6.11.2 Differential Heat

Assuming the state of adsorbed phase as liquid, the differential heat of
adsorption is obtained from the following formula:

,diff
= JV_ 1 1111

p
q a i I I = R g T l n - ^ +AHvap (6.11-12)

This equation states that the differential heat is infinite at zero loading, and it
decreases with pressure (hence loading) and when the pressure reaches the vapour
pressure the differential heat is equal to the heat of vaporisation.

6.11.3 Model Parameters

6.11.3.1 Parameter a

The distance at which the interaction energy is zero is given in eq. (6.11-4), and
if we take the collision diameter CT12 as the arithmetic average between the diameter
of the adsorbate molecule and the adsorbent atom, we will get the following
expression for the parameter a.

For carbonaceous adsorbents, the diameter of a carbon atom is 0.34 nm, and if the
adsorbate is nitrogen the diameter is 0.3 nm; thus, we have:

a = 0.2747 nm

6.11.3.2 Parameters Nj and N2

From Walker et al. (1966), we have:

N, = 6.7 x 1014 molecules/cm2 (6.1 l-14a)

N2 = 3.845 x 1015 molecules/cm2 (6.1 l-14b)

Eq.(6.1 l-14a) is calculated from the liquid nitrogen density, which is taken as 0.808
g/cm3 (Hovarth and Kawazoe, 1983).
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6.11.3.3 Polarizability and Magnetic Susceptibility

Values for the polarizability and the magnetic susceptibility for carbon and
nitrogen are tabulated in the following table (Table 6.11-1).

Table 6.11-1 The polarizability and magnetic susceptibility of carbon and nitrogen

Polarizability (cm3) Magnetic susceptibility (cm3) Reference
Carbon
Nitrogen

1.02 x 1024

1.46 x 1024
13.5 x 1029

2x 1029
Sams etal. (1960)
Sansonov(1968)

6.11.3.4 The working Equation for Nitrogen at 77 K

Substituting eqs.(6.11-13) and (6.11-14) into (6.11-10), we get:

l n l — 1 = - 62.38
2d - 0.64

1.895 x 10" * 2.7087x10- 7

(2d-0.32) (2d-0.32)
•-0.05014 (6.11-

15)

where d is in nm. This working equation allows us to relate the measured pressure
with the effective pore width, from which the amount adsorbed can be plotted
directly versus the pore width.

6.11.3.5 Tabulation of Relative Pressure versus Effective Pore Width

Eq.(6.11-15) is evaluated for a range of relative pressure, and the results are
tabulated in Table 6.11-2. The effective pore width has the units of nm.

Table 6.11-2 Tabulation of the effective width versus the relative pressure

P/Pn
1
2
5
1
2
5
1
2

x 10"8

x l O " 8

x I O 8

x 10'7

x I O 7

x I O 7

x I O 6

x I O 6

2d-a2

0.3511
0.3636
0.3801
0.3928
0.4060
0.4246
0.4396
0.4557

P/Pn
5 x IO6

1 x IO5

2 x IO5

5 x 10"5

1 x 10"4

2 x 10-4

5 x 10"4

1 x 10 3

2d-a1

0.4790
0.4986
0.5201
0.5525
0.5805
0.6125
0.6627
0.7086

P/P
2x
5x
1 x
2x
5x
7x
1 x
2x

o

IO3

103

io-2

IO2

io-2

io-2

IO1

io-1

2d-a2

0.7638
0.8573
0.9512
1.0766
1.3280
1.4625
1.6473
2.2370

P/Pn
3 x 10-1

4 x IO1

5 x IO1

6 x IO1

7 x IO1

8 x IO1

9 x IO1

2d-a2

2.8939
3.7110
4.8109
6.4220
9.0687
14.3165
29.9860

Figure 6.11-2 shows the log-log plot of the effective width versus the relative
pressure. Note the increase in the effective pore width with the pressure. The limit
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of the pressure beyond which the Hovarth-Kawazoe method is not applicable should
be taken with care because at high pressure the effective micropore half width is
reaching the mesopore limit where the Horvarth-Kawazoe may not be applicable.

100

10

2d-a,

0.1 J
le-8 le-7 le-6 le-5 le-4 le-3 le-2 le-1 le+O

P/Po

Figure 6.11-2: Plot of the effective width versus P/Po using the Hovarth-Kawazoe method

6.11.4 Applications

Hovarth and Kawazoe (1983) carried out adsorption and desorption of nitrogen
on a carbon sample at liquid nitrogen temperature of -196 °C. The characteristics of
this sample are shown in the following table.

Table 6.11-3

Properties
Particle density
True density
Micropore volume
Mean micropore size

Units
g/cc
g/cc
cm3/g
nm

Values
0.90
1.80
0.21
0.50

The range of pressure measured is between 2.3 x 10~4 and 740 Torr, and the
maximum amount adsorbed in the micropore is taken as the amount adsorbed at a
relative pressure of 0.9, which is 173.2 mg nitrogen/g of carbon, and the following
table tabulates the relative amount adsorbed versus the relative pressure. The
effective half width is then calculated using eq.(6.11-15).
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Table 6.11-4: Adsorption data of Hovarth and Kawazoe (1983) and the effective width.

0.019
0.039
0.079
0.108
0.222
0.301
0.550
0.658
0.814
0.880
0.907
0.942
0.963
0.986
0.992
0.999

P/Po

3.03 x 10"7

5.00 x lO 7

1.07 x 10-6

1.45 x 10"6

2.76 x 10"6

4.61 x lO 6

1.33 x lO 5

5.66 x 10"4

2.11 x 10"3

1.32 x lO 2

6.18 x lO 2

1.08 x 10 1

2.17 x 10 1

5.13 x 10 1

7.04 x 10 1

8.42 x 10 1

Effective width
(nm)
0.4143
0.4246
0.4411
0.4481
0.4636
0.4769
0.5072
0.6703
0.7686
0.9968
1.4090
1.6948
2.3413
4.9845
9.2111
18.4870

The micropore size distribution is shown in Figure 6.11-3, and it shows a very sharp
distribution exhibited by this sample of carbon. The mean pore width is
approximately 0.5 nm.

eye.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Effective pore width (nm)

Figure 6.11-3: Micropore size distribution of a carbon sample
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6.12 Cylindrical pores

In the last two sections (6.10 and 6.11), we see the analysis of the interaction
energy and adsorption isotherm analysis for slit-shaped pores. We started with the
potential energy between

1. two molecules or two atoms,
2. a molecule and a single lattice plane,
3. a molecule and a slab,
4. a single molecule and two parallel lattice planes,
5. a single molecule and two parallel slabs, and
6. a single molecule and one lattice layer with its associated sub-layers
7. a single molecule and two lattice layers with their associated sub-layers

The analysis of the cases 4, 5 and 7 are utilised in the study of adsorption
isotherm of a nonpolar adsorbate in a microporous solid having slit-shaped
micropores, such as activated carbon. To complete the potential theory analysis, we
now deal with solids having cylindrical pores of molecular dimension.

6.12.1 A Molecule and a Cylindrical Surface

Here, we will consider the case of a molecule confined in a cylindrical pore
having a radius R (Figure 6.12-1).

Figure 6.12-1: An adsorbate molecule in a cylindrical pore made of a single lattice layer

Let r be the distance of the center of the molecule from the center of the pore.
Everett and Powl (1976) presented the following equation for the potential energy
between a molecule and the surface of the cylindrical pore:
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2k

(6.12-la)

where e*SLP is the minimum potential of a single lattice plane, defined in eq.(6.10-

4). Written in terms of the molecular parameters, it is:

I , S L P -
J +N 2 A 2

To
(6.12-lb)

'12

The parameters A, and A2 are the Kirkwood-Muller dispersion constants, and are
given in eqs. (6.11-8). Here a12 is the collision diameter (can be taken as the
arithmetic mean between the diameter of the adsorbate molecule and the surface
atom), and otk and (3k are defined as follows:

r(-4.5)= (6.12-2a)

(6.12-2b)
r ( - i . 5 - k ) - r ( k •• " '

Figure 6.12-2 shows the plot of the reduced potential energy (P0,SI/E*I,SLP versus the
reduced radius (r/a12). The parameter of the plot is (R/a12).

3

R/a1

Reduced
potential
energy

1.5

Figure 6.12-2: Plots of the reduced potential energy versus r/a12 for a cylinder with a single lattice
layer

We note from this figure that depending on the magnitude of (RAr12) the potential
energy profile has two minima and when (R/tf12) is less than (231/ 64)1/6 the two
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minima coalesce. Before discussing any further on the behaviour of this potential
energy profile we consider the potential energy at the centre of the cylindrical pore.

6.12.1.1 Centi-al Potential Energy

From eq.(6.12-l), we obtain the potential energy at the center of the cylindrical
pore by setting r = 0 as (see Figure 6.12-3):

^ S7cra12yr 2lfa12

2 I R ) \ 321 R

-l

Reduced
central _2

potential
energy

-3

(6.12-3)

D (1.2385,-2.7310)

C (1.086,-3.388) I

0.8 1.0 1.2 1.4 1.6 1.8 2.0

R/a12

Figure 6.12-3: Plot of the reduced central potential energy versus R/a12 for the cylinder made by a
lattice

This reduced central potential energy has a local minimum, which can be found
by taking its first derivative with respect to R/a12, and we obtain the following value
for the local minimum

1/6

= 1.086 (6.12-4a)
M2 64 J

at which the minimum central potential energy is:

(

M.SLP

= - 3.3877 (6.12-4b)

When the reduced radius
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— = 1-^1 =0.9322
a1 2 V327

the central potential energy is zero, and when this reduced radius R/a12
 = 0.94932,

the central potential energy is equal to the minimum potential of a single lattice
plane, that is:

(

I (6.12-5)
M,SLP R/a12 =0.94932

This means that when R/o12 increases from 0.9322 to 1.086, the reduced central
potential energy decreases from 0 to - 3.388 and then increases when the radius of
the reduced pore radius increases beyond 1.086.

To find the inflexion point of eq.(6.12-3), we take its second derivative with
respect to R/a12, and obtain:

f23lV/6

= 1—1 =1.2385 (6.12-6a)
' INFLEXION

which is basically the position at which the two local minima of the potential energy
distribution (eq. 6.12-1) coalese into one minimum positioned at the center of the
cylinder. The central potential energy at this value is:

( 6 . 1 2 . 6 b )

R

M.SLP 22 \23lJ

The following figure (Figure 6.12-4) shows the typical plot of the negative of the
minimum potential energy versus R/a12.

Interaction
energy

C (1.086, 3.3877)

D (1.2385, 2.731)

Figure 6.12-4: Plot of the interaction energy versus R/a,2 for a cylinder of single lattice layer
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When R/a12 is between 0.9322 and 1.2385, the minimum potential energy occurs at
r = 0, and the minimum potential energy is then calculated from eq.(6.12-3). When
R/CT12 is greater than 1.2385, the minimum potential energy must be found by
minimizing eq.(6.12-l).

The interaction energy is the negative of the minimum potential energy for the
case of a nonpolar molecule and a cylindrical pore. For the purpose of computation,
this interaction energy is

2 V R

for R / a 1 2 < 1.2385.

For R / a12 > 1.2385, the following approximate solution may be used to relate

the interaction energy versus the pore radius

M,SLP

6.12.2 A Molecule and a Cylindrical Slab

The last section considers the case when the cylinder is made of one single
layer. In this section, we will consider a cylinder whose thickness is semi-infinite in
extent and all atoms of the cylinder will exert interaction with an atom or a molecule
confined in the pore space. For this case, the potential energy is given by the
following equation (Everett and Powl, 1976).

27

32V R J j ^ ( 9 + 2k)VR^ ^ R

(6.12-8)

where cck and (3k are defined in eqs (6.12-2), and e l s is defined in eq. (6.10-7).

Figure 6.12-5 shows plots of the reduced potential energy profile

iff (612'9)
versus the reduced pore radius (r/a,2). We see that the behaviour of these profiles is
very similar to that observed for the last case of cylinder formed by one single
lattice layer. The fine distinction between the two cases in the enhancement is the
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potential energy due to the interaction of the confined molecule with more atoms of

the cylindrical pore.

4

3

Reduced
potential l
energy 0

-l

-2

-3

-4
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 6.12-5: Plots of the reduced potential energy versus R/CT12 for a cylinder of semi-infinite
thickness

The central potential energy is obtained by setting r = 0 in eq. (6.12-8):

<Po,s(0) = 9TI fcl2

R 32 V R

This central potential energy has a minimum at the position

= 0.932

(6.12-9)

JL.filf,,
n

at which the reduced central potential energy is:

(6.12-10)

(6.12-11)

At a distance R/CT12 = 0.7916, the central potential energy is the same as the
minimum energy corresponding to the infinite slab, that is:

Hs J
= - 1 (6.12-12)

R/a12 =0.7916
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Finally, by taking the second derivative of eq.(6.12-9) with respect to R/a12, and
setting to zero we find

R
o1 2 6 4 ;

= 1.086 (6.12-13)

which is the value at which the two local minima of the potential distribution (eq.
6.12-8) coalesce. The reduced central potential energy at this pore radius is

<Po,s(Q) 39TI f 6 4 V / 2

; — 7 = — — O.UZJ
c * 1 A / I A ! 1fK )
E1,S

10V10V105J
(6.12-14)

A typical plot of the negative of the reduced minimum potential energy versus
R/a12 for the case of cylindrical slab is shown in Figure 6.12-6. When R/a12 is
between 0.7916 and 1.086, the minimum potential energy occurs at r = 0, and the
minimum potential energy is then calculated from eq.(6.12-9). When R/a12 is
greater than 1.086, the minimum potential energy must be found by minimizing
eq.(6.12-8).

Reduced
interaction
energy

3

2

1

• C (0.932,3.679)

\

>B (0/7916,1)

A (0.7762, 0)

0.5 1.0 1.5

Figure 6.12-6: Plot of the reduced interaction energy versus R/a12 for a cylinder of semi-infinite
thickness

6.12.3 Adsorption in a Cylindrical Pore

Using the approach of Hovarth and Kawazoe (1983) for the case of adsorption
in a slit shape pore, Saito and Foley (1991) solved for the case of cylindrical pore.
The following assumptions are made in the analysis.



Heterogeneous Adsorption Equilibria 329

1. Pore is a uniform cylinder of infinite extent
2. The wall is made up of a single layer of atoms
3. Only dispersive force is allowed for, and the interaction is only between the

adsorbent and adsorbate.

With these assumptions, the potential energy distribution is given in eq.(6.12-l).
The free energy of adsorption is taken as the average of the intermolecular potential.
The method of averaging depends on the way molecules move about in the
cylindrical pore. If this movement is restricted to that along the pore radius, we
have a line-averaged free energy, while if the movement is two dimensional, that is
molecules are free to move across the pore, we have an area-averaged free energy.

The average free energies for these two cases are:

R-a12

J<p(r)dr

and
R-c1

12
J2;ir(p(r)dr

4=̂
J27irdr

respectively. If the free energy of adsorption is assumed to be equal to the net
energy of interaction, we get:

(6.12-16)RgTln^j=NAVx((p)

where NAV is the Avogadro's number.
Substituting eqs.(6.12-15) into eq.(6.12-16), we obtain the following

expressions written in terms of system parameters:

P ] _ 3TCNAV N ,A , + N 2 A 2 ) f
R) { R

f, °n

and
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n Tinf P l - 3 7 I N A 21 (CTl2

32IX

(6.12-17)

for the line averaged and area averaged free energy, respectively.

6.12.3.1 Applications

Using the above equations, Saito and Foley (1991) applied them to the system

of adsorption of argon on surface oxide ion. The relevant parameters for this system

are given in the following table.

Parameter
Diameter
Polarizability
Magnetic susceptibility
Density

Symbol

a

X
N

Units
nm
cm3

cm3

molecules/cm2

Oxide ion
0.276
2.5x10"24

1.3 xlO-29

1.31xl015

Argon
0.336
1.63xlO"24

3.25x1029

8.52xlO14

The collision diameter a12 is the mean of the diameter of the adsorbate molecule and
the surface atom, that is:

a i 2 = o i ± ^ = 0276^0336 = 0 3 0 6

2 2

and the relevant working equations for argon adsorbate at 87 K are:

= 36.48
00 1

k = 0 ^ ^ "*" J

0.306Vk {21 (0306V0 0.306

and

R R

(6.12-18)

(6.12-19a)

(6.12-19b)

for the line averaged and area averaged approach. The radius R is in nm. The
effective diameter of the cylindrical pore is (2R-0.276) nm. Applications of eq.
(6.12-19) are detailed in Saito and Foley (1991).
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6.13 Adsorption-Condensation Theory of Sircar (1985)

We have presented in previous sections the analysis of the intermolecular
interaction, from which the interaction energy is derived in terms of the size of the
pore. The method is particularly applicable to micropore. In the next section we
shall consider a mesoporous solid where pore volume is distributed. The
mechanism of adsorption is the surface adsorption and when the gas pressure is
sufficiently high, capillary condensation will occur. The analysis presented below is
basically the synthesis of those adsorption mechanisms, and this was done by Sircar
and we will present the theory below.

6.13.1 Mesoporous Solid

6.13.1.1 Pore volume and surface area distribution

Consider a mesoporous solid whose the pore volume is described by the
following Gamma distribution function in terms of pore radius r:

dV Va p + 1

— = , , r p e - a r (6.13-1)
dr r (p + l)

where dV is the volume of pores per unit mass of sorbent having radii between r and
r + dr, p > 0 and a > 0 are parameters of the distribution, and V is the total pore
volume.

Given a differential pore volume, the differential surface area within the pores
having a radius between r and r + dr is

f4»-e-' «U3-2)

in which pores are assumed to be cylindrical in shape. The total surface area is then:

S = — V (6.13-3)
P

For a given pore volume distribution and a surface area distribution as given in
the above equations, we calculate the cumulative specific pore volume and the
cumulative specific surface area as shown below:

(6.13-4)
r(P + i) j
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S(r) = S 1- r(P,9)
r(p)

(6.13-5)

where r (p + l,0) is the incomplete gamma function, and the parameter 6

(dimensionless) is defined below:

e = ctr (6.13-6)

We have completed the presentation of the pore volume and surface area. Now
we will study how these volume and surface area can be used in the analysis of
adsorption. The volume is utilised in the capillary condensation while the surface
area is for the surface adsorption.

6.13.1.2 Capillary Condensation and Surface Adsorption

We first consider the capillary condensation. The proposed capillary
condensation theory of adsorption assumes that for a given adsorbate, pressure P
and temperature T, certain pores of the adsorbent (0 < r < r*) are filled with the

liquid adsorbate according to the Kelvin model of capillary condensation, while the
remainder of the pores (r* < r <oo) provides surfaces for physical adsorption, the
extent of which depends on P and T (Figure 6.13-1).

r<r* r = r*

Capillary condensation

V
v
r>r*

Surface adsorption

Figure 6.13-1: Capillary condensation of mesopores
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According to the Kelvin's capillary condensation theory, the vapour pressure
depressed by the curvature of a fluid residing in a cylindrical pore is:

P ^ 2avM cos0 C
ln| ^-1 = - ~ ™ 7 = — ^ (6.13-7)

where Po is the vapour pressure of a flat liquid surface, a is the surface tension, 0 is
the contact angle, vM is the liquid molar volume and rK* is the effective free radius
of the pore which is filled at the relative pressure (P/Po), which is equal to the pore
radius minus the thickness of the adsorbed layer:

rK* = r * - t * (6.13-8)

where t* is the average thickness of the physically adsorbed layer on the surface of
the critical pore of radius r*.

The surface adsorption layer thickness is calculated as follows. It is assumed
that the extent of physical adsorption on the pore surfaces is given by the following
Langmuir-like model

bx

lTbx
C s = C s m T - r - (6.13-9a)

where x is the reduced pressure defined as:

x = P/P0 (6.13-9b)

Here Cs (mole/cm2) is the amount of vapours adsorbed per unit surface area, Csm

(mole/cm2) is the monolayer adsorption capacity, b represent the vapour-solid
adsorption interaction parameter, defined as follows:

b = b,, exp[(Q - L)/RgT] (6.13-10)

where Q is the isosteric heat of adsorption and L is the heat of vaporization. The
appearance of the heat of liquefaction in eq. (6.13-10) is due to the usage of the
reduced pressure scaled against the vapour pressure.

If we assume that the physically adsorbed vapour has a liquid like density, then
the average thickness t* is given by

t* = C svM , (6.13-11)

By combining eqs. (6.13-7), (6.13-8) and (6.13-11), we obtain a relation between
the critical pore radius with respect to the reduced pressure
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(6.13-12)

Knowing this critical radius, we then can calculate the pore filling by capillary
condensation in pores having radii less than r*, while for pores having radii greater
than r* the surface adsorption is the sole mechanism of adsorption.

The volume of pore less than r* is filled with adsorbed species, that is the
amount adsorbed in those pores is:

(6.13-13)
M

where V(r*) is the cumulative volume of pores having radii between 0 and r*.
The surface area of pores having radii greater than r* is covered with physically

sorbed species, that is:

[ ] J | (6.13-14)

Thus the total amount adsorbed is the sum of the above two concentrations:

C =Z(£!l + [s-S(r*)]Csm - ^ - (6.13-15)
v L J 1 + bx

M

Written the above equation explicitly in terms of the structural parameters, we have
the following needed adsorption isotherm equation:

^Lr(pny)
^ sm M ; r(p) i + bx r ( P +

where

C ŝ = V/v M ; e*=ccr* (6.13-16b)

Here C ŝ is the maximum capacity when all pores are filled with liquid adsorbate.
Eq. (6.13-16) represents an adsorption isotherm for vapours based on the

capillary condensation theory of adsorption. This new isotherm has the correct
limits at low pressure as well as when pressure approaches the vapour pressure.

• When x-»0, C^ - • (CsmbS)x (6.13-17a)

• Whenx->1, C^ -> C^s (6.13-17b)
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6.13.1.3 Model Parameters

The isotherm model equation has five parameters, and they are the monolayer
surface capacity Csm, the interaction affinity constant b, the capillary condensation
parameter C, and the pore structural parameters a and p. If the total pore volume
and the total surface area are known, the parameters a and p are related to each
other according to eq. (6.13-3).

• The monolayer surface capacity Csm can be calculated by assuming that the
adsorbed molecules have the same packing as the molecules of the
condensed phase in their plane of closest packing, that is:

Csm = 1.085 x 10"8 vM
2/3 (mole/cm2) (6.13-18)

where the units of the liquid molar volume are cnrVmole.

• The parameter bS can be estimated from slope of Henry law region (eq.
6.13-17a)

• The capillary condensation parameter C can be estimated from the Kelvin
equation, assuming the contact angle between the liquid and the pore wall
is zero

C = 2 a v M / R g T (6.13-19)

• The total pore volume can be calculated from the maximum adsorption
capacity, that is:

V = C,svM (6.13-20)

This now leaves only two adjustable parameters left in the optimisation procedure,

and these two parameters are either the set of a and S or the set of p and S,

since a and p are related to each other, according to eq. (6.13-3).

6.13.2 Micropore-Mesoporous solids (Activated carbon type)

The last section presents the analysis of the capillary condensation and surface
adsorption in mesoporous solids. This analysis can be easily extended to the class
of microporous solids, where micropores exist. The pore size distribution of this
class of solid contains micropores (less than 20A) and mesopores and macropores
(greater than 20A). In micropore, the micropore filling is the main adsorption
mechanism. The mechanisms for adsorption in meso- and macropores are those
discussed in the last section. Readers are referred to Sircar (1991) for further
exposition of the analysis of this microporous solid class.
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6.14 Conclusion

This chapter has addressed a number of approaches to deal with heterogeneous
solids. The energy distribution is general but the choice of the energy distribution is
sometimes questionable in the sense whether it does reflect the true distribution for
the interaction between the solid and the adsorbate concerned. Nevertheless, it does
provide a convenient way of correlating data of many practical solids. For solids
such as activated carbon and non-polar adsorbates, the approach using the Lennard-
Jones potential theory is useful to relate the adsorption affinity to the size of the
micropore, from which the overall adsorption isotherm can be derived. This
approach has been used successfully on many systems such as paraffins on activated
carbon. Research in the area is very fruitful and students are encouraged to pursue
this area and develop their own thoughts for better ways of relating the adsorption
affinity in terms of adsorbate properties and adsorbent's characteristics, such as their
structural properties and surface chemistry.



7
Fundamentals of Diffusion and

Adsorption in Porous Media

7.1 Introduction

In the last five chapters (Chapters 2 to 6), you have learnt about the various
aspects of adsorption equilibria. This is the foremost information that you must
have to gain an understanding of an adsorption system. To properly design an
adsorber, however, you need to know additional information beside the adsorption
equilibria. That necessary information is the adsorption kinetics. The reason for
this is simply that most practical solids used in industries are porous and the overall
adsorption rate is limited by the ability of adsorbate molecules to diffuse into the
particle interior. Diffusion processes in porous media, such as adsorbents, are
reasonably understood. This chapter and the next few chapters will address the
process of diffusion and its influence on the overall adsorption rate.

Transport of gases and liquids in capillaries and porous media can be found in
numerous applications, such as capillary rise, flow of gases into adsorbents, flow of
gases into porous catalysts, flow of underground water, just a few examples of
significant importance in chemical engineering. Before we deal with a porous
medium, it is important to consider a simpler medium, a straight cylindrical
capillary, whereby several types of flow can be more readily identified. These are:

• Free molecular diffusion (Knudsen): This type of diffusion is sometimes called
molecular streaming. This flow is induced by collision of gaseous molecules
with the pore wall of the capillary (that is when the mean free path is greater
than the capillary diameter). Because of the collision of gaseous molecules
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with the wall of the capillary being the driving force for the Knudsen diffusion,
transport of molecules of different type are independent of each other.

• Viscous flow (streamline flow): This is also called the Poiseuille flow. This
flow is driven by a total pressure gradient, and as a result the fluid mixture
moves through the capillary without separation because all species move at the
same speed.

• Continuum diffusion: This flow is resulting from the collisions among
molecules of different type, not of the same type because there is no net
momentum change due to the collisions among molecules of the same type.
This situation happens when the mean free path is much less than the diameter
of the capillary.

• Surface diffusion: Different molecules have different mobility on the surface of
the capillary due to their different extent of interaction with the surface. Hence
a binary mixture can be separated using this type of flow, like the Knudsen
diffusion.

The pore structure of a real solid is so complex that one has to model (idealise) the
structure so that it can be represented mathematically. The model has to be simple
so that the mathematics of diffusion and adsorption is tractable, but at the same time
is reasonably complex enough to bring out the features of the solid and their
influence on diffusion and adsorption. One of the simplest ways is to assume that
the pore structure is a bundle of parallel capillaries running through the medium in
the direction of the flow. Let us assume that all capillaries have the same length, Lc.
Remember that this length is not the same as the length of the medium, L, because
of the random orientation of the capillary. As a result the capillary length is
generally longer than the medium thickness. To account for this, we introduce a
tortuosity, defined as follows (Epstein, 1989):

T = ^ - > 1 (7.1-1)

Thus by definition, the tortuosity, x, is greater than unity.

7.1.1 Historical Development

Due to the significant importance of this topic, it was researched by many
scientists and engineers for more than a century. The following table (Table 7.1-1)
shows the historical development of major discoveries relating to mass transfer and
related areas (Kaviany, 1991; Cunningham and Williams, 1980).
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Table 7.1-

Year

1827

1829

1831

1839

1840

1845

1846

1855

1856

1859

1860

1870

1871

1875

1878

1885

1904

1905

1909

1916

1920

1927

1937

1939

1952

1953

1955

1956

1961

1968

1977

1990

1 Historical development of diffusion

Authors

Navier

Graham

Graham

Hagen

Poiseuille

Stokes

Graham

Fick

Darcy

Maxwell

Maxwell

Kelvin

Stefan

Knudt and Warburg

Gibbs

Boltzmann

Buckingham

Einstein, Smoluchowski

Knudsen

Langmuir

Dayne

Kozeny

Carman

Thiele

Ergun

Taylor

Hoogschagen

Aris

Evans,Watson,Mason

Luikov

Jackson

Krishna

Achievement

Momentum equation

Mass diffusion in gas

Diffusion law

Linear flow in pipe

Linear flow in pipe

Momentum equation

Effusion law

Law of mass transport

Empirical flow equation

Distribution of velocity in gases

Binary gas diffusivity & model in porous media

Capillary condensation theory

Transport equations

Slip flow between Knudsen and viscous flow

Thermodynamics treatment of interface

General transport equation

Diffusion cell

Random walk diffusion model

Flow of rarified gases and observation of slip flow

Theory of monolayer adsorption

Time lag method

Permeability equation

Permeability equation

Theory of diffusion and reaction in porous solids

Inertia effect to the Darcy equation

Hydrodynamics dispersion in tubes

Rediscovery of Graham law of diffusion

Hydrodynamics dispersion in tubes

Constitutive equations for diffusion in porous media

Theories of heat and mass transfer

Stefan-Maxwell equations for reaction problems

Postulation of equation for surface diffusion
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7.2 Devices used to Measure Diffusion in Porous Solids

To characterize diffusion in porous media, many experimental devices have
been proposed and used successfully to determine transport diffusion coefficients.
Some of these devices which are of historical significance are discussed here.

7.2.1 Graham's System

In the Graham experiment, a tube containing gas B is immersed in a water bath
with the porous media mounted at the upper end of the tube (Figure 7.2-1).

i Porous particle

Figure 7.2-1: First Graham's system

Gas B diffuses out of the tube and the bulk gas A in the surrounding diffuses
into the tube. Because the net transport of gas is not zero (that is the molar rate of A
entering the tube is not the same as that of B exiting the tube), the water level inside
the tube will either rise or fall. If gas B is heavier, the water level will fall, and if the
gas B is lighter the level will rise. Take the latter case, because gas B is lighter, its
molar transport out of the tube will be faster than the molar rate of A coming into
the tube; hence the pressure in the tube will drop below the atmospheric, causing a
rise in the water level. To maintain the constant pressure in the tube during the
course of the experiment, Graham adjusted the tube so that the water level inside the
tube is always the same as that of the water bath. He observed that the ratio of the
two molar fluxes is equal to the inverse of the square root of the ratio of molecular
weights of the two diffusing gases, that is

" A

*B

(7.2-1)

The minus sign in eq. (7.2-1) is because A and B are diffusing in the opposite
direction. Eq. (7.2-1) is known as the Graham's law of diffusion for open systems.
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7.2.2 Hoogschagen 's System

Unaware of the experiments of Graham, Hoogschagen (1953), more than a
century later!, developed an experiment to rediscover the square root of molecular
weight dependence. His experimental set up is shown in Figure (7.2-2).

Heated copper bed

Porous particle

Figure 7.2-2: Hoogschagen schematic diagram

This set up was designed to perform steady state experiments. Binary diffusion
of oxygen and other gases, such as nitrogen, helium and carbon dioxide were used.
Oxygen is supplied at the bottom of the porous plug, and diffuses upward through
the plug in exchange for the other gas inside the loop. Oxygen molecules entering
the loop will be taken up by the copper bed maintained at 480 °C, at which
temperature copper will react with oxygen to form solid copper oxides, removing
oxygen from the atmosphere. The circulation of gas within the loop is caused by the
thermal convection due to the heat generated by the copper bed. The pressure inside
the loop is maintained atmospheric by raising or lowering the burette connected to
the loop. The flux of the outgoing gas from the loop is calculated from the change
in the liquid level of the burette, and the incoming oxygen flux is measured by
weighing the copper before and after the experiment. Except for oxygen-carbon
dioxide/ activated carbon system where the surface diffusion is possible, all other
systems studied by Hoogschagen follow the relation given in eq. (7.2-1), confirming
the observation made by Graham more than a century ago.

The porous plug used by Hoogschagen was made by compressing granules in
the size range of 1 to 8 microns, which would give pores much larger than the mean
free path at atmospheric pressure. Only a few experiments were carried out by
Hoogschagen. Further experimental evidence was provided by Wicke and Hugo
(1961), Wakao and Smith (1962) and Remick and Geankoplis (1973, 1974). Knaff
and Schlunder later (1985) carried out experiments to further confirm the Graham's
law up to a pore size of 2 microns.
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7.2.3 Graham and Loschmidt 's Systems

In this experiment of Graham and Loschmidt, the two bulbs are joined together
by a tube containing either a porous medium or a capillary (Figure 7.2-3). The left
bulb contains gas A, while the right bulb contains gas B, having the same pressure
as that of gas A.

Figure 7.2-3: Graham and Loschmidt's setup 1

The flow of gas A will move to the right while gas B diffuses to the left. This
type of set up has a pressure gradient build-up in the system because the counter-
current flows of A and B are not equimolar, that is the molar flow of A to the right
is not the same as that of B to the left. Let us take an example where A is the
heavier gas, the left bulb pressure will increase while the right bulb pressure will
decrease because the diffusion rate of A through the plug or capillary is slower than
the diffusion rate of B. The resulting pressure gradient will then cause a viscous
flow from the left to the right retarding the rate of molar flux of B to the left. This
induced viscous flow will complicate the study of diffusion phenomena.

To overcome this pressure problem, they later developed another system shown
in Figure (7.2-4) where the two bulbs are connected to each other through a small
tube containing a drop of oil acting as a "frictionless" piston, that is it will move if
there is a small pressure gradient across the two faces of the oil droplet. Take the
last case where gas B is the lighter gas; hence the molar diffusion flux of A is less
than the flux of B, leading the increase in pressure in the left bulb. Due to this
increase in pressure in the left bulb, the oil droplet moves to the right, resulting in a
balance in the pressures of the bulbs. The rate of movement of this oil piston
provides the net flux of A and B through the porous plug.

1
A

oil droplet

B

Figure 7.2-4: Graham and Loschmidt's setup 2
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7.2.4 Stefan Tube

A simple device used by Stefan (Cunningham and Williams, 1980) to study the
molecular diffusion is shown in Figure 7.2-5.

gas A

liquid B

Figure 7.2-5: Stefan tube

This device is simply a tube partially filled with liquid B. This liquid B
evaporates and the evaporating molecules diffuse through A up the tube. If the gas
A is neither soluble in B nor reacts with B, the flux of A relative to a fixed frame of
coordinate will be zero, that is the diffusive flux of A down the tube (because of its
concentration gradient) is balanced by its convective flux up the tube caused by the
transport of B. The flux of B is given by (Bird et al., 1960):

(7.2-2)
LRgT 1-PB, /PJ

where pB2 is the partial pressure of B at the top of the tube (usually zero if B is
removed sufficiently fast by a moving stream of A across the tube), and pB1 is the
partial pressure of B at the liquid gas interface, which is simply the vapor pressure
of B. The variable P is the total pressure and L is the length of the gas space above
the liquid surface to the top of the tube. Thus by measuring this flux by either
analysing the flowing gas A for the B concentration or measuring the drop in liquid
B level, eq. (7.2-2) can be readily used to calculate the binary diffusivity. This
example of the Stefan tube is a semi-open system.

The semi-open system of Stefan has been used to calculate the binary
diffusivity. Lee and Wilke (1954) criticised this method. However, with the
exception of solvents of high volatility, the Stefan method is one of the convenient
methods for calculating the binary diffusivity.
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7.2.5 Diffusion Cell

In the diffusion cell configuration, introduced by Buckingham in 1904 and later
exploited by Wicke (1940) and Wicke and Kallanbach (1941), gases A and B
diffuse across the porous medium as shown in Figure 7.2-6.

A+B B+A

Porous medium

A B

Figure 7.2-6: Wicke-Kallanbach's diffusion cell

In the left side, gas A flows in the direction as shown and picks up B due to the
diffusion of B from the other side of the porous medium. Similarly, B at the other
side will pick up A from its diffusion through the porous medium. The flow rates of
the two sides can be carefully adjusted to give zero pressure gradient across the
media (that is the total pressure is uniform throughout the porous medium). The
concentrations of gases A and B are analysed by detectors, such as the thermal
conductivity cell, and then the diffusive fluxes of A and B can be calculated. This is
the steady state method. Recently, this method was extended to allow for transient
operation such as a step change or square pulse in one chamber and the response is
monitored in the other chamber. With this transient operation, the contribution from
the dead end pore can be studied. This contribution is not seen by the steady state
method, but its advantage is the ease of operation under isothermal operations.
Detailed analysis of diffusion cell under steady state and transient conditions is
provided in Chapter 13.

7.3 Modes of Transport

As we have discussed in the introduction, there are basically four modes of
transport of molecules inside a porous medium. They are free molecular diffusion
(Knudsen), viscous flow, continuum diffusion and surface diffusion.
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Free molecule (Knudsen): This mode of diffusion is due to Knudsen, who
observed the transport of molecules as colliding and bouncing of molecules
back from the wall of the porous medium (Figure 7.3-1). The driving force for
this transport is the concentration gradient and the parameter characterizing this
transport is the so-called Knudsen diffusivity DK i for the species i or the
Knudsen parameter KQ (will be defined in Section 7.4). The subscript K
denotes for Knudsen. The Knudsen flux depends on the molecular weight of
the diffusing species. Molecules with smaller molecular weight travel faster
than the ones with higher molecular weight under the same concentration
gradient. Thus, separation of mixtures is possible with this mechanism.

Figure 7.3-1: Knudsen diffusion mechanism

Viscous flow: This mode of transport is due to a total pressure gradient of a
continuum fluid mixture (Figure 7.3-2). Hence, there is no separation of
species due to the viscous flow. The driving force is the total pressure gradient
and the parameter characterizing the transport is the mixture viscosity, \i, and
the viscous flow parameter, B, which is a function of solid properties only. The
flow inside the pore is assumed laminar, hence the velocity profile is parabolic
in shape.

Figure 7.3-2: Viscous flow mechanism

Continuum diffusion: The third mode of transport is the continuum diffusion,
where the molecule-molecule collision is dominant over the collisions between
molecules and the wall (Figure 7.3-3). In this mode of transport, different
species move relative to each other. The parameter characterising this relative
motion between species of different type is the binary diffusion coefficient, D^,
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where the subscripts i and j denote the species i and j , respectively. Because of
the dependence of this parameter on the collision between molecules, the binary
diffusivity is a function of the total pressure and temperature.

Figure 7.3-3: Continuum diffusion mechanism

• Surface diffusion: This mode of transport is the most complicated process
among the four mechanisms. It has been the current subject of extensive
research to better understand this type of diffusion. We can view the surface as
a flat surface with specific sites, at which adsorbed molecules are located.
Assuming the energy depth of these sites to be larger than the thermal energy of
a molecule (kT, where k is the Boltzmann constant), molecules at each site must
attain enough energy to move from one site to the next vacant site (Figure 7.3-
4). This is the simple picture of the hopping mechanism, commonly used in the
literature to describe the surface transport. Another mechanism called the
hydrodynamics model was proposed by Gilliland et al. (1958), but the hopping
model is more appropriate for many gas phase adsorption systems, where
adsorption usually occurs below the capillary condensation region.

Figure 7.3-4: Surface diffusion mechanism

The three modes of transport, Knudsen, viscous, and continuum diffusion were
described by Graham in 1863. A combination of viscous flow and Knudsen flow
leads to a phenomenon called viscous slip. This was observed experimentally by
Knudt and Warburg (1875). Another combination between viscous flow and
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continuum diffusion leads to diffusive slip phenomenon (Kramers and Kistemaker,
1943).

When we deal with diffusion through a porous medium, we need to describe the
medium. How do we describe the medium mathematically? The simplest picture of
accounting for the solid structure is absorbing all structural properties into transport
coefficients or into constants of proportionality, such as the tortuosity factor.
Another approach is to model fundamentally the solid structure and then incorporate
it into the diffusion model. This approach is complex, and is not a subject of this
book. Approaches such as the Monte-Carlo simulation (Abbasi et al., 1983), dusty
gas model (Evans et al., 1961), effective medium theory (Burganos and Sotirchos,
1987; Sotirchos and Burganos, 1988; Kapoor and Yang, 1990), periodic capillary
model (Gavalas and Kim, 1981), multiscale approach (Chang, 1983), percolation
model (Moharty et al., 1982; Reyes and Jensen, 1985, 1986), averaging theorem
(Ochoa-Tapia et al., 1993), random structure model (Pismen, 1974), random
capillary structure (Tomakadis and Sotirchos, 1993; Deepak and Bhatia, 1994) and
stochastic model (Bhatia, 1986, 1988) have been proposed in the literature.

In the simplest approach of lumping structure characteristics into transport
coefficients, the three parameters characterising the medium for the three transport
mechanisms (bulk, Knudsen, viscous) are:

• The Knudsen flow parameter, KQ
• The viscous flow parameter, Bo

• The porosity and tortuosity factor, e/q, for continuum diffusion

For a long circular capillary of radius r, these three structural parameters take the
following form:

K o = | (7.3-la)

B 0 = V (7.3-lb)
o

- = 1 (7.3-lc)
q

We now discuss these transport mechanisms one by one, and then discuss the
transport due to the combinations of these mechanisms. First let us address the
Knudsen diffusion.
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7.4 Knudsen Diffusion

This mode of transport is due to Knudsen in the early 1900 (Knudsen, 1950).
In this mode the mean free path is much larger than the diameter of the channel in
which the diffusing molecules reside. This normally occurs at very low pressure
and channels of small size, usually of order of 10 run to 100 nm. When this
happens, the molecules bounce from wall to wall, rather than colliding with
themselves. The parameter which defines the conditions for this mode of transport
is the Knudsen number (Levenspiel, 1984). This number is defined as:

^ mean free path X

diameter of channel d

Depending on the magnitude of this parameter, we have three different regimes:

1. When this number is much less than unity, we have the usual viscous flow,
where the Poiseuille flow is applicable. In this viscous flow, the Newton law of
viscosity holds (that is the shear stress is proportional to the velocity gradient,
and the proportionality constant is the viscosity), and the velocity at the wall is
zero.

2. When it is of the order of unity, the velocity at the wall is not zero, that is it is
not negligible compared to the overall velocity. The reason for the non-zero
velocity at the wall is due to the fact of molecules bouncing to and from the
wall.

3. When this number is much larger than unity, we have the molecular flow
induced by the bouncing of the molecules to and from the wall (Knudsen flow).
Since the collision among molecules is negligible, the concept of viscosity is no
longer applicable in molecular flow.

The mean free path is a function of pressure. It is obtained from the following
equation (Mulder, 1991):

(7.4-2)

where d is the diameter of the molecule, and P is the total pressure. We note from
the above equation that as the pressure decreases, the mean free path increases. The
following table shows the magnitude of the mean free path for a few values of total
pressure. At 760 Torr, the mean free path is 68 nm, thus pores need to be less than
50 nm for the Knudsen mechanism to operate. Many commercial porous solids
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have pores of dimension in the order of 50 nm; therefore, the Knudsen diffusion
mechanism is usually the dominant mechanism.

Table 7.4-1 Mean free path magnitude versus the total pressure

Pressure, P (Torr) Mean free path, X (m)
760
1
0.1

6.8 x 108 (0.068 micron)
5.2 x lO5 (52 micron)
5.2 x 1Q-4 (520 micron)

The first studies of Knudsen flow is restricted to small holes on a very thin plate
as shown in Figure 7.4-1, with some gas density on the left hand side of the plate
and vacuum on the other side.

vacuum

Concentration n

Figure 7.4-1: Knudsen diffusion through a hole

The choice of small holes in a thin plate assures that molecules do not collide
with each other during their transport through the hole. Thus, the Knudsen transport
is due to the collision of molecules with the pore wall (periphery of the hole), and as
a result the movement of different molecules are independent of each other. The
flux of species from one side having the molecular density n and vacuum at the
other side is given by the following equation:

JK = wnv T
f molecules]

|_cm2 - s e c j
(7.4-3)

where w is the probability of a molecule that enters the hole and gets all the way to
the other side, n is the molecule density (molecule/m3) and vT is the mean thermal
molecular speed (m/sec), which is given by the following equation:

vT = (7.4-4)
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Here kB is the Boltzmann constant (1.38 x 10'23 Joule/K/molecule), T is in K, and m
is the molecular mass. The thermal molecular speed increases with temperature and
decreases with molecular mass. To have a feel of how fast a molecule moves, we
take the case of helium at ambient temperature (T = 298 K), the mean thermal
molecular speed is 1250 m/s, showing the very high random thermal velocity of
molecules.

The probability factor w in eq. (7.4-3) depends on the geometry of the system.
This will be discussed later.

Eq. (7.4-3) is the flux equation if the molecular concentration on one side is n
and the other side is zero (vacuum). If the molecule concentration on one side is nx

and the other side is n2, the flux equation is simply the sum of the following two flux
equations:

JK1 =wn!VT (7.4-5a)

JK2 = - w n2vT (7.4-5b)

The negative sign of eq.(7.4-5b) indicates the direction of transport from right to
left. Thus, the net flux from left to right is:

, x J8R T
JK =w(n1-n2)vT =wJ—i-An (7.4-6)

V 7iM

Eq. (7.4-6) defines the flux, written in terms of measurable quantities and the
probability w. We now consider two cases: the thin orifice and the capillary.

7.4.1 Thin Orifice

If the system is a very thin orifice plate, the probability has been found as 1/4
(Graham, 1826; Knudsen, 1909), that is a quarter of molecules striking the orifice
per unit area of the orifice will get through to the other side of the plate. The flux of
molecules through the orifice is:

(7.4-7)

We note that the flux equation is independent of the size as well as the thickness of
the orifice! The only requirement is that the size of the orifice is smaller than the
mean free path of the diffusing gas. Let us show the applicability of the above flux
equation in the following two examples.
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H Ma
isfer is
i Mass transfer rate through an orifice

The mass transfer is the product of the flux times the orifice cross-sectional
area. Thus it is proportional to the square of the orifice radius and to the
difference in concentration. Let us take the case of helium diffusing
through an orifice of diameter 25 micron and the pressure on one side is 1
Torr and that on the other side is at vacuum condition. The mass transfer
through the orifice at ambient temperature is:

)"9 ^ = 177 x 1015 m ° l e C u l e SM = 2.93 x I*)"9 ^ = 1.77 x 10
sec sec

Thermal diffusion across an orifice
Let us consider two vessels connected together by an orifice and the

molecular densities in those vessels to be nx and n2, respectively. The
corresponding temperatures are T, and T2. The condition of this closed
system is that the net flow of molecule between these two vessels must be
zero, that is

Simplifying this equation, we get

n, =—— and n, =——
RgT RgT

But

we have:

Even when the pressures of the two vessels are the same, there is a net flow
from the cold vessel to the hot vessel. This phenomenon is called the
thermal diffusion.
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The geometry of the plate does not bear much relevance to real porous solid.
Thus, the above equation is not of much use in diffusion of adsorption systems. To
this end, we will consider the Knudsen diffusion through a long cylindrical capillary
in the next section.

7.4.2 Cylindrical Capillary

For a capillary tube, the probability that a molecule can find its way to the other
end of the capillary is (Kiesling et al., 1978; Clausing, 1932):

w = - 7 r- (7.4-8)
4 ( l + 3L/8r) V '

where r is the capillary radius and L is the length. Here, it is noted that the capillary
size as well as the length of the capillary affect the probability of entry.

For a very short capillary (i.e. orifice, L « 20r), the probability becomes 1/4 as
we have mentioned in Section 7.4.1.

For a long straight circular capillary (that is r « L), the above equation for the
probability factor w is reduced to (Knudsen, 1909):

Hence, the flux equation for a very long capillary (L » r) is:

(7.4-9b)

The form of the above flux equation can be derived from the simple momentum
balance of molecules in a capillary. We show this via the following example.

:;;;i-;l|4|l:l Derivation of the Knudsen equation from momentum
balance

Let n be the molecular density in a capillary. The rate of incidence of
molecules per unit inner surface area is

1
- n v T

where vT is the thermal velocity. If the capillary has a perimeter of P and a
length of L, the number of molecule collision at a surface area of PL is
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| nv T . (PL)
4

or a mass rate arriving at the capillary surface is

lnvT (PL)m
4

where m is the molecular mass.
If v is the velocity of the species in the axial direction of the capillary,

the rate of axial momentum by the collision is:

—nvT(PL)m.v

If the surface is assumed to be a diffusive reflector (molecules leaving
the wall uniformly in all directions regardless of the directional distribution
with which they hit the surface) that is the mean axial momentum of the
reflected molecules is zero, then the net change of the rate of axial
momentum is

(net change of rate of momentum) = — nvT(PL)mv.

This net change in the rate of momentum must be equal to the net force
acting on the control volume. This net force is

-nvT(PL)mv = - A L - ^
4 dz

Simplifying the above two equations we get the molecular flux

For a cylindrical capillary, the proportionality constant of the above
equation is:

Arc _ (7cr2)7i _ n r

ZP~ ~ 2(27ir) ~ ~4~

Hence the molecular flux is finally

/8kBT dn
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Comparing the above equation with the Knudsen flux equation given
in eq. (7.4-9b), we see that they are identical in form except the numerical
values: (n/4 « 0.78) in the above equation versus (2/3 « 0.67) in eq. (7.4-
9b). Thus, the Knudsen flux in a capillary can be derived from a simple
argument of momentum balance.

If we define the Knudsen diffusivity as:

OF
(7.4-10)

then the Knudsen equation (7.4-9b) can be written in terms of this Knudsen
diffusivity and the concentration gradient (instead of the integral concentration
difference):

dz RgT dz
(7.4-11)

We note that the Knudsen diffusivity is proportional to the pore radius
(capillary property), to the square root of temperature and to the inverse of the
square root of the molecular weight (diffusing molecule property). It is independent
of the total pressure and independent of other diffusing species.

The Knudsen diffusivity can be written in terms of the operating conditions and
the capillary parameter, KQ, as follows:

L J8R T
(7.4-12)

where Ko is called the Knudsen flow parameter. The Knudsen flow through a
complex porous medium is characterised by this parameter. It depends only on the
geometry of the hole and the gas-surface scattering law (Mason and Malinauskas,
1983). Thus, it is a function of a given porous solid medium. For a long capillary
of radius r, this Knudsen flow parameter is r/2 (comparing eq. 7.4-10 and 7.4-12).
For a complex solid, this parameter K^ is treated as the fitting parameter.

The following table (Table 7.4-2) presents two working formulas used to
calculate the Knudsen diffusivity (Smith, 1970).

Table 7.4-2: Equations for the calculation of Knudsen diffusivity

Equation

DK =9700rA/T/M
DK = 3.068 r-JT/M

D (units)
crrr/sec
m /̂sec

r (units)

cm

m

T (units)

K
K

M (units)

g/mole

kg/mole
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The Knudsen flux equations, written in terms of concentration or pressure or
mole fraction, are shown in the following table (Table 7.4-3). There is no
interaction between species diffusing according to the Knudsen mechanism, owing
to the fact that the mean free path is larger than the capillary dimension.

Table 7.4-3: Knudsen flux equation for capillary

Mole fraction gradient Partial pressure gradient Concentration gradient
p dx: 1 dp. dC.

N K i = - D K i '- N K i = - D K i — ^ N K i = - D }
K j K j R T d K j K j R T d K JR T dz K j K j R T dz K'J KlJ dz

At steady state, the Knudsen flux through a capillary is constant. Integrating
eq. (7.4-11) with constant conditions at two ends of the capillary, we get:

D K AP 8 r AP

RgT L

Thus for a given pressure gradient across the capillary, the steady state flux under
the Knudsen diffusion mechanism is proportional to the pore radius and is inversely
proportional to the molecular weight. Viscosity does not affect the Knudsen flow as
it does not have any meaning at very low pressures when continuum is no longer
valid.

The proportionality constant in eq. (7.4-13) is the permeability

B *
3

Experimentally we can check whether the flow is under the Knudsen flow regime by
calculating BvMT for various gases and temperatures. If it does not vary with
temperature or the type of gas, the mechanism is due to the Knudsen diffusion.
Adzumi (1937) studied the flow of hydrogen, acetylene and propylene through a
glass capillary of radius and length of 0.0121 and 8.7 cm, respectively, and found
that at low pressures (less than 0.03 torr) the permeability is independent of the
mean pressure.

It is worthwhile at this point to remind the reader that the above conclusion for
Knudsen diffusion is valid as long as the pressure is low or the capillary size is very
small. When the capillary size is larger or the pressure is higher, the viscous flow
will become important and the flow will be resulted due to the combination of the
Knudsen and viscous flow mechanisms. This will be discussed in Sections 7.5 and
7.6.
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Steady state diffusion of methane through a capillary
To have a feel about the magnitude of the Knudsen diffusivity and the

flux, we take an example of methane gas (M = 1 6 g/mole) diffusing
through a capillary having the following properties:

r = 20 A; L = 1 cm

The operating conditions are P = 0.1 arm, and T = 25 °C, and the mole
fractions at two ends of the capillary are

x0 = 1 and xL = 0

The Knudsen diffusivity is calculated using the equation in Table 7.4-2:
— i

T I 9QR
DK = 9700 r /— = 9700 (20 x 10~*)J -^- = 8.37 x 10"3 cm2 / sec

VM V 16

The steady state Knudsen flux then can be readily calculated using eq. (7.4-
13) as

_ D K AP
L R J

8.37 x 10"3(cm2 / sec) 0.1 arm
J K = l(cm) (82.057 arm-cm3 / mole/ K) x (273 + 25)K

moles
=3.42x10"

cm sec

To have a better feel of this magnitude, we convert this molar flux to
volume of methane gas at STP per unit hour, we get

. 3.42 x 10-(i=£!Ll 2 2 4 0 ( { 2 ^ ) 3 6 0 0 ^ 1 276 «"' fTPl x 22,40({2^) x 3 ,600^1 - 2.76 f
cm sec/ V mole ) vhour/ cm hr

Thus, methane gas diffuses through such capillary at a rate of about 3 cc of
gas at standard condition per unit hour per unit square cm of the capillary.

We have addressed in the example 7.4-4 the steady state flux due to the
Knudsen diffusion mechanism, but the question which is of significant interest is
how long does it take for the system to response from some initial conditions to the
final steady state behaviour. This is important to understand the "pure" diffusion
time in a capillary. By "pure" diffusion time, we mean the diffusion time in the
absence of adsorption. In the presence of adsorption, the time to approach
equilibrium from some initial state is longer than the pure diffusion time due to the
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mass taken up by the surface. We shall discuss in more details about the adsorption
time in Chapter 9.

7.4.2.1 Transient Knudsen Flow in a Capillary

Let us consider a case where a capillary is connected between two reservoirs
with their respective partial pressures of p0 and pL. The end at z = L is initially
closed with a valve. At time t=0+, the valve is opened and the diffusion process
starts. We would like to determine the time it takes to achieve 95% of the steady
state flux.

The transient mass balance equation inside the capillary is obtained by setting a
shell balance in the capillary:

1 dp _ 5NK

RgT at dz
(7.4-14)

Substituting the constitutive flux equation in Table 7.4-3 into the above mass
balance equation, we then have the following equation describing the distribution of
partial pressure in the capillary:

— = D K ^ T (7.4-15a)
dt dz

subject to the following boundary conditions:

z = 0; p = p0 (7.4-15b)

z=L; p = pL (7.4-15c)

The initial condition in the capillary is assumed to be the same as the
concentration at x=0, that is:

t = 0; p = P o (7.4-15d)

The mass balance equation (7.4-15a) subject to the initial and boundary
conditions (7.4-15b to d) has the following solution for the pressure as a function of
time as well as position along the capillary (obtained by Laplace transform or
separation of variables method)

f ° * P K 0 (? 4 .16)

\ L2 )P L - P O L i t f ; n I L ) \ L

Knowing the pressure distribution in the capillary, the fluxes at z = 0 and z = L
can be evaluated from:
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N0(t) = - D K
1 dpi

RgT dz\0

R g T5z

(7.4-17a)

(7.4-17b)

Substitute the pressure distribution (eq. 7.4-16) into the above flux equations, we
obtain the fluxes at the entrance and exit:

N0(t) =

NL(t) =

1 ( P O - P L )

RgT

1 ( P O - P L )

RgT L

l-2]T(-cos(n7t))exp -
n27i2DKt

exp -
n27i2DKt

(7.4-17c)

The term in front of the square brackets is the steady state flux, obtained earlier in
eq.(7.4-13), that is at steady state the flux entering the capillary is the same as the
flux leaving the capillary, as expected.

For the flux at the exit of the capillary to achieve 95% of the steady state flux,
we must have:

n 27t 2DK t a 9 5

n=l
exp -

Keeping only the first term in the series since all other terms in the series decay
rapidly compared to the first term, we obtain the time required

t095 =0.374 = 0.352
L 2 VM

(7.4-18)

which states that the diffusion time is proportional to the square of capillary length,
the square root of the molecular weight and inversely proportional to the capillary
radius and the square root of temperature.

[:)Si| | | | i | lBll | | l Time scale of diffusion of hydrogen in a capillary
We take the following example of hydrogen diffusing in a capillary

having the pore radius of 100 A, and the length of 10 cm. The temperature
of the system is 298 K. The Knudsen diffusivity (Table 7.4-2) is calculated
as 1.45 cm2/sec. Substituting these values into eq. (7.4-18), we get the
following time required by the system to reach 95% of the equilibrium:
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Thus, the time required for the system to attain steady state with the
Knudsen mechanism is in the order of 30 seconds. It is emphasised at this
point that this is the time required for the pure diffusion mechanism to
reach steady state. In the presence of adsorption along the capillary, the
time required will be longer because the adsorption process retards the
penetration of concentration front through the capillary, that is more mass
is supplied for the adsorption onto the capillary wall and hence more time
is needed for the attainment of steady state. We will discuss this when we
deal with diffusion and adsorption in Chapter 9.

Knowing the flux entering and leaving the capillary, the amounts per unit
capillary area entering and leaving up to time t are given by:

t t

Qo(t)=jN o ( t )dt ; Q L ( t )= jN L ( t )d t (7.4-19)
o o

The capillary assumed so far is cylindrical in shape and its size is uniform along the
tube. If the capillary size is not uniform, but either converging or diverging, the
Knudsen diffusivity and flux given in eqs. (7.4-10) and (7.4-11) are still valid and
they hold for every point along the capillary, provided that the diffusion process is
still dominated by Knudsen mechanism. Evaluation of the Knudsen flux for such a
capillary is dealt with in the next section.

7.4.3 Converging or Diverging Capillary

Consider a diverging capillary as shown in Figure 7.4-2a. The entrance pore
radius is rb the length is L and the angle of the pore is a. The pore radius at any
position z (the origin of which is at the entrance of the pore) is:

r = rx + (tancc)z (7.4-20a)

and the pore radius at the exit is:

r2 = r 1 +( t ana )L (7.4-20b)

The volume of the capillary is:

L

V = 7i fr2(z) dz = — — ( r 2
3 - r,3) (7.4-20c)

i 3 tana v '
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Figure 7.4-2a Diverging capillary

Having obtained the dimensions of the system, we now turn to setting up the
mass balance equation describing the concentration distribution along the capillary.
We consider a thin shell of thickness dz at the position z as shown in Figure 7.4-2a,
and carry out the mass balance around that shell to obtain:

dz
(7.4-2 la)

Note that the radius r in the above mass balance equation is a function of z as given
in eq. (7.4-20a). Before solving this mass balance equation, we need to specify the
flux expression and appropriate boundary conditions. We assume the flow is due to
the Knudsen mechanism (that is the mean free path is longer than any radius along
the diverging capillary), and hence the flux equation is given by (Table 7.4-3):

N = PKofQdp
RgHr0Jdz

(7.4-2 lb)

where DK0 is the Knudsen diffusivity at some reference pore radius r0. The
boundary conditions are assumed to be constant at two ends of the capillary, that is:

z = 0; p = p, (7.4-21c)

z = L; p = p2 (7.4-2 Id)

Integration of eq. (7.4-2la) gives TTÎ N = K (constant). Substituting N in eq.
(7.4-2lb) into that resulted equation and then integrating with respect to z, we obtain
the following result for the molar rate (moles/sec) through the capillary:

21ma £ £ > - * > <M-22>[rr2-(r1+Ltancx)-2]Rg
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7.4.3.1 An Equivalent Uniform Capillary

If we now define an equivalent capillary as a uniform capillary having a radius
r0 and the same length as that of the diverging capillary. The radius r0 of this
equivalent uniform capillary is determined by taking its volume to be the same as
the volume of the diverging capillary (eq. 7.4-20c), that is:

7ir0
2L = —^—[(r, + L tana)3 - r,3] (7.4-23a)

3 tana Lv ' J

Solving for this radius r0 of the equivalent capillary, we have:

h. = /-l_r(l -h p)3 — ll (7.4-23b)

where

The parameter (3 is a measure of the degree of divergence of the capillary. If this
parameter is zero, the capillary is uniform in size. The larger is this parameter, the
more diverging is the capillary.

For the same constant pressures imposed at two ends of the equivalent uniform
capillary, the molar rate through this capillary is:

^ (7.4.23d)

If we now define a geometry factor I as the ratio of the molar rate of the
equivalent uniform capillary (eq. 7.4-23d) to the molar rate of the diverging
capillary (eq. 7.4-22), we obtain:

p.4.24,

where (r/ro) is defined in eq. (7.4-23b). The utility of this geometrical factor I is as
follows. If we wish to calculate the molar rate of a diverging capillary all we need
to do is to calculate the molar rate of an equivalent uniform capillary (a simpler
geometry) and then divide it by the geometrical factor I to account for the pore
divergence of the system, that is

n r 2 N = ^ N ^ ( 7 4 . 2 5 )
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This is equivalent to saying that the "apparent" Knudsen diffusivity is calculated
from:

(7.4-26)

To show the effect of the geometrical factor on the calculation of the apparent
Knudsen diffusivity, we plot I of eq. (7.4-24) versus (3 (the degree of divergence) as
shown in Figure 7.4-2b. Here we see that except for a small decrease when (3 is less
than 1 the geometrical factor I is increased with an increase in the degree of
divergence. This shows that the pore geometry has an influence on the calculation
of the molar rate if an equivalent uniform capillary is used in the calculation.

2.4

Figure 7.4-2b: Plot of I (eq. 7.4-24) versus P

7.4.4 Porous Solids:

We have dealt with Knudsen flow in a straight capillary and in a
converging/diverging pore, and we see that the shape of a pore can contribute to the
flux calculation. Now we turn to dealing with practical solids where pore
orientation is rather random.

7.4.4.1 Parallel Capillaries Model

For an actual porous medium, the Knudsen flow parameter Ko (eq. 7.4-12) can
be used as a fitting parameter so that solid properties such as mean pore size, its
variance can be embedded in such a parameter, or we can assume a model for the
porous medium as a bundle of nonoverlapping capillaries of length Lc and of radius
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r (Figure 7.4-3). We show below the analysis of bundle of capillaries due to Epstein
(1989).

Figure 7.4-3: Capillary in a porous medium

The coordinate along the porous medium is z and that along the capillary is zc. The
steady state Knudsen flux along the coordinate of the capillary is (the upperscript c
is for capillary):

c AC
K " K LP

(7.4-24)

Let the mean concentration in the capillary is Cm. The average velocity through the
capillary is:

u =
Cm Cm Lc

Hence the time that a diffusing molecule spends in the capillary of length Lc is:

(7.4-25)e = ̂  = -
u DKAC

Now we consider an analysis of the porous medium. The steady state flux per unit
total cross-sectional area of the porous medium is defined as:
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where Dcff is the effective diffusivity based on the total cross sectional area. Given
the mean concentration of Cm, the superficial velocity of the diffusing molecule
through the porous medium is:

„ _ JK _ Deff AC
eff" c" • "c r

The interstitial velocity, then, is:

ueff _ Deff AC
V = '

eCm L

where e is the porosity. Thus the time that the diffusing molecule spent inside the
porous medium is:

e = - = - ^ £ s L (7.4-26)
v DeffAC

Since the residence times of diffusing molecules in the model capillaries and the
porous medium must be the same, we derive the following expression for the
effective diffusivity:

( L c / L ) 2
( 7 . 4 . 2 7 a )

The tortuosity factor q is the square of the tortuosity. Thus the Knudsen flux
equation for a porous medium obtained from the parallel capillaries model is given
by:

sD^aC I" mole 1
q dz [total area of the porous medium - timej

where the pore diffusivity DK is evaluated at the mean pore size of the medium. Eq.
(7.4-27b) is the simplest Knudsen equation for a porous medium and it is valid when
the pore size distribution is relatively narrow. For a porous medium having a pore
size distribution f(r), the following equation was proposed by Wang and Smith
(1983):

|DK(r)f(r)dr
dC

dz
(7.4-28)

where f(r)dr is the fraction of pore volume having pore size between r and r+dr.
Here, they have assumed that the concentration gradient is the same in all pores;
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hence the average Knudsen diffusion coefficient is simply the average of
diffusivities of all the pores as shown in the square bracket in eq.(7.4-28).

7.4.4.2 Unconsolidated Media

The last model assumes that porous media can be idealised as parallel
capillaries along the direction of flow. Porous media such as adsorbents and
catalysts are usually formed by compressing small grains into pellet, and for such
particles the model for unconsolidated media will be particularly useful. There are a
number of equations available in the literature to describe the Knudsen flow through
a unconsolidated medium. They are identical in form and differ only in the
numerical proportionality coefficient.

Derjaguin (1946) used a statistical method to follow the motion of a free
molecule flowing through a random pore space to obtain the following equation for
the Knudsen flux based on total cross-sectional area of the medium:

JK = - B ^ (7.4-29)

where the permeability coefficient B is expressed in terms of medium porosity 8,
grain diameter dp, molecular weight of the diffusing species and temperature as
follows:

1 e2dD 24
B = , * — (7.4-30)

^ M R J 3(1-8) 13

Carman (1956) used the equivalent capillary model to derive the following
equation for the permeability coefficient:

B = . 1 * p
x — (7.4-31)

finMRJ 3(1-s) 3k'

where k' is a constant.
Using a two-sided Maxwellian velocity distribution functions and Maxwell's

transport equation, Asaeda et al. (1974) obtained the following equation for the
permeability coefficient in a packed column containing spherical particles:

1 £2dD 4
B = - — p — — (7.4-32)

^ M R T 3( l -e) Oq
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where O = 2.18 and q is the tortuosity factor which was found experimentally as
1.41. Comparing the permeability coefficients of Derjaguin and Asaeda et al., we
find

B Asaeda

Thus, with the exception of the numerical proportionality coefficient, the
various models for unconsolidated media yield the same dependence on the grain
diameter dp, the porosity function:

(Tej (7-4"34)

and the property of the diffusing species (molecular weight M) and temperature

1 = (7.4-35)

In general, we then can express the Knudsen flux of a porous medium as:

JK = — . —t—\^- (7.4-36)
^ M R J 3(l-e) dz

where a is 24/13 or 1.3 for the Derjaguin or Asaeda et al.'s model. If we express the
above equation in terms of the specific surface area So (surface area per unit volume
of grains), the Knudsen flux equation has the form:

If the grain is spherical in shape

ndl fi
(7.4-38)

Tidp / 6 d

eq. (7.4-37) reduces to eq. (7.4-36).

Steady state diffusion through a porous medium

For constant pressures imposing at two ends of a porous medium
containing spherical grain of diameter dp, the steady state Knudsen flux is:

(7.4-39)
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This equation can be checked experimentally for its validity by measuring
the steady state fluxes at various operating conditions T, AP/L on a number
of porous media made by compressing the same grains with different
compression pressures so that those porous media have different porosity.

h 27iMRgT e
2 d

Then the dependence of — on —. r- can be checked.
Ap/L 3(1-e)

7.4.4.3 Consolidated Media

For consolidated media such as concrete, sandstone, the Knudsen flux equation
such as eq. (7.4-27b) or (7.4-28) can be used. Ash and Grove (1960) studied the
flow of inert gases, hydrogen, nitrogen, oxygen, ethane, carbon dioxide and sulfur
dioxide through a porous porcelian ceramic and found that for pressures less than 20
Torr the flow is described well by the Knudsen equation.

7.4.5 Graham's Law of Effusion

We have discussed so far the Knudsen diffusivity and Knudsen flux for
capillary as well as for porous medium. We have said that the flow of one species
by the Knudsen mechanism is independent of that of the other species. The question
now is in a constant total pressure system, is there a relationship that relates fluxes
of all the species when the partial pressures are constrained by the constant total
pressure condition. Let us now address this issue.

Consider a system having n species and each species diffuses according to the
Knudsen mechanism. The flux equation in a capillary for the component " j " is:

J K i = - D K i —
} - (7.4-40)

(7Z

If we divide the equation by the Knudsen diffusivity and sum the result for all
components, we then have:

^ dz dz dz RgT dz
( 7 4 . 4 1 )

in which dP/dz=0 by the virtue of constant total pressure. But since the Knudsen
diffusivity is inversely proportional to the square root of molecular weight, the
above equation is written as follows:



368 Kinetics

(7.4-42)

This is the famous Graham's law of effusion for a multicomponent systems at
constant pressure. For a binary system, the above equation will become:

(7.4-43)
J K > 2

which is experimentally observed in Graham's experiments and Hoogschagen's
experiments discussed in Section 7.2. The negative sign in eq. (7.4-43) means that
the flux of species 1 is always in the opposite direction to the flux of species 2, and
the lighter species will move faster than the heavy one. Let us take the case of
helium and oxygen experiments carried out by Hoogschagen (1955). The
theoretical ratio of the two fluxes is:

^ K,oxygen

The experiments done by Hoogschagen have the following values 3.03, 2.66 and
2.54 in three runs carried out by him. Thus the Graham1 law of effusion is
experimentally confirmed. Any deviation from this law would point to an additional
transport of an adsorbed surface layer. Using two commercial adsorbents with large
internal surface area, this effect was detected (Table 7.4-4).

Table 7.4-4: Results of Hoogschagen's experiments

Adsorbent -N(CO2)/N(02) -N(N2)/N(02)
Activated carbon (1400m2/g; 13.8A) 1.40 1.09
Silica gel (1020 m2/g; 8.6A) L81 L06

From the Graham' law (eq. 7.4-43), the "theoretical" Knudsen diffusion flux of
carbon dioxide should be about 0.85 times that of oxygen, but yet the experiment
with activated carbon shows that carbon dioxide flux is 1.4 times higher than that of
oxygen. This is due to the fact that carbon dioxide is appreciably adsorbed and
additional transport occurs in the adsorbed layer. For the pairs of nitrogen and
oxygen, the theoretical ratio of nitrogen flux to oxygen flux calculated from the
Graham1 s law is 1.07. This is confirmed by the experiments with two adsorbents,
activated carbon and silica gel. More about surface diffusion is discussed in Section
7.9.



Fundamentals of Diffusion and Adsorption in Porous Media 369

7.5 Viscous Flow

When the flow of gas is induced by a driving force of total pressure gradient,
the flow is called the viscous flow. For typical size of most capillaries, we can
ignore the inertial terms in the equation of motion, and turbulence can be ignored.
The flow is due to the viscosity of the fluid (laminar flow or creeping flow) and the
assumption of no slip at the surface of the wall.

7.5.1 Viscous Flux in a Capillary

Starting with the Navier-Stokes equation (Bird et al., 1960):

(dwz dvz v e dvz d v \ d? [ \ d f d v \ 1 a 2 v z d 2 v

and assuming steady flow and no variation with respect to z and angle 0, and no slip
at the capillary wall we obtain the Poiseuille equation for the volumetric flow rate
through a capillary tube of radius r under a pressure gradient dP/dz:

8n dz 128u dz

Thus the molar flux of mixture is obtained by multiplying this volumetric rate with
the total molar concentration, C, and then dividing the result by the area of the
capillary. In so doing, we obtain the following equation for the viscous flux of
mixture:

U-cf± (-=!£.) (7.5-3,)
8u dz v m

2 - s e c /
where the total molar concentration is related to the total pressure as follows

C = —^- (7.5-3b)
RgT

If we define the viscous flow parameter Bo as Bo = J2/^ (which is the parameter
characterising the capillary), the viscous flux equation then becomes:

(7.5-4.)J v i s C £
JLI dz Vm -sec

For a porous medium, the viscous flow parameter characterizes the properties
of the porous medium, such as radius, its distribution, orientation, and overlapping,
etc. Eq. (7.5-4a) when written in terms of pressure becomes:



370 Kinetics

\L RgT

dP

dz

moles

-sec
(7.5-4b)

At steady state, integrating eq. (7.5-4b) with respect to z and using constant
boundary conditions at two ends of the capillary, we get the following steady state
equation for the viscous flux through a capillary:

where P is the mean pressure in the capillary:

Here P / R g T is the mean molar concentration in the capillary. A plot of

permeability B = [j vis / (AP / L)l versus the mean pressure will give a straight line

with a slope of (BQ/URT). Thus, knowing the fluid viscosity, one could readily
calculate the structural viscous flow parameter Bo, from simple steady state
experiment, provided that the mechanism of flow is viscous and there is no slip on
the surface. Recall the Knudsen mechanism (eq. 7.4-13) that a plot of JK/(AP/L)
versus pressure will give a horizontal line, indicating that there is no pressure
dependence of the Knudsen permeability coefficient. Thus the dependence of the
experimental permeability coefficient on the pressure can delineate which
mechanism controls the flow in a capillary.

The viscous flux given in eq. (7.5-4) is the flux of the mixture, that is the
mixture moves as a whole under the total pressure gradient. All species moves at
the same speed (that is no separation), and the individual viscous flux of species "i"
caused by the total pressure gradient is:

Jvis^XjJvis (7.5-5)

where xs is the mole fraction of species "i".
Equations obtained so far are for the condition of no molecular slip at the wall.

In the case of slip, the extra flow can be regarded as a free molecular flow. For
large pores, the extra flow due to molecular slip is negligible compared to the
viscous flow. However, when the pore gets smaller the molecular slip becomes
more important even though the viscous flux decreases with a decrease in capillary
size. This is so because the viscous flux decreases like r2 while the molecular slip
flux decreases like r. The extra molecular slip flow will be discussed in Section 7.6.
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^ P ^ g | ^ Viscous flux of helium in a capillary
Consider a capillary having a radius 0.1 urn and a length of 1 cm.

Helium gas is flowing from one end of the capillary of pressure 5000 Torr
to the other end of 4000 Torr. Calculate the viscous flux at 298 K. The
viscosity of helium at 298K is 1.97 x 10'4 g/cm/sec.

First, we calculate the viscous flow parameter for the capillary

r l = ( C U x l O ^ l
0 8 8

The mean concentration in the capillary is

- _ P (P0 +PL)/2 [(5000 + 4 0 0 0 ) / 2 ] / 7 6 0 2 1 2 : l 0 _ 4 mole

RgT RgT 82.057x298 ' cm3

The pressure gradient is:

P 0 - P L (5000-4000) Torr ( 1 arm V 1.0133 x lO'gcm1 sec"2

L 1 cm ^ 760 Torr; ^ 1 arm

P - P Q
= 1.333x10*

L cm2s2

Substitute these values into the viscous flux equation (7.5-4c)

we get

(1.25xlO-ncm2) ( . m o l V 6 g
J is = / 1 O ^ 1 A 4 TTT 2.42 x 10~4 — A 1.333 x 10 6 —TT

vls (1.97 x 10 g cm s ) V cm J V cm"s"
mole

Jvls = 2 .05x l0" 5 —r
cms

For this example, we calculate the Knudsen flux using eq. (7.4-13).
The Knudsen diffusivity is DK = 0.837 cm2/sec and the Knudsen flux is 4.5
x 10"5 mole/cmVsec. We see that the viscous flux in this case is very
comparable to the Knudsen flux, and they must be accounted for in the
calculation of the total flux. The reason for this significant contribution of
the viscous flow is that the pressures used in this example are very high.
For low pressure systems, especially those operated under sub-ambient
pressure, the Knudsen mechanism is always dominating.



372 Kinetics

|Exaraple 7>5-&| Apparent diffusivity for the viscous flow

Under the transient conditions in a capillary with viscous flow, the
following equation describes the mass balance:

fl(P/R«T) ± ( 1 x
at " dz[v{s)

By applying eq. (7.5-4b) for the viscous flux Jvis and simplifying the result
we get:

a p B
0

dt u dzK~ dz) 2u dz1

This equation describes the transient flow of an ideal gas in a porous
medium. The above equation has a similar form to the standard Fickian
diffusion equation

dt dz\ 9z>

with the "apparent" diffusion coefficient being a linear function of pressure

that is, the higher is the pressure, the higher is the "apparent" diffusion
coefficient.

7.5.2 Porous Media: Parallel Capillaries Model

We have obtained equations for the viscous flow in a capillary. For a porous
medium, the viscous flow parameter Bo can be treated as a fitting structural
parameter or it can be calculated from the assumption of a model for the solid
structure as it is a function of only solid properties. Like before, if we assume that
the solid can be idealised as a bundle of parallel capillaries of equal diameter and
length Lc running through the medium in the direction of flow, the average velocity
in the capillary is (from eq. 7.5-2):

Ttr2 8n dzc
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where zc is the coordinate along the capillary. The coordinate along the capillary is
not the same as that along the porous medium. Now we need to convert the above
equation in terms of the coordinate z and the interstitial velocity of the porous
medium (Epstein, 1989).

The residence time of the fluid to travel from one end to the other end of the
capillary is simply the length of the capillary divided by the average velocity in the
capillary:

9 = ^ - (7.5-7)

If the interstitial velocity in the porous medium is denoted as v, the residence time of
the fluid in the porous medium is (L/v), which must be the same as the residence
time that the fluid spent in the capillary, that is:

(7,5-8a)

Therefore, the interstitial velocity in the porous medium is:

v = |-t_juc (7.5-8b)

Eq. (7.5-8b) suggests that the interstitial velocity in the porous medium, v, is less
than the velocity in the capillary as the medium length L is smaller than the capillary
length.

Hence, from eqs. (7.5-6) and (7.5-8), the interstitial velocity of the porous
medium is given by:

Y.-£L* ( i f .__•!• f i ] ,7.5-9)
8u d z U J 8UT2 dz I,se<J

in which we have used dz^dz = Lc/L. The parameter T is the tortuosity of the
medium (eq. 7.1-1). Hence, if the total concentration is C, the viscous molar rate
per unit void area is:

C
8UT2 dz 8ur2 RgT

(7.5-10)

When dealing with a porous medium, the viscous flux is usually expressed in terms
of the total cross sectional area. Thus if the porosity of the medium is e, the desired
flux expression is:
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RgT dz
(7.5-11)

If we now introduce the specific permeability coefficient Bo (viscous flow
parameter) of a porous medium as follows (Carman, 1956):

that is, Bo involves only properties of the porous medium

• radius r
• porosity c
• tortuosity factor q= x2

the viscous flux based on the total cross sectional area is

B o ] P <gf moles

and the average velocity also based on the total cross sectional area is:

u = _ J - _ = _I<Li* (7.5.14)
P / R g T JLI dx

Eq. (7.5-14) is the famous Darcy equation with B being the specific permeability
coefficient. The Darcy equation implies that the flow mechanism is by viscous drag
and the fluid is inert to the porous medium, that is the effects of chemical,
adsorptive, electrical, electrochemical interactions between fluid molecules and the
capillary are absent (Carman, 1956).

If the pressures at two ends of the porous medium are constant, the molar flux
JVIS is a constant. Thus, by integrating eq. (7.5-13) with the following boundary
conditions

x = 0; P = Po

x = L; P = PL

we obtain the following equation for the molar viscous flux

gT L
( 7 . 5 . 1 5 )

where P is the mean pressure. Thus, by rearranging eq.(7.5-15), we get:
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(7.5-16)

If we plot the LHS of eq.(7.5-16) versus the mean pressure of the capillary, we
will get a straight line with a slope being the ratio of the structural parameter to the
viscosity. This is only true as long as the flow is due to the viscous mechanism.
Such a plot in the regime of Knudsen flow would give a horizontal line instead (see
eq. 7.4-13). This difference can be used as the criterion for the distinction between
those two mechanisms. The viscous mechanism is operative at high pressure while
the Knudsen mechanism dominates at lower pressure. At pressures falling between
these two extremes, these two mechanisms are simultaneously operating (Section
7.6). The other distinction between these mechanisms is the viscosity (bulk
property) in the viscous flow and the molecular weight (molecular property) in the
Knudsen flow.

The following table (Table 7.5-1) summarizes formulas for the viscous flow.

Table 7.5-1

Jvis

: Equations for viscous flux

Bo P dP

ix R g Tdz
Bo

H
•R/rcf

8 dz

h = XjJvis

where

Bo = — for capillary

er2

Bo = —— for porous media containing non-overlapping capillaries of the
8T

same size

For porous media containing nonoverlapping capillaries of varying size, we
could follow the approach of Wang and Smith (1983), that is:

J =-A-^^ (7 5-17)
V1S ji R g T d z { }

where
oo 2

Bo = f-^Vf(r)dr (7.5-18)
0

J 8T 2

with f(r)dr being the fraction of pore volume having size between r and r+dr.
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7.5.3 Porous Media: Unconsolidated Packed Bed Model

Carman (1956) pointed out that the model of bundle of parallel and non-
overlapping capillaries has a defect that the permeability in the direction
perpendicular to the capillaries is zero. A more realistic model should allow for
interconnection among capillaries, but this will add to the complexity of the model.
What we will do instead is to assume that a porous medium is composed of random
packing of spherical primary particles having size much smaller than the size of the
medium.

Superficial velocity of fluid flowing in a porous medium is less than the
interstitial velocity according to the Dupuit relation:

v
u = —

6
(7.5-19)

where 6 is the porosity of the medium. This equation is obtained assuming the pore
space to be isotropically and randomly distributed. It does not apply to regular
packing as for regular packing, the porosity is 0.215 at the plane passing through the
centers of spherical particles and it is unity at plane passing through the contact
points between particles (Figure 7.5-1). For random packing the porosity is about
0.38.

Porosity = 0.215

Porosity = 1

Figure 7.5-1: Diagram of a packed bed with spatial variation of porosity

According to the viscous mechanism with no slip at the wall, the molar viscous flux
based on the total cross sectional area is (eq. 7.5-14):

Jvis ~ ~
er P dP ed2 P dP

RgT dx RgT dx
(7.5-20)

if the pore space is assumed as an ensemble of parallel capillaries of the same
diameter d.
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If the porous medium is a result of a random packing of spherical particles
having particle size of dP, the mean pore diameter is proportional to the particle
diameter (dP), that is:

= ct(e)-dP (7.5-21)

where the proportionality constant is a function of porosity. The variation of this
proportionality constant oc(e) with porosity can be seen in Figure 7.5-2, where we
see that the larger is the porosity the larger is the proportionality constant, meaning
larger pore diameter. We note that this proportionality must become infinite when

lim oc(e) = oo

(a) (b)

Low e
Low a

High e
Large a

Figure 7.5-2: Packed bed of different porosity

Substituting eq. (7.5-21) into eq. (7.5-20), we obtain the molar viscous flux
written in terms of the size of packing particles:

•'vis
P dP

32 U T 2 R g T d x
(7.5-22)

The tortuosity factor T2 is also a function of porosity. It is expected that a bed of low
porosity will have higher tortuosity (Figure 7.5-2a) compared to a bed of high
porosity (Figure 7.5-2b). Since it is difficult to distinguish the relative contribution
of ot(e) and T, it is customary to combine them into a so-called porosity function as:
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where the porosity function K(e) is:

32 T 2

K(s) = — — (7.5-23b)
s ct(e)

We have expressed the molar viscous flux in terms of separate contribution
from the pressure gradient, the fluid property (viscosity u), the solid property (dp)
and the packing property K(e). There are different models in the literature about the
functional form for K(e). Here we present a popular model credited to Blake.

7.5.3.1 Blake's Theory

Using the tube bundle theory and the concept of hydraulic radius, Blake (1922)
proposed the following equation for the average velocity of fluid flowing in a
porous medium of porosity s:

k0T2S2u dx

where S is the particle surface area per unit bed volume, T2 is the tortuosity factor,
and ko is some constant. Thus, if So is the specific surface area of the packing
particle (m2/m3 of particle), then

S = S 0 ( l - e ) (7.5-25)

Hence the average velocity is

(7.5-26)u Ar£
k0T2uS2(l-e)2 dx

For spherical particle, the specific surface area per unit particle volume is

S o = - p (7.5-27)
dp

Thus, the equation for the viscous flux based on the total cross-sectional area of the
medium is:
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8 «2 -L_J_:^- (7.5-28a)
fiRJdx

where

k = kox2 (7.5-28b)

Comparing eq. (7.5-28a) with eq. (7.5-14), we see that the viscous structural
parameter Bo is now written in terms of the primary particle diameter dp and the
particle porosity:

(7.5-29)

Also when we compare eq. (7.5-28a) with eq. (7.5-23a), we obtain the following
equation for the porosity function:

For particles having shape different from sphere, dP is the equivalent diameter
of sphere having the same specific area as the particle. Empirically, the constant k
was found to be about 5 to 5.6 (Carman, 1956; Dullien, 1979). Comparing the flux
equation for unconsolidated media (eq. 7.5-28a) and that for the bundle of parallel
capillaries model (eq. 7.5-20), we get the following relationship between the
"equivalent" capillary diameter d and the primary particle diameter

d = L_ 8T dp (7.5-30)
V k O s ) P

If the packing follows a random fashion, x » 1 / e , and k = 5 the equivalent capillary
diameter is related to dp as:

£j , (7.5-3,)

For a porosity of 8 = 0.38, the mean capillary diameter is about 0.7 dP, which is in
the same order as the dimension of the packing particle..

The following example illustrates the viscous flux calculation for a tube
containing particles.
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Viscous flux of helium in a packed column

Calculate the viscous flux of helium through a packed column
containing particle of 1 |i in size at 298K. The length of the column is 1
cm, and the pressures at two ends of the column are 500 and 10 Torr,
respectively. The bed porosity is 0.34, and the viscosity of helium at 298K
is 1.97 x 10-4g/cm/sec.

Using eq. (7.5-28a) with k = 5, we calculate the viscous flow
parameter.

"12 cm2Bo = 5.013 xlQ"12 cm

The mean concentration in the capillary is

- = P _(P0-fPL)/2_[(500 + 10)/2]/760 l 2 ? iQ_5mole

RgT RgT 82.057x298 " X cm3

The pressure gradient is:

AP (500-10)Torr ( 1 arm "j f 1.0133 x 106g cm"1 sec"2 ̂

L lcm W60TorrA 1 arm

— = 6.533 xlO5 g

L cm sec

Substituting these values into the flux equation

V1S n ° L
we get

J^ =2.28xlO"7

cm2 - sec

7.6 Transition between the Viscous Flow and Knudsen Flow

The Knudsen and viscous flows were presented separately in the last two
sections. The Knudsen flow is more dominant at low pressure while the viscous
flow is more dominant at high pressure. At intermediate pressures, the two
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mechanisms are expected to control the transport. This will be discussed in this
section.

The experiments of Kundt and Warburg (1875) have shown that if the pressure
of a gas flowing in a capillary is reduced to the extent that the mean free path is
comparable to the capillary radius the rate of flow exceeds that predicted by the
Poiseuille law, using eq (7.5-3). Figure 7.6-1 typically shows the flux versus the
mean pressure in a capillary. The linear asymptote of the flux curve at high pressure
when extrapolated to the flux axis yields a non-zero intercept. This extra flow at
low pressure is attributed to slippage at the wall of the capillary, that is the fluid on
the wall has a certain velocity instead of the zero slip assumption used in the
derivation of the Poiseuille equation. If the pressure is reduced further until the
mean free path is larger than the capillary diameter, viscosity will lose its meaning
since molecules only collide with capillary walls, and not with each other.

Knudsen flux

Extra flow predicted
by slip at the wall

Mean pressure

Figure 7.6-1: Plot of flux versus mean pressure

The phenomenon observed by Kundt and Warburg (1875) is called the slip
flow. The slip flux is a transition flux between the viscous flux and the Knudsen
flux. Hence it can be treated as the extension of either of them.

7.6.1 Extension from Viscous Flow Analysis:

If we consider the slip flow as an extension of the viscous flux, we can solve the
Hagen-Poiseuille problem with the slip boundary condition, instead of the
traditional zero velocity boundary condition. The slip boundary condition is (Bird
etal., 1960):



382 Kinetics

dv
pv = —JLX— at r'= r (radius of the tube) (7.6-1)

drf

where P is called the slip friction coefficient, which determines the fluid velocity at
the wall (P-»oo means no slip at the wall). Solving the momentum balance equation

^ (7.6-2)
dz

with the boundary condition (7.6-1), the following average velocity can be obtained:

V r W fd2 d"|dP+ — —pJdz i,32u 4pJ dz
(7.6-3)

of which the first term in the RHS is the Poiseuille equation. Thus, we see that there
is an extra term in the average velocity, accounting for the slip phenomenon at the
wall. Knowing the average velocity in a capillary, the molar flux based on cross
section area of the capillary is:

(r2 r l P dP ( d2 d l P dPj _ | = I
vis ^8 2pjRTd ^322pjR gTdz 3̂2jLt 4pjR gTdz

The second term in the RHS is the slip flux, and the total flux is greater than the flux
predicted by the usual Hagen-Poiseuille equation (eq. 7.5-3a). This was verified
experimentally by Kundt and Warburg (1875).

The parameter P is called the coefficient of external friction and is a function of
density as one would expect that the higher the density is, the coefficient of external
friction is higher. Millikan (1923) has shown that

(7.6-5)

where p is the gas density, ix is the fraction of molecules which undergoes diffuse
reflexion at the capillary walls (Figure 7.6-2), and vT is the thermal velocity

(7-6"6)

TlM

But the ideal gas density is related to pressure according to:

p = - ^ - (7.6-7)
RgT
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Figure 7.6-2: Deflection of molecules after hitting the surface

the coefficient of external friction will become:

2M
2-f,

(7.6-8)

Thus, the coefficient is proportional to pressure. The higher is the pressure, the
larger is the value of the coefficient, implying that the slippage at the wall is not as
important as the bulk flow under high pressure conditions.

Substitution of eq. (7.6-8) into eq. (7.6-4) leads to the viscous flux with slip at
the wall of a capillary:

P d P
32^iRgTdz 4

2-f A 1 dPf moles
f, J RgT dz[m2 -sec

(7.6-9)

The first term is the Poseuille flux, while the second term is the slippage flux.

7.6.2 Steady State Flow when Viscous and Slip Mechanisms are Operating

Having the viscous flow equation with slip at the wall (eq. 7.6-9), we integrate
that equation for the case of constant boundary conditions at two ends of the
capillary to obtain the following steady state flux:

d2 P (PQ-P L ) d
J™~— ~ ^ — — +4JVIS '

RgT
(7.6-10)

Thus, the viscous flux per unit pressure gradient (or the permeability coefficient B)
is given by:

B = 'vis
(AP/L)

(7.6-11)
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A plot of the permeability coefficient of eq. (7.6-11) versus the average
pressure of the capillary, P , would give a straight line as shown in Figure (7.6-1).

The intercept of the permeability coefficient (eq. 7.6-11) at zero pressure
predicted by this theory of extension of viscous flow is:

\ 1
(7.6-12)

(7.6-13)

But the Knudsen flux, which holds at low pressure (eq. 7.4-13), is given by:

J
K

(AP/L)

Thus, the ratio of the Knudsen flux to the slip flux predicted from the extension of
the viscous flow analysis is:

lim J VIS 3TT 2 - f j
p->o

( 7 . 6 . 1 4 )

The factor f, was measured experimentally (Carman, 1956) to fall between 0.8
and 1. Taking the average value of 0.9, the ratio of the Knudsen flux to the slip flux
is about 1.4, meaning that the Knudsen flux under the molecular flow regime is
higher than the flux predicted by the extra slip on the viscous flow. The reason for
this is because the slip equation is an extension of the viscous flow, that is the fluid
is still in its bulk state to induce viscosity. Therefore, it does not predict correctly
the observed flux when K n » l , that is when the true molecular flow is dominant.

7.6.3 Semi-Empirical Relation by Knudsen:

To account for the full transition between the viscous and Knudsen regime,
Knudsen (1909) proposed the following semi-empirical formula (later put on
sounder theoretical basis by Weber, 1954) (Cunningham and Williams, 1980)

(7.6-15)

This equation has been used to explain the data collected by Knudsen (Figure 7.6-1).

According to the above semi-empirical equation, the asymptote at high pressure

would predict a slope of aK and an intercept of bKcJc /c£ . If we compare this with

the extension of the Hagen-Poiseuille equation (7.6-4), we see that:
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a K = — (7.6-16)
8

b K — = — (7.6-16)
C2 2P

suggesting that the slip friction coefficient (3 must be a function of pressure as was
the case in eq. (7.6-8).

At low pressure, the above equation reduced to the Knudsen flux; thus, the
value bK is the Knudsen diffusivity, that is

f«P T
(7.6-17)K 3 V TCM

Knudsen predicted theoretically that (Cunningham and Williams, 1980)

^=2 .00 .1 -4 : (7.6-18)
V 7T U V

8 4 r (7.6-18)
uv

Hence

^ - = 0.81 (7.6-18)

Adzumi (1937, 1939) calculated this ratio experimentally for several gases and
capillaries of different materials (Table 7.6-1), and he found that this ratio is very
close to 0.8, predicted theoretically by Knudsen.

Table 7.6-1: Experimental data of Adzumi

Gas
Hydrogen
Hydrogen
Hydrogen
Hydrogen
Hydrogen
Acetylene
Propane

Capillary material
Silver
Aluminum
Copper
Iron
Glass
Glass
Glass

c./c,
.89
.81
.79
.73
.91
.88
.90
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7.6.4 Porous Media

To describe the transition flux when the Knudsen and viscous flow mechanisms
are operating inside a unconsokdated medium, we assume that the flux is additive
(Kraus et al., 1953), that is the transition flux is the sum of the viscous flux (eq. 7.5-
28a) and the Knudsen flux (eq. 7.4-36):

J = - B — (7.6-19a)
dz

where the permeability coefficient takes the form:

24

13 ^27iMRgT 3(1-e) i80( l -e ) 2 u Rg

Eq. (7.6-19) is useful to study the properties of the porous medium. For
example, by measuring the flux versus the pressure gradient for a range of mean
pressure within the medium, we can obtain the permeability as a function of the
mean pressure as indicated in eq. (7.6-19b). Thus, by plotting the permeability
versus the mean pressure, we can obtain the slope and the intercept:

Intercept = — . * —,—v-r; Slope = — ? — — (7.6-19b)
P 13 / 2 T I M R E T 3 ( 1 - 6 ) ' P - - ' - - - -

from which we can obtain the porosity and the packing diameter.
Kraus et al. (1953) have used this equation to study steady state flow of helium

and nitrogen in packed bed containing glass microspheres, BaSO4, PbCrO4, TiO2

and CuO. The BET surface area of these microparticles ranges from 0.3 to 8 m2/g.
They compared these areas with the flow areas (So = 6/dp) and found that the flow
areas calculated from the Poiseuille term (the second term in eq. 7.6-19b) is smaller
than that calculated from the Knudsen term (the first term). The flow area obtained
from the Knudsen term is quite comparable to the BET surface area. It was
explained that in the Poiseuille flow most of it is in the center of the pores due to the
zero velocity at the particle surface; thus the surface roughness can not be felt by the
Poiseuille flow. On the other hand, in the Knudsen flow due to the nature of the
collision between molecules and all parts of the surface, the flow areas calculated
from the Knudsen flow are comparable to the BET surface area. Naturally, with the
exception of particles where there is a significant amount of dead end pores, the
Knudsen flow area will be less than the BET surface area.
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7.7 Continuum Diffusion

This section deals with another mode of transport: continuous diffusion,
resulting from the collision between molecules of one type with molecules of
another type. As a result of this collision, there is a net momenta exchange between
the two species. The continuum diffusion is more complicated than the free
diffusion (Knudsen). Here we deal with the diffusion flux of a species within the
movement of mixture (Figure 7.7-1). Take a control volume as shown in the figure,
and this control volume moves at some velocity. If we choose a moving coordinate
system as that moving with the control volume, the diffusion fluxes of species 1 and
2 within that mixture (assuming constant pressure) are given by:

(7.7-D

where D12 and D21 are binary diffusivities, characterizing the continuum diffusion.
We use the symbol J to denote the diffusive flux, that is the flux relative to the
moving coordinate.

diffusive fluxes

Bulk flow

Fixed frame of coordinates

Figure 7.7-1: Frames of coordinate for continuum diffusion

Adding these two equations in eq. (7.7-1), and noting that the total fluxes of the two
species within the moving coordinate is zero (as there is no net loss or gain of
material from the control volume), i.e.

^ ^ (7.7-2)J 1 D + J 2 D 0 D 1 2 ^ + D 2 1 ^
dz dz

But C, + C2 = C (constant), the above equation will become:

( D 1 2 - D 2 1 ) ^ L = 0 (7.7-3)
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Since the gradient of species 1 is generally nonzero, the necessary requirement is:

D12 = D21 (7.7-4)

suggesting that the binary diffusivities are symmetric.
One of the first devices used to measure binary diffusivity is the Stefan tube

(Figure 7.2-5) and the Loschmidt device (Figure 7.2-3). The latter has two bulbs
connected by a capillary. Gas A is loaded into the left bulb, and gas B is in the other
bulb. These two gases will diffuse in the opposite direction once the valve
connecting these two bulbs is opened. Assuming gas A is lighter than gas B. The
light gas travels through the capillary faster than the heavier gas does (note the
Graham's law of diffusion, eg. 7.2-1), which will cause a pressure build-up in the
right bulb B. This pressure build up will induce a convective flux from the right to
the left to the extent that the net flux will be zero, by the virtue of the closed system,
that is the sum of two fluxes relative to the fixed frame of coordinate will be zero.
To allow for the total flux, the flux equations written with respect to the fixed frame
of coordinate are:

ND,i = JDfi + X I ( N D , I D>2)

N D , 2 =J D , 2 +x 2 (N D > 1 +N D ) 2 )

where ND is the flux relative to the fixed frame of coordinate, and JD is the diffusive
flux relative to the moving mixture, of which the flux is ND, + ND 2.

7.7-1 j Net flux by the Loschmidt tube device

To study the diffusive flux by continuum diffusion mechanism, the
Loschsmidt tube is modified by adding a side arm with an oil piston as
shown in Figure 7.2-4. Take the case where we have light gas in the left
bulb A. The pressure in the bulb B will build up because of the faster flow
of light gas. To equalize the pressure, the "frictionless" oil piston
automatically is moved to the left to balance the pressure. The rate of
movement of this oil piston is the net flux of the two gases, suggesting that
the net flux is not zero. The net flux ND, + ND2 is balanced by the rate of
travel of the oil piston, that is:

^ ( ) (7.7-6)
RgT
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where Aside is the cross-sectional area of the oil side arm, and Ac is the cross
sectional area of the diffusing capillary. Thus, by measuring the rate of oil
travels, one could readily determine the total flux, according to eq. (7.7-6).

For the fluxes with respect to the fixed frame of coordinates, Graham has
found experimentally in 1829 for an open system that:

N D,2 V M l

The generalization of this formula for a multicomponent mixture is:

~ ~ D . i=0 (7.7-8)

This is called the Graham law of diffusion, similar in form to the Graham law of
effusion eq. (7.4-42) obtained earlier for the free molecular flow (Knudsen flow).

7.7. / Binary Diffusivity

Before we proceed further, we will discuss in this section briefly about
correlation used to calculate binary diffusivity. The equation commonly used to
calculate this diffusivity is derived from the Chapman-Enskog theory (Bird et al.,
1960):

VJ—L
D12 = 0.0018583 J ^ — (7.7-9)

P a 1 2 ^ D , i 2

where the binary diffusivity is in cm2/sec, the total pressure P is in arm, the
temperature T is in Kelvin, a12 is the collision diameter in Angstrom, and QD12 is a
dimensionless function of temperature and the intermolecular potential field for one
molecule of species 1 and one molecule of species 2. The potential field can be
calculated for non-polar molecules by the 12-6 Lennard-Jones potential energy
function

where (|)12 is the potential energy, a12 is the distance between molecule 1 and
molecule 2 such that the potential energy of interaction is zero, and e12 is the
minimum of the potential energy. These Lennard-Jones parameters are determined



390 Kinetics

from experimental determination of D12 over a range of temperature. However, for
nonpolar, noninteracting molecules, the Lennard-Jones parameters of species 1 and
2 can be used:

(7.7-10)

These parameters a, 8 can be found in Table B-l of Bird et al. (1960). Since the
dimensionless function QD12 is a function of temperature, ranging from about 0.5 at
high temperature to about 2.7 at low temperature (for rigid sphere this function is
unity), the binary diffusivity will increase as T2 at low temperature and T165 at very
high temperature. In average, the binary diffusivity increases as T175. This
dimensionless function QD,12 can be found in Table B-2 of Bird et al. (1960), and it
is tabulated as a function of kBT/s12. Or alternatively, it can be calculated from the
following equation (Neufeld et al., 1972)

_ ^ _ + ^ _ + ^ + G ^ T ' = J E s I (7.7-11)
D'12 ( ' ) B exp(DT') exp(FT') exp(HT*) E12

where the constants are obtained from Reid et al. (1988):

A = 1.06036; B = 0.15610;C = 0.19300; D = 0.47635;

E= 1.03587; F= 1.52996; G= 1.76474; H = 3.89411

j | | | | H Binary diffusivity of propane and nitrogen

This example shows how to use eq. (7.7-9) to calculate the binary
diffusivity of propane/nitrogen at 30°C and 1 arm. To use that equation,
we need to know CT, and 8. These can be found in Table B-l of Bird et al.
(1960) and are listed below:

Gas a(A)
nitrogen 3.681
propane 5.061

We calculate

3.681+5.061

Thus, we have

B/kR(K)

91.5

254

If \f ^i. C12 1 1 2 / /AI K\CJ^A\

k B ' B '
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= 1 .987
e12 152

Having this value of (kBT)/e 1 2 = 1.987 , we look up Table B-2 of Bird et

al. (1960) to obtain a value for the dimensionless function QD12 as 1.078.
Or alternatively, using eq. (7.7-11) we calculate QD12 as 1.0778. Thus, the
binary diffusivity is:

D12 = 0.0018583-

1 1

M, M:
T 3 | — + 1 303 J |— +

= 0.0018583-

1 1
28 44

Pa2
2QD)12 " (1) (4.371)2 (1.078)

D12 =0.115 cm2 /sec

The gas phase binary diffusion coefficient is usually in the order of 0.1 to 1
cm2/sec for most gases at normal temperature.

7.7.2 Constitutive Flux Equation for a Binary Mixture in a Capillary

For binary systems, the constitutive flux equation relative to a fixed frame of
coordinate is obtained by combining eqs. (7.7-1) and (7.7-5):

1 dPl _ x 2 N D ) 1 - x 1 N £ i l (7 7-12)
RaT dz D12

If the system is open, the flux of the component 2 is related to that of the component
1 by the Graham's law of diffusion (eq. 7.7-7), hence the above equation can be
rewritten to yield an expression for the diffusion flux of the component 1:

1 dpj N D f l ( l - a 1 2 x , )
(7.7-13)

RgT dz D12
 V }

where

a,-, = 1 -

Knowing the flux of the component 1, the flux of the component 2 is calculated
from the Graham's law of diffusion.

At steady state the flux equation (7.7-13) can be integrated using constant
boundary conditions at two ends of the capillary to give:
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G1 2LRgT {l-al2xoj (J12LRgT
(7.7-15)

where D12° is the molecular diffusivity at some reference pressure Po. The variables
x0 and xL are the mole fractions of the component 1 at the two ends of the capillary.
We note that the molar flux under the region of molecular control is independent of
pressure, which is in contrast to the Knudsen regime where the flux is proportional
to pressure. This is the distinctive difference between the Knudsen flow and the
continuum diffusion.

We will reserve the treatment of multicomponent systems until Chapter 8,
where the systematic approach of Stefan-Maxwell will be used. Now we take an
example to illustrate the binary flux calculation when the bulk diffusion is operating.

Molecular diffusion ofH/N2 in an open capillary

Take the example of hydrogen (1) and nitrogen (2) at 1 arm and 25 °C
through a capillary of length 1 cm and x0 =1 and xL=0. The binary
diffusivity at 1 arm and 0°C is 0.674 cmVsec. Thus, the molecular
diffusivity at 25 C is:

298 V'75 (298"
2737 ^273

We calculate the parameter a12 of eq. (7.7-14)

a19 = 1 -

The hydrogen flux is calculated from eq. (7.7-15)

(0.786) 1 f 1-0.733(0)
D' (0.733)(l) X (82.05 x 298) X \ 1 - 0.733(1)

, mole
ND, =5 .79x l0 - 5 —r-

The nitrogen flux is calculated from the Graham's law of diffusion (eq.
7.7-7)
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. . . __ . __5 mole
N D 2 =-1.55x10 5 — -

cm - sec

The negative sign indicates that nitrogen flows in the opposite direction to
hydrogen. The net flux is:

N D,I + ND>2 = (5.79 -1.55) x 10"5 = 4.24 x 10"5

cm sec
«2which is equivalent to 0.95 cc (NTP)/cm2-sec. The net flux is positive,

indicating the net flow is the same direction as the hydrogen.

7.7.3 Porous Medium

In the last section, we have considered the diffusion flux equation for a binary
system in a capillary. For a porous medium, the equivalent flux equation to that for
cylindrical capillary (eq. 7.7-12) is:

1 dpi x 9 N n i - x , N n 7

"Pi _ 2 D,l \_DO_ (7.7-16)
RgT dz D12eff

where the diffusion flux is based on the total cross sectional area, and the effective
diffusivity D12 eff is related to the binary diffusivity as follows:

Di2,eff=-Di2 C7-7-17)
q

Here 8 is the porosity of the porous medium, and q is the tortuosity factor. The
inclusion of the porosity and the tortuosity factor was proved in Section 7.4 for the
case of Knudsen flow.

The following correlation for the tortuosity factor is proposed by Wakao and
Smith (1962) using a random pore model:

q = - (7.7-18)
8

which was later refined by Abbasi et al. (1983) using the Monte Carlo simulations
of gas molecule trajectories through assemblages of spheres when the length scale of
molecular-molecular collision is shorter than the particle heterogeneity scale:
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q = - + 1.196= (7.7-19)
s d

where a is the standard deviation of pore size, and d is the mean pore size. The
correlation of Abbasi et al. (1983) reduces to the Wakao and Smith's correlation
when the solid has a very narrow pore size distribution.

7.8 Combined Bulk and Knudsen Diffusion

We have considered separately the necessary flux equations for the cases of
Knudsen diffusion and continuum diffusion. Knudsen diffusion usually dominates
when the pore size and the pressure are small, and the continuum diffusion
dominates when the pore size and pressure are large. In the intermediate case
which is usually the case for most practical systems, we would expect that both
mechanisms will control the mass transport in a capillary or a porous medium. In
this section, we will consider this intermediate case and present the necessary flux
equations.

7.8.1 Uniform Cylindrical Capillary

We first consider the case of a straight capillary. For a binary system, the
driving force to induce the flow by continuum diffusion is the partial pressure
gradient (eg. 7.7-12):

^ _x 2 N D > 1 -x 1 N D > 2

where the subscript D denotes continuum diffusion.
The driving force to induce the flux by the Knudsen mechanism is:

The sum of these two driving forces is the total driving force inducing the flow and
since the flux must be the same, induced by both mechanisms, we write:

ND^NK.^N, (7.8-3a)

and

N D , 2 = N K , 2 = N 2 (7.8-3b)

By summing eqs. (7.8-1) and (7.8-2) we obtain the following necessary equation to
describe the flux in a capillary where both mechanisms of diffusion are operative:
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(7.8-4)
R g T dz DK>I D12

This form is the form suggested by the dusty gas theory, and will be formally
proved in the context of Stefan-Maxwell approach in Chapter 8.

The relationship between the two fluxes is the Graham's law of diffusion:

2 = 0 (7.8-5)

which has been experimentally proved by Graham (1831), Hoogschagen (1955),
Scott and Dullien (1962), Rothfield (1963) and Knaff and Schlunder (1985).

For the second component, we can write a similar equation to eq. (7.8-4) by
interchanging the indices 1 and 2 and noting the symmetry of binary diffusivities
D21=D12(eq. 7.7-4):

dp2 N2

RgT dz D K 2 D12

(7.8-6)

This equation is not independent from eq. (7.8-4). It can be proved by adding the
two equations and making use of the Graham's law of diffusion. This means that eq.
(7.8-4) is the only independent constitutive equation relating fluxes and
concentration gradients.

Using the Graham's law of diffusion (eq. 7.8-5), we write the flux N, in terms
of the concentration gradient as follows (from eq. 7.8-4):

N, = 1 * i (7.8-7)
[ |
[ D.2 DK>1(r)J

where a12 is defined in eq. (7.7-14). This is the equation applicable for a cylindrical
capillary under isobasic conditions. It can be integrated using constant boundary
conditions at two ends of the capillary of length L to give the following steady state
diffusion flux:

LR a Ta 12

l - a 1 2 x L + D 1 2 / D K f l ( r )

l - a 1 2 x 0 + D 1 2 / D K 1 ( r )
(7.8-8)

Knowing the flux for species 1, the flux of species 2 can be obtained from the
Graham's law of diffusion (eq. 7.8-5).
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7.8.2 Porous Solids

For porous solids having a pore size distribution f(r), where f(r)dr is the fraction
of pore volume having pore radii between r and r+dr, and if all the pores are
cylindrical in shape and oriented along the direction of flow, the steady state flux
based on total cross sectional area of the component 1 can be calculated from:

N, =•
eD nP

LRoTa 12

'max

f in
l - a 1 2 x L + D 1 2 / D K 1 ( r )

l - a , 2 x 0 + D 1 2 / D K 1 ( r )
f(r)dr (7.8-9)

Such an assumption of cylindrical pores oriented along the flow is so ideal
because pores can be randomly oriented and pores can have different shape and size.
This deviation from ideal condition can be allowed for by the introduction of the
tortuosity factor. In general, this tortuosity factor is a function of pore radius, and
the following equation can be used (Brown and Travis, 1983):

N , = • 8D12P
LR.Tcr 12 l - a , 2 x 0 + D I 2 / D K i I ( r ) |q(r)

(7.8-10)

When the continuum diffusion controls the mass transfer, that is in large pore solids
and high pressure, the flux equation given in eq. (7.8-10) is reduced to:

N , = •
eD,

LRgTa12

f(r)

Thus, if we define the mean tortuosity factor as

dr (7.8-11)

q =
f(r)

q(r)
dr (7.8-12)

we obtain the following integral flux equation for continuum diffusion regime:

4
LR Ta12 [ l - a 1 2 x 0

(7.8-13)

When Knudsen diffusion mechanism controls the mass transfer, the following flux
equation is obtained from eq. (7.8-10):

N , = -
LROT

J_ r T
rft I

rf(r)

q(r)
dr (7.8-14)
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where r0 is some reference pore radius and D^i is the Knudsen diffusivity

corresponding to this pore radius.

7.8.3 Models for Tortuosity

7.8.3.1 Pellet-Grain Model

Dogu and Dogu (1991) presented a pellet-grain model for the purpose of
prediction of tortuosity factor, and obtained a correlation for the tortuosity factor
based on the macroporosity ea.

For 8a > 0.476, the tortuosity factor is calculated from:

•••-

For 8a < 0.476, the following approximation formula could be used:

- — I (7-8-16)
2 r P .

where rp is the grain radius and a is the unit cell dimension. The parameter (rp/a) is
calculated from the following equation:

°2 (7.8-17)

This approximation formula is valid when DTa/D; > 1000, where Dta is the combined
diffusivity in the macropore and Dj is the effective micropore diffusivity. This
criterion is readily satisfied in many systems as the order of magnitude of the
effective macropore diffusivity is 102 while that of D{ is in the range of 10"5 to 10"7

cm2/sec.

7.8.3.2 Monte-Carlo Simulation

Using a Monte-Carlo simulation to a system where diffusion occurs on a length
scale shorter than the heterogeneity of the medium, Akanni et al. (1987) have shown
that the relation obtained by Maxwell for a dilute suspension of sphere can be
applicable to a wider range of porosity:
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(7.8-18)

7.8.3.3 Weissberg Model

Using the variational approach to a bed of overlapping spheres, Weissberg
obtained the following relation for the tortuosity

q = 1 lne (7.8-19)

7.8.3.4 Bruggeman Model

Another model for tortuosity is that of Bruggeman

1
q = Vi"

(7.8-20)

Figure 7.8-1 shows plots of e/q versus 6 for the three models of Maxwell,
Weisseberg and Bruggeman. These models are close to each other and they can be
used to estimate the tortuosity factor when experimental value is not available.

1.0

0.8

e/q 0.6

0.4

0.2

0.0

Maxwell
Weisseberg
Bfuggeman

0.2 0.4 0.6 0.8 1.0

Figure 7.8-1: Plot of (e/q) versus 6
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7.9 Surface Diffusion

Surface diffusion is considered as the most important mode of transport for
many sorbates as many practical sorbents have high internal surface area, such as
activated carbon and silica gel. Literature data have shown that surface diffusion is
important, and the mobility of adsorbed molecules varies with the loading, usually
increasing sharply with loading (Carman and Raal, 1951; Carman, 1952). Aylmore
and Barrer (1966) measured diffusion of several pure gases and their mixtures
through a Carbolac carbon plug having surface area of 730 m2/g. The observed
extra flow of these gases when the coverage is up to 20% of the monolayer coverage
was attributed to the surface diffusion.

7.9.1 Characteristics of Surface Diffusion

Surface diffusion implies a thermal motion of adsorbed molecules. It should be
distinguished from "interstitial" diffusion or intracrystalline diffusion, which is more
similar to solid solution than adsorption. This intracrystalline diffusion is strongly
affected by the molecular size and it decreases with an increase in the molecular
size. The decrease is much faster than 1 / VM", observed for the case of Knudsen
diffusion.

In contrast to the interstitial diffusion and Knudsen diffusion, the contribution
of surface diffusion increases with larger and heavier molecules because these
molecules are most easily condensed and adsorbed. This is due to the higher density
of adsorbed molecules.

In common with interstitial diffusion, surface diffusion is activated, possible
with a smaller activation energy than in interstitial diffusion (Kirchheim, 1987).

Surface diffusion occurs even at Henry law isotherm (Barrer and Strachan,
1955). Ash, Barrer and Pope (1963) studied the surface flow of gases, such as
sulphur dioxide, carbon dioxide, nitrogen, argon, and helium in microporous carbon.
They observed that in many cases the surface flow dominates the transport. Even
nitrogen at 190K surface flow is significantly higher than gas flow.

The microporous carbon used by Ash et al. (1963) was prepared by
compressing carbon powder into a tube of 3mm internal bore. The plug has the
following properties, L = 0.91cm, porosity = 0.5, and the cross sectional area of 0.07
cm2. The electron microscopy shows the particle to have a pore size of 100 A.
Each particle consists of an assembly of para-crystallites. They found that the
surface diffusion in the steady state measurement increases rapidly as the monolayer
coverage is approached. As the monolayer layer is exceeded the diffusion
coefficient shows a minimum and then rises sharply again in the region of capillary
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condensation. In general, the measured surface diffusivity shows a nonlinear
relationship with surface loading. It can be divided into three regions: a monolayer
region, a multilayer region and a capillary condensation region (Figure 7.9-1).

monolayer

loading
Figure 7.9-1: Surface diffusivity as a function of loading

In the monolayer region which is applicable for most adsorption systems, the
effects observed are almost certainly due to surface diffusion, and the followings
have been observed experimentally:

• D s increases with loading and this is observed even at loading

• the energy of activation is one-third to one-half of the heat of adsorption
• surface diffusion can not be modelled as two dimensional gas as the activation

energy of two dimensional gas is too low compared to observed values
(Carman, 1956; Gilliland et al., 1974)

• surface mobility is by a hopping mechanism (random walk), that is

4T
(7.9-1)

where 5 is the distance between adjacent sites and x is the average time that a
site is occupied between jumps. The factor 4 in the above equation is for two
dimensional systems and 6 for three-dimensional systems. The time T is related
to the period of vibration T0 at a given site by the following equation:

= Toexp
RgT

(7.9-2)

where Ea is the energy of activation needed for a jump. The period of vibration
T0 can be equated roughly to the time needed to cover a distance 5 at the thermal
velocity, i.e.
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x o = — (7.9-3)
vT

Thus, with this approximation, the surface diffusivity (7.9-1) will take the form:

Carman and Raal (1951) have shown that when less than a monolayer coverage
exists in a given system, the surface diffusivity increases rapidly with loading. They
attributed this rise with loading to the fact that the heat of adsorption varies over the
adsorbent surface and the surface diffusion is due to the most loosely bound
molecules. This means that at low coverage adsorption occurs on high energy sites
where sorbed molecules exhibit a very low mobility. When the surface coverage
increases, adsorbed molecules occupy more onto lower energy sites and because of
the loose binding these molecules will diffuse at a rate faster than that for the
strongly bound molecules in the high energy sites. This is one of the explanations
for the surface diffusion increase with loading. Other explanations are also possible
such as the hopping model of HIO and its modified version due to Okazaki et al.
(1981) and the chemical potential argument of Darken. We will address these
models later but first let us consider the definition of surface flux and the
temperature-dependence of surface diffusivity.

7.9.2 Flux Equation:

Before we address further the way surface diffusivity increases with surface
loading, we will discuss the surface flux equation and the conventional definition of
surface diffusivity.

If the surface concentration is defined as mole per unit surface area, the surface
mass transfer is defined as follows (Gilliland et al., 1974):

Ms=-bDsdC*- [moles! ( ? ^
dx [_ sec J

where Ms is the mass transfer in the x direction across a line of width b under the
influence of a surface concentration gradient (Figure 7.9-2). Thus, the surface flux
based on unit width length is Ms/b, that is:

^ (7.9-Sb)
dx msec
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Surface Diffusion

Figure 7.9-2: Schematic of surface diffusion

Adsorbed concentration is not necessarily defined in terms of mole per unit
surface area. It can be defined as mole per units solid volume1, C^ as the surface
area is not always available and moreover the adsorbed phase of practical solids is
not defined as well structured surface. The adsorbed concentration is therefore
conveniently defined as either mole per unit volume of the solid volume, which
reflect the apparent space where adsorbed molecules reside, or mole per unit mass of
the adsorbent. We shall use the definition of mole per unit solid volume as the other
can be related to this by a factor of solid density.

The relationship between Cs and C^ is obtained by equating the amount of
adsorbed species in the shell of Ax as follows:

= (Axb)Cs (7.9-6)

where Ax is the length of the solid segment, b is the width and 5 is the depth of the
solid. Thus, the necessary relationship between the two concentrations is:

Cs = 5CM (7.9-7)

Hence, the mass transfer equation (eq. 7.9-5a), when written in terms of the
concentration based on unit solid volume, is given by:

dCM
= -b5Dc

dx
(7.9-8)

Thus, if we define the flux of the adsorbed species as mole transferred per unit solid
cross sectional area, we will have:

J -
s b6

- D
s dx

(7.9-9a)

This volume is taken as the particle volume minus the void volume where molecules are present in
free form.
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This means that if the flux per unit total cross sectional area of the porous solid,
instead of just the solid cross section area, is required, the necessary flux equation is:

dC mole
J s = - ( l - 6 ) D s — ~ — (7.9-9b)

• • dx m sec
The surface diffusion coefficient is usually a function of loading and this will be
addressed with a number of models presented in Section 7.9.5.

There are many other definitions of the surface diffusion flux in the literature.
For example, Smith (1970) and Schneider and Smith (1968) defined the surface
diffusion flux per unit total cross sectional area as follows:

dq
dz

J s = - D s P p ^ (7.9-10)

where q is the surface concentration per unit mass, and pp is the particle density
(mass per unit total particle volume).

The surface flux equation (7.9-9b) is written in terms of the gradient of
adsorbed phase concentration. It can also be written in terms of the gas phase
concentration provided that there is a local equilibrium between the gas and
adsorbed phases. By local equilibrium here, we mean that at any given point within
the particle the gas and solid phases are in equilibrium with each other, despite the
gradients of concentration in both phases are present. This is acceptable if the rates
of adsorption and desorption at any point are much faster than the rates of diffusion
in both phases. If this equilibrium is governed by the Henry law, that is

C^ =KC (7.9-11)

where C is the gas phase concentration, the surface flux equation written in terms of
the gradient of gas phase concentration is:

J s = - ( l - e ) D s K ^ (7.9-12a)

dz

If the local equilibrium between the two phases take the general form

c , = f(Q
the equivalent surface flux equation will be:

( ) ^ (7.9-12b)
dz
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Various forms of the surface diffusion flux were used in the literature. The
following table (Table 7.9.1) lists the popular forms used by researchers in this area
of surface diffusion.

Table 7.9-1: Various forms of surface flux equations

Authors

Masamune & Smith

(1964, 1965)

Rivarola & Smith
(1964)

Satterfield & Ino

(1968)

Schneider & Smith
(1968)

Reed & Butt (1971)
n.i..| p n..w /I nn\
Patel & Butt (1972)
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7.9.3 Temperature Dependence of Surface Dijfusivity:

As we have indicated before, surface diffusion is an activated process, that is
the surface diffusivity follows the Arrhenius equation:

D s =D s o o exp( -E s /R g T) (7.9-13)

Let us take the case where the partition between the fluid and adsorbed phases
is linear, and the Henry constant has the following temperature-dependent form

dlnK AH
dT RgT2 (7.9-14)



Fundamentals of Diffusion and Adsorption in Porous Media 405

where AH is the enthalpy of adsorption. In integral form, it is given by:

K = K,, exp(-AH / RgT) (7.9-15)

Adsorption occurs with a decrease in surface free energy, AG, as well as a
decrease in entropy, AS, because of the confining of an adsorbed molecule to a thin
surface layer (certain degrees of freedom are lost). From the equation
AG = AH — T • AS , it is clear that the enthalpy of adsorption, AH, is negative,
that is adsorption process is endothermic.

Substituting eqs. (7.9-13) and (7.9-15) into eq. (7.9-12a), we obtain the surface
flux as a function of temperature and gas phase concentration gradient:

Js = - 1-c D^K^exp - s ' ^ ~ (7-9-16)

Heat of adsorption is usually greater the activation energy for surface diffusion, i.e.

- E S - A H > 0 (7.9.17)

Hence, for a given pressure gradient, the surface flux decreases rapidly with an
increase in temperature. The pore volume diffusion flux

Ju - D » ^ ~ De f f d ?
eff dz RgT dz

on the other hand can either increase or decrease with temperature for a given
pressure gradient. When it decreases with temperature, its rate is not as fast as the
rate of decline of surface diffusion. Thus, the influence of the surface diffusion
becomes less important as the temperature increases. One would expect this
physically as when temperature is increased the amount adsorbed on the surface
decreases at a rate much faster than the increase in the surface diffusivity, and hence
the contribution of the surface flux decreases. This is true for linear adsorption
isotherm. For highly nonlinear isotherm, however, the opposite is true because
when the surface is nearly covered an increase in temperature will result in an
increase in the surface diffusivity and very little reduction in the adsorbed
concentration, hence an increase in the surface flux is resulted.

7.9.4 Surface Diffusion Variation with Pore Size:

As pores are getting smaller down to molecular size, the pore space ceases to
have any meaning. That is, the transition from adsorption to absorption is not sharp.
In an experiment of Rayleigh (1936), he pressed two optically flat glass surfaces
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tightly together, and measured the flow of helium from one side at 1 atm to the other
at vacuum. From the flow rate measured and by assuming the flow is by Knudsen
mechanism, he calculated the width between the two plates is 1 A, which is an
impossible result. The actual width must be greater than 1A for helium to diffuse.
Hence, the resistance must be greater than that expected for Knudsen diffusion.
When air is used, and for the same pressure difference, the helium flow is 7 times
higher than air, while the ratio of two fluxes predicted by the Knudsen flow is:

JK (helium)

JK(air) ^Mh e l i u m

Thus, the transition from surface adsorbed molecules to interstitial sorbed molecules
is marked by a profound change in the mechanism of diffusion. The important point
that should be noted here is the strong dependence on the molecular size.

7.9.5 Surface Diffusivity Models

As we have pointed out before, the surface diffusivity is a strong function of
surface loading. This section will present a number of models in describing this
functional dependence. Various surface diffusion models have been proposed in the
literature. We will start with the commonly quoted theory by Higashi et al.

7.9.5.1 Higashi et al's (HIO) model

Higashi et al. (1963) proposed a hopping model, in which they assumed that
when a molecule adsorbed in a site jumps to one of the neighboring sites whether
they are vacant or not, and if the site is occupied the molecule will not be bound to
this site but rather collides with the former occupied molecule and scatters
isotropically. Then the molecule continues to jump until it finds a vacant site. As 0
increases the number of hopping necessary for finding a vacant site increases. The
expectation value n(0) is the summation of

(a) the probability of capture after 1st hopping = (1-0); that is the probability is
proportional to the fraction of the bare surface

(b) the probability of capture after 2nd hopping = 0(1-0); that is after the first hop,
the chance of hitting an already occupied site is 0, and as a result the molecule
hops the second time and the probability of this second hop is (1-0). Hence, the
probability of capture after the second hopping is 0( 1 -0)

(c) the probability of capture after k-th hopping = 0kl(l-0)

Therefore, the expectation number is
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k=i [ - 9
(7.9-19)

Higashi et al. (1963) then finally obtained the following famous equation for the
surface diffusivity:

EcD D ~
s 1-0 exp - RgT

(7.9-20)

in which they have assumed that the jumping time is negligible compared to the
holding time T, resulting in the molecule can carry out n(0) steps of random walk.

Recognizing the surface diffusivity predicted by eq.(7.9-20) becomes infinite at
monolayer coverage, the theory of Higashi et al. was later modified by Yang et al.
(1973) to allow for the second layer adsorption to rid of this deficiency. Yang et al.
obtained the following equation for the surface diffusivity:

D s 1

-AE2)/RgT]
(7.9-21)

where u, and u2 are the vibration frequencies of the first and second layers,
respectively, and AE is the effective energy of the bond. Yang et al. approximated
AEj - AE2 by the difference in heats of adsorption for the first and second layers.
The ratio u, / u2 is difficult to measure and they assigned a value of unity without
any proof. If the second term in the denominator is very small, the Yang et al.'s
theory reduces to that of Higashi et al. (1963). Figure (7.9-3) shows the variation of
the surface diffusivity versus loading for the Higashi et al. theory and Yang et al.
theory. Yang et al.'s theory predicts a slower rise with respect to loading, and it
gives a finite limit at 0 = 1 while the Higashi et al. theory gives an infinite value.

Higashi et al.'s theory

Dc
Yang et al.'s theor

0 1
Figure 7.9-3. Plots of the surface diffusivity versus loading
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Using the propane surface diffusion data on silica of Higashi et al. , Yang et al.
(1973) have found that AE, - AE2 is 6.6 kJoule/mole.

7.9.5.2 Hopping Model ofOkazaki et al (1981)

What to follow in this section is the theory proposed by Okazaki et al., which is
a refinement over the HIO model. In this model of Okazaki et al., the authors
assumed molecules can hop onto already occupied sites. This will be elaborated
below.

From the basis of molecular kinetic theory, it is assumed that adsorbed
molecules vibrate in the perpendicular direction with a frequency TS0. For molecules
in the first layer, the holding time x0 is:

TO=TS O Jf s0(E)dE/ Jfs0(E)dE (7.9-22)
0 / Es0

where Ea0 is the differential heat of adsorption, Es0 is the potential barrier between
adsorption sites, and fs0(E) is the distribution function of energy given by:

fs0(E) = —!— exp — (7.9-23)
s0V ' RgT \ RgTj V }

E

with |fs0(E)dE is the fraction of molecules having energy between 0 and E, and
o

exp(-E/RgT) is the fraction of molecules having energy between E and oo.
Combining eqs. (7.9-22) and (7.9-23), we get:

l - e x p ( - E a 0 / R g T )
T _ T \ a0 g / (7 9 24)

0 s0 exp(-Es0 / RgT) - exp(-Ea0 / RgT)

Similarly for other layers above the first layer, we have:

l - e x p ( - E a l / R g T )

exp(-Esl / RgT) - exp(-Eal / RgT)
(7.9-25)

where Eal is the heat of vaporization. Okazaki et al. assumed that TS0 = TS1.
The variation of the differential heat of adsorption, Ea0, will depend on the

nature of the surface. If the surface is homogeneous, it is a constant; while on
heterogeneous surface Ea0 will decrease monotonically with the coverage.
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(a) Homogeneous surface: Okazaki et al. considered four possible hopping
mechanisms of an adsorbed molecule. An adsorbed molecule in one site jumps to a
neighboring vacant site, an adsorbed molecule in one site jumps onto an occupied
site, a molecule sitting on a former occupied molecule jumps to a neighboring
vacant site, and a molecule sitting on a former occupied molecule jumps onto an
occupied site. These four models are shown graphically in Figure 7.9-4.

Mechanism 2
Mechanism 1

Mechanism 3 Mechanism 4

Figure 7.9-4: Four different hopping mechanisms of Okazaki et al. (1981)

In the mechanism 1, a molecule in a site hops to a neighboring vacant site. This
probability is (l-6e)

2 because the probability that the molecule is placed in vacant
site and it hops to another vacant site is (l-9e). The holding time for this hop is

T = T 0 ( l - 9 e ) 2 (7.9-26a)

where 0e is the effective fractional coverage, which is not necessarily the same as the
observed fractional loading. When multilayer adsorption occurs, the molecule
under a certain molecule does not move; hence the effective fractional coverage 0e is
reduced to the coverage of the first layer. This means that if the adsorption isotherm
is Langmuir, 0e=0, and if the isotherm follows a BET equation, 0e = 0(1 -x), where x
= P/Po, with Po being the vapor pressure.

In the mechanism 2, a molecule in a site hops onto an occupied neighboring
site. This probability is (l-0e) 0e, and hence the holding time is:

T = T o 0 e ( l -0 e ) (7.9-26b)

In the mechanism 3, a molecule in an occupied site hops to vacant site. The
probability is 0e(l-0e), and the holding time is:
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Finally, the holding time for the mechanism 4 is:

(7.9-26c)

(7.9-26d)

Thus, the expected holding time is the sum of these four individual holding times,
that is:

T = T 0 ( i - e e ) 2 + T 0 ( i - e e ) e c + 1 ^ ( 1 - 0 ^ + 1

In simplifing, we get the final expression for the holding time:

T = ( l - 0 e ) l o + 0 e T 1

(7.9-27)

(7.9-28)

By assuming surface diffusion as a random walk, the Einstein equation can be
used to calculate the surface diffusivity

C82

(7.9-29)

where C is a constant, and 8 is the distance between adsorption sites. The ratio T/TQ
is obtained from eqs. (7.9-24) and (7.9-25), which is given below:

T[ [exp(- aEa0 / RgT) - exp(- Ea 0 / RgT)][l - exp(- E., / RgTJ]

*o [exp(- Es l / RgT) - exp(- EaI / RgT)Jl - exp(- Ea 0 / RgT)]
(7.9-30)

in which we have assumed that the energy barrier between adsorption sites is
proportional to the differential heat of adsorption with a < 1

F - aF nO-^U

The surface flux is defined in terms of the effective surface concentration as:

dCM.

dx
(7.9-32)

where C ê is the effective surface concentration. But the surface flux is traditionally
defined in terms of the total adsorbed concentration as:

dCu
(7.9-33)
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Equating these two equations, we obtain the following equation for the observed
surface diffusivity:

D> . D - ( £) «*-(-.E,,/R,T)-exp(-E,;/RiT)

[l-exp(-E,0/RiT)|l-eJl-i-

Estimation of parameters:
The effective fractional coverage is equal to the observed fractional coverage if the
adsorption isotherm is described by the Langmuir equation, and it is equal to 9(1-
P/Po) if the isotherm follows the BET equation.

The parameter Eal is the heat of vaporization and can be obtained readily from
the literature. The parameter Esl is the activation energy of the first layer, it can be
estimated from the viscosity

u L =KTexp(E s l /R g T) (7.9-35)

as the first layer would behave like a liquid. Esl is of the order of 5-10 kJoule/mole.
The parameter Ea0 is calculated from the isosteric heat, which is calculated from

the Van Hoff s equation:

41\
For Langmuir isotherm, Ea0 = Est-RgT; while for BET isotherm Ea0 = (Est - RgT -
xEal)/(l-x), where x=P/P0.

The parameter a is found in many experiments to lie between 0.4 and 0.6.
DeBoer (1953) assumed adsorbed molecules lie at the center of a square of four
surface atoms and showed that a is approximately 0.5.

The parameter Ds0 is found experimentally, and is of the order of 10"3 to 10"2

cmVsec.
We note that the model of Okazaki et al. reduces to that of Higashi et al. when

the following criteria are satisfied:

1 » exp(- Es0 / RgT) » exp(- Ea0 / R j ) (7.9-37)

6 = 0
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(b) Heterogeneous surface:
In heterogeneous surface, the differential heat of adsorption decreases with

loading. This is because adsorption occurs progressingly from high energy site to
sites of lower energy. Okazaki et al. proposed the following equation for the surface
diffusivity on heterogeneous surface:

exp(- aE / RgT) - exp(-E / RgT)
—, ~ g(E)dE

Dc
 KvyEL l J ^ P g_J c ^ _ M (X9_3g)

D Ea0

S° Jg(E)dE

where

T, [exp(- aE / RgT) - exp(- E / RgT)][l - exp(- E,, / RgT)l

*o [exp(- Esl / RgT) - exp(- Ea l / RgT)][l - exp(- E / RgT)]

Here g(E) is the number of molecules adsorbed which have heat of adsorption

between E and E+dE. Thus, g(E) can be evaluated from the relation between Ea0

and the amount adsorbed. The parameters Ea0 and E°o are the heat of adsorption at

6e and 9e = 0, respectively.

7.9.5.3 Darken Model

Darken (1948) in his study of diffusion of ions in metallic systems has assumed
that the force acting on a particle in a potential field is the negative gradient of its
potential energy. This potential energy is assumed to be the Gibbs chemical
potential.

The surface diffusion flux is proportional to the product of the concentration
and the gradient of chemical potential, that is:

J S = - L C U - ^ (7.9-40)
M dx

where (i is the chemical potential. Assuming this chemical potential is the same as
that in the ideal gas phase (that is equilibrium between the two phases), we can write

u = | i o + R g T l n P (7.9-41)
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where JJ,0 is the reference chemical potential. Combining eqs. (7.9-40) and (7.9-41),
we get:

; ^ (7.9-42a)
dx

where D s is called the corrected diffusivity

D* = LRgT (7.9-42b)

But the usual definition of the surface flux is defined in terms of the gradient of
adsorbed concentration, that is:

dCu

J s = - D s — * - (7.9-43)
dx

Equating eqs. (7.9-42) and (7.9-43), we have:

Ds = D* — - — (7.9-44)
s s a i n C ,

This is now known as the Darken relation, and it depends on the equilibrium
isotherm between the two phases. It basically states that the surface diffusivity at
any loading is equal to the value at zero loading multiplied by a thermodynamic
correction factor

dlnP

The following table shows the thermodynamic correction factor for a few
isotherms (Barrer, 1978).

Table 7.9.1: Thermodynamic correction factor for a number of isotherms

Model Expression d lnP/d ln6

Henry law bP=9 1

Langmuir bP=0/(l-9) 1/(1-9)

Fowler-Guggenheim bP=[0/( 1 -0)]exp(c9) 1 /(1 -9)+c9

Volmer bP=[0/( 1 -0)]exp[0/( 1 -9)] I /(1 -9)2

Hill-deBoer bP=[0/( 1 -9)]exp[9/( 1 -0)+c9] 1 /(1 -9)2+c9
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The thermodynamic correction factor of all these model isotherms reduces to
ainP/a in9 = l w h e n 9 « 1.

We now see that except for the case of Henry isotherm, all other isotherms
exhibit an increase in the thermodynamic correction factor versus loading.

7.9.5.4 Chen and Yang's Model

Chen and Yang (1991) recognized the erratic behavior of surface diffusivity
versus loading and proposed a model based on "activated" adsorbed species. They
obtained the following formula for the surface diffusivity

Ds _ 1 - 0 + (X12)8(2 - 9) + H(l - X)(\ - X)(X 12)92

Ds(0) (1-9 + MI/2)2

where H is the Heaviside step function, defined as

H(x) = l i fx>9 ; elseH(x) = 0 (7.9-50)

and the parameter X is the ratio of two rate constants:

X = ̂ - (7.9-51)

When X =0, this equation is reduced to the Higashi et al. model as well as the
Darken model with Langmuir isotherm. Chen and Yang argued that this case is the
case corresponding to surface diffusion, where no blockage is expected due to the
unlimited space. The parameter X then describes the degree of blockage by another
adsorbed molecule.

It is interesting to note that the Higashi et al. model as well as Chen and Yang's
model do not involve the equilibrium between the gas and solid phases. The Darken
model, on the other hand, requires such an information.

7.10 Concluding Remarks

We have presented in this chapter an account on the development of diffusion
theory. Various modes of flow are identified: Knudsen, viscous, continuum
diffusion and surface diffusion. Constitutive flux equations are presented for all
these flow mechanisms, and they can be readily used in any mass balance equations
for the solution of concentration distribution and fluxes. Treatment of systems
containing more than two species will be considered in a more systematic approach
of Stefan-Maxwell in the next chapter.



8
Diffusion in Porous Media:
Maxwell-Stefan Approach

8.1 Introduction
In Chapter 7, we have discussed the various diffusional processes for mass

transfer in a capillary and a porous medium. Those discussions are sufficient for the
understanding of mass transfer processes as well as the calculation of fluxes into a
capillary and a porous medium for binary systems.

In this chapter, we will re-examine these processes, but from the approach
developed by Maxwell and Stefan. This approach basically involves the concept of
force and friction between molecules of different types. It is from this frictional
concept that the diffusion coefficient naturally arises as we shall see. We first
present the diffusion of a homogeneous mixture to give the reader a good grasp of
the Maxwell-Stefan approach, then later account for diffusion in a porous medium
where the Knudsen diffusion as well as the viscous flow play a part in the transport
process. Readers should refer to Jackson (1977) and Taylor and Krishna (1994) for
more exposure to this Maxwell-Stefan approach.

8.2 Diffusion in Ideal Gaseous Mixture

Consider a solution containing two components 1 and 2. If there is a difference
between the concentrations of any two points within the solution there will be a net
diffusion process from one point to the other. This is the macroscopic picture of
diffusion, induced by a difference in concentration, or strictly speaking by a
concentration gradient.

From a microscopic point of view, diffusion is the intermingling of atoms or
molecules of more than one species. It is a result of the random motion of
individual molecules that are distributed in space. A brief discussion of collision of
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two objects is presented in Appendix 8.1, where we show that the momentum
transfer from the type 1 molecules to the type 2 molecules is proportional to the
difference in their velocities before the collision.

8.2.1 Stefan-Maxwell Equation for Binary Systems

Accepting the concept of momentum transfer between molecules of different
type, the necessary flux equation based on the frictional force is developed in this
section.

Because of the collision between molecules of different type, the molecule of
type 2 will interfere with the movement of the type 1 molecule. It will exert a drag
on the movement of the type 1 molecule. The analogy of this is the drag exerted on
the moving fluid within a pipe by the wall, that is the wall interferes with the
movement of the fluid, just like the way the type 2 molecules exerts a drag on the
movement of type 1 molecules.

To start with the analysis, we use the following force balance equation at steady
state:

Rate of momentum in - Rate of momentum out + Sum of all forces =0

or to put it in another form:

fThe sum of Forces ^

V acting on the systeny

f The rate of change

Vof the momentum of the syst<:eny

(8.2-1)

(8.2-2)

Now let us apply this momentum balance on a control volume containing two
types of molecule as shown in Figure 8.2-1 We will consider the force balance in
one direction, say the z direction. The results for the other two directions will be
identical in form, except that the z dependence will be replaced by x and y
dependence, respectively.

P(z) p(z + dz)

z z + dz

Figure 8.2-1: Control volume for the momentum balance
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Momentum can enter or leave this volume due to the motion of molecules
across the boundary walls. If the whole control volume moves with a velocity v,
then the flow of molecules into this control volume across one boundary will be
exactly balanced by the same amount of flow leaving the other side of the boundary.
Thus, there is no net gain or loss of momentum due to the movement of the whole
control volume.

Within the control volume, however, the type 1 molecules may lose (or gain)
the momentum each time they collide with molecules of the other type. Let us
consider the case where the pressure is constant inside the control volume, that is
there is no pressure force acting on the control volume. The rate at which the
collision occurs between the two types of molecule will depend on the molecular
density of the molecule of type 1 as well as that of the molecular density of type 2
(similar to the mass action law kinetics between two reactants). Let the numbers of
molecule of type 1 and type 2 per unit volume be:

c , = c t y ! and c 2 = c t y 2 (8.2-3)

where y, and y2 are molecular fractions of the two species, and ct is the total
molecular density in the control volume:

c t = — (8.2-4)
1 kT

Here, P is the total pressure and k is the Boltzmann constant.
The number of collision between the two types of molecule will be proportional

to y{ and y2, that is:

(The number of collision between species^
oc y,y2 (8.2-5)

V 1 and 2 per unit volume per unit time )

The rate of change of the momentum is equal to the average momentum
transferred between one molecule of type 1 and one molecule of type 2 multiplied
by the number of collision per unit volume per unit time, that is:

The rate of change>

of momentum of

type 1 molecule
y i y 2 ( * i - u 2 ) (8.2-6)

We have determined the rate of change of the momentum. Now we turn to
determining the force term in the momentum balance equation (eq. 8.2-2). The
force acting on the surface at z by the component 1 is
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Ap,|z (8.2-7a)

and the force acting on the opposite surface at z+Az by the same component is

ApJ A (8.2-7b)
r i lz+Az v '

Thus, the net force acting on the component 1 in the control volume in the z
direction is:

(Pil - P i l A ) (8-2"8)
V^Mz *Hz+Az/ v '

Dividing this net force by the volume AAz and then taking the limit when the
volume is infinitesimally small, we get:

Net force acting on type 1

molecule per unit volume

in the z direction
l i m

Az->o Az dz

= _ d p ,
d

Substituting eqs. (8.2-6) and (8.2-9) into the force balance equation (eq. 8.2-2), we
finally get the following momentum balance equation:

^ r y i y 2 ( u , u 2 ) (8.2-10)
dz

which simply states the net force acting on the species 1 in the control volume is
balanced by the change of the momentum of the species 1 in that control volume.

Introducing the proportionality coefficient f12 to eq.(8.2-10), we have:

This equation is written for one dimension. Written in three dimensional format, we
have the following generalization:

-Yp = f 1 2 y 1 y 2 (u , -u 2 ) (8.2-12)

where we can view that Vpj is the actual force exerted per unit volume of the
mixture trying to move the type 1 molecule past (through) the molecules of type 2 at
a relative velocity (u, - u2). The factor y ^ is the concentration weight factor, and
the coefficient f12 can be viewed as the friction factor. This friction factor is
expected to increase when the total molar density is high (that is when the total
pressure is high). We shall take the frictional factor as a linear function of pressure:



Diffusion in Porous Media: Maxwell-Stefan Approach 419

f i 2 = — (8-2-13)

The constant of proportionality is 1/D12, which we will see later that D12 is the
binary diffusivity in a mixture containing the components 1 and 2.

Substitute eq. (8.2-13) into eq. (8.2-12) and rewrite the result into the following
form:

d - V p , , • > • > . ( • . - . ) (8.2.,4,
* U\2

where dj can be viewed as the driving force for the diffusion of the species 1 in an
ideal gas mixture at constant pressure and temperature. This equation is the
Maxwell-Stefan equation (credited to the Scottish physicist James Clerk Maxwell
and the Austrian scientist Josef Stefan), and D12 is called the Maxwell-Stefan binary
diffusion coefficient.

8.2.1.1 A Iternative Derivation

Another way of deriving the fundamental momentum balance equation (8.2-14)
is as follows. The net force per unit volume exerted on the component 1 is

dz

therefore, the net force per unit number of moles of that species is:

-j^- = - R T ^ P l (8.2-15)
C! dz 5 dz

where c{ is the molar concentration (mole/m3) of the component 1. In eq. (8.2-15)
we have used the ideal gas law

(8.2-16)c ^1 RgT

This net force per unit number of moles of the species 1 is balanced by the rate of
change of the momentum caused by the friction between the diffusing species 1 and
2. This friction force is proportional to the velocity difference and the mole fraction
of the species 2 (Figure 8.2-2), that is:

( - u 2 ) (8.2-17)

where f12 is the friction coefficient.
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molecule

Type 2 molecule

Figure 8.2-2: Schematic diagram of friction caused by molecule 1 moving through a stream of
component 2

Equating eqs. (8.2-15) and (8.2-17) yields the following momentum balance
equation:

^ £ = R g T y 2 f c _ ^ l (8.2-18)

where we have taken the friction coefficient to have the form:

f i 2 = ^ (8-2-19)

Rearranging eq. (8.2-18) and noting p, = y,P, we finally obtain the following
necessary equation:

' ** ' ' •- '» (8.2-20)
P D12

which is the same equation we obtained before (eq. 8.2-14), but in this formulation
we see that the net force per unit moles of species 1 is the rate of change of the
chemical potential of that component (eq. 8.2-15). Note the definition of the
chemical potential of an ideal gas of species "i" is (we shall discuss the nonideal gas
in Section 8.3):

U i ^ o + R g T l n p ; (8.2-21)

of which the gradient along the z direction is

^ - = R g T ^ ^ (8.2-22)
dz dz
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Comparing eq. (8.2-22) with eq. (8.2-15), we note that the change in the
chemical potential is simply the net force acting on one mole of the species 1. Thus,
if we write the momentum balance (eq. 8.2-18) in terms of the chemical potential as
the driving force, we have the more general momentum balance equation:

Multiplying this equation by yj/RT, we obtain the necessary flux equation
written in terms of the chemical potential gradient driving force:

d | y yiyi ( 8 )
RgT dz D12

Similarly, we can write the diffusion flux equation for the species 2 as (by
interchanging the subscripts 1 and 2 in eq. 8.2-24):

Jfrf!!g£ (8.2-25)
DRgT dz u2l

Summing these two constitutive flux equations (8.2-24 and 8.2-25), and noting
that p1 + p2 = P (pressure in the control volume is constant), we then have:

±i = 0 (8.2-26a)
D12 D21

or

12 D2 1

= 0 (8.2-26b)

In general, yl5 y2, and (uj - u2) are not zero, therefore eq. (8.2-26b) will result in
the following important result for the binary diffusivity:

D12 = D2I (8.2-27)

Thus, the Maxwell-Stefan binary diffusion coefficients are symmetric.

8.2.2 Stefan-Maxwell Equation for Ternary Systems

Having obtained the necessary flux equations for binary systems, we can easily
generalise the result to ternary systems. Similar to eq. (8.2-20) applicable for binary
systems, we can write the flux equation for the species 1 in a ternary mixture as
follows:
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d j = - V p , = - J 1 J 2 V * 2j__y\^\ i v (8.2-28a)
F L>12 L>13

which simply states that the driving force for diffusion of the component 1 is

balanced by the friction between molecules of type 1 and molecules of types 2 and

3, which are described by the first and second terms in the RHS of eq. (8.2-28a),

respectively.

We can also write the diffusion flux equations for the species 2 and 3 as shown

below:

D32 D3
( 8 2 . 2 8 c )

Of the above three equations, only two are independent because of the constant
pressure condition given below:

Vp, + Vp2 + Vp3 = VP = 0 (8.2-29)

Adding eqs. (8.2-28), we get:

(8.2-30)
The symmetry of binary diffusivities in the previous section (eq. 8.2-27) is

applied here in eq. (8.2-30), and we see that the LHS of this equation is indeed zero.
Thus, we can write in general the following equation for multicomponent systems:

Dy = Dj( (8.2-31)

8.2.3 Stefan-Maxwell Equation for the N-Multicomponent System

Having shown the constitutive flux equation for binary and ternary systems, we
can readily generalise the result to a multicomponent system containing "n" species
by simply writing down the following diffusion flux equation for the component i:

( 8 . 2 . 3 2 )
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for i = 1, 2, ..., n, where the LHS is the net force acting on the component "i" and
the RHS is the momenta exchange between the component "i" and the other
components.

Note that the term corresponding to j = i in the summation of eq. (8.2-32) is
zero. This equation is the general form of the diffusion equation written in terms of
velocities of all species, but it is not too useful to scientists and chemical engineers
as they are more comfortable in dealing with flux rather than velocity. To achieve
this, we use the following definition of flux (Bird et al., 1960):

N^c^ (8.2-33)

which is the flux relative to a fixed frame of coordinates, defined as moles
transferred per unit time and per unit area perpendicular to the flow direction.

Rewrite the Stefan-Maxwell equation (eq. 8.2-32) in terms of the driving force
Vpi and the fluxes of all components, we have:

<L = - V P i =ix" J 'J '' f o r i = l , 2 , . . . , n (8.2-34)
P T^ CDJ:

Eq. (8.2-34) is the fundamental constitutive flux equation written in terms of N
relative to a fixed frame of coordinate. One could write a similar flux equation in
terms of the diffusive flux, which is defined as the flux relative to the moving
mixture. This diffusive flux is defined as follows:

Ji =Ci(Ui - u ) (8.2-35a)

where u is the velocity of the mixture, which is defined as the average of all
component velocities:

n

u = £ y i U i (8.2-35b)

From this definition of the diffusion flux (eq. 8.2-35a), we see that the sum of all n
diffusive fluxes is zero, that is:

fĵ O (8.2-35c)

Making use of eq. (8.2-33) into eq. (8.2-35a), we obtain the following relationship
between the diffusive flux J and the flux N:

J. =N.-y.NT (8.2-36a)
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where NT is the total flux of all species
n

N T = ^ N i (8.2-36b)

Substitution of eq. (8.2-36a) into the constitutive Stefan-Maxwell equation (8.2-34),
we get the following equation written in terms of the diffusive flux

di 7VPi Z n
V j=l CJJiJ

We note that the equation written in terms of the diffusive flux J (eq. 8.2-37) is
identical in form to eq. (8.2-34) written in terms of the flux N relative to a fixed
frame of coordinates. We further note that the n equations of these two sets are not
independent as the following restriction of constant pressure:

Vp,+Vp2+...+Vpn =0

that is, only (n-1) of them are independent. This is so because we are dealing with
the relative motion of n different molecules, that is there are only (n-1) relative
velocities.

8.2.3.1 The Physical Constraint

To solve for the flux N = [ N, N2... Nn ]
T , we only have n-1 equations provided

by eq. (8.2-34). Thus, another equation must be found, and this is feasible by
resorting to a physical constraint condition. This physical constraint is specific to
the physical problem at hand, and here we shall deal with three situations, which
most diffusion and adsorption problems will fall into.

8.2.3.1.1 The Open System

The first situation is the open system, where the fluxes of all species are
related to each other according to what is well known as the Graham's law
of diffusion (See Chapter 7).

V 7 N J = ° (8-2-38)

that is the flux of the n-th component can be expressed in terms of all the
other fluxes as:

Nn=-I>jNj (8.2-39a)
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where

This means that n-1 equations of eq. (8.2-34) coupling with eq. (8.2-39a)
will provide the necessary n equations for the n unknown fluxes N.

8.2.3.1.2 The Constant Pressure Closed System

For a constant pressure closed system, the necessary physical
constraint condition is simply that the sum of all fluxes must be zero:

X N j = 0 (8.2-40)

Thus, the flux of the n-th component in this constant pressure closed
system is:

N n = - § N j (8.2-41)

8.2.3.1.3 The Stefan Tube

For a Stefan tube problem where a liquid containing n-1 components
evaporating into a gas space containing the n-th component which is
insoluble in liquid, the flux of the n-th component is simply zero, that is:

Nn = 0 (8.2-42)

With the three examples considered, the physical constraint can be written in
general as:

n-1

N n = - Z V J N J (8-2"43)

where Vj are defined in the following table for the three cases.

Table 8.2-1: Definitions of Vj (j = 1, 2, ..., n-1) for eq. (8.2-43;

V- (\ = 1 2 •,n-l)

Open system

|M~

Closed system

1
Stefan tube

0
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8.2.3.2 The Working Flux Equations

The n-1 equations given by eq. (8.2-34) and the physical constraint of the form
(8.2-43) will form the necessary n equations for solving for the fluxes N. What we
shall show in this section that the Stefan-Maxwell equations can be inverted to
obtain the useful flux expression written in terms of concentration gradients, instead
of concentration gradient in terms of fluxes.

Taking the last term out of the series in the RHS of eq. (8.2-34), we get:

cDi,n
(8.2-44)

for i = 1, 2, ..., n-1. It is reminded that only n-1 equations of eq. (8.2-34) are
independent. We need to use the physical constraint condition (8.2-43) to eliminate
the flux of the n-th species. Substitution of Nn given in eq. (8.2-43) into eq. (8.2-
44), we get:

n-1

^ ^ (8-2-45)
-N-

j=l C i J y cD ;, cD,

Simplifying the above equation by grouping Nf and Nj separately will yield the
form such that the vector-matrix format can be used:

n-1

'.-î --<*>j'
N j - r\ ^ r̂» N4 (8.2-46)

for i = 1, 2, ..., n-1. The above equation can be cast into a much more compact
vector form as follows:

cVy = -B-N

where y and N are (n-1) tupled vectors defined as :

y = [yi y2 - y n- i ]T

(8.2-47)

(8.2-48a)

N = [N1 N2 ... N ^ ] 1 (8.2-48b)

The matrix B (n-1, n-1) has the units of the inverse of the diffusion coefficient

(sec/m2), and is defined as below
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•ID,..

for

for i

(8.2-48c)

for i, j = 1, 2, ..., n-1.
Note that eq. (8.2-48c) has a summation having the index k ranging from 1 to n

except k = i, and that

yn = i - 2 > k <8-2-49)
k=l

Solving eq. (8.2-47) for the flux vector in terms of the concentration gradients
of (n-1) species, we get:

N = -cfB[y)]"1Vy (8.2-50)

r / \ i - 1

where we see that the apparent diffusion coefficient matrix B y is a function of
[—V-/J

all the concentrations, making the Stefan-Maxwell analysis different from the Fick's
law, which assumes that the diffusion coefficient matrix is a constant diagonal
matrix. The implication of eq.(8.2-50) is that the flux of a component "i" is affected
by the concentration gradients of other species in the system.

^^M^ Flux equation for infinite diluted conditions
Let us now investigate the behaviour of the matrix B (n-1, n-1) when

the concentrations of n-1 components (solutes) are much lower than that of
the n-th component (solvent). We take the limit of eq. (8.2-48c) when the
mole fractions of n-1 solutes are very small:

B(o) = lim B(y) =
= y->0 =V—/

D l n

0

0

0

1

0

0

0

i
Dn_n-l,n

(8.2-51)



428 Kinetics

which is a diagonal matrix. This means that for a dilute system where the
n-th component acts as solvent, the flux equations for all n-1 solutes are
independent of each other in the sense that they interact only with the
solvent, and the diffusion coefficient matrix is a constant diagonal matrix:

N(0)=-c[B(0)]"1Vy (8.2-52a)

where the diffusion coefficient matrix under infinite dilution conditions

b ^ ] " 1 is given by:

[i'T -
D l n

0 D2,n

0 0 D

0

0

n-l,n

(8.2-52b)

Written in component form, eq. (8.2-52) has the following familiar looking
Fick's law form:

(8.2-53)

for i = 1, 2, ..., n-1. Thus, Fick's law is only applicable to very dilute
systems, in which one component is acting as a solvent and all the
remaining species are acting as solutes having very low concentrations.

Non-dimensionalization of the diffusion matrix B

Very often when we solve the mass balance equation under a transient
condition, equations are more conveniently cast into nondimensional form
for subsequent numerical analysis. What we will show in this example is
the non-dimensional form of the diffusion matrix B. To do this, we need a

characteristic length, and a characteristic diffusion coefficient.
The characteristic length is simply the dimension of the system under

consideration, for example the radius of the particle. We let it be L. To
nondimensionalize the diffusion coefficient matrix, we need a characteristic
diffusivity. This characteristic diffusivity can be arbitrary, but it should be
chosen to reflect the dynamic behaviour of the system at hand. Here we

choose it to be the sum of all diagonal terms of the matrix |B ( 0 ) | , that is:
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n-1

D T = Y D i n (8.2-54)
l / J j,n v /

Readers can choose it to be either the smallest or largest value in the
infinite dilution diffusion coefficient matrix.

With L being the characteristic length and DT being the characteristic
diffusivity, the general constitutive flux equation can be cast into the
following nondimensional form:

(8.2-55)

where (cDT/L) is the characteristic flux (moles/m2/sec), and the
nondimensional matrix B * and V* are given by:

B =
(Di,n /DT) S ( D i , k / D

k*i

for i = j

7^57-5^757' fori"
,n T i,j T

(8.2-56)

and

V=-4-i+Aj+4rk (8.2-57)
dx ~ dy dz ~

Here, we use the upperscript * to denote for nondimensionality, and x*, y*
and z* are nondimensional distances along the three principal coordinates
of the Cartesian space. Readers will see eq. (8.2-55) again later when we
deal with the transient analysis of mass balance equations.

8.2.3.3 Formulation of Mass Balance Equation

Having obtained the necessary equations for flux written in terms of the
concentration gradients (eq. 8.2-50), these constitutive flux equations can be used in
the mass balance equation to solve for concentration distributions. Once the
concentrations are obtained, the fluxes of all species can then be calculated by using
the constitutive flux equation (8.2-50). We will demonstrate this with the following
example involving pure diffusion of n species into a medium having a slab
geometry.
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I Example 8.2-3:] Mass balance equation in a slab geometry medium
We take a pure diffusion system having a slab geometry, and the mass
balance equation describing the concentration distribution of all species
under transient conditions is given by:

^ = _ ^ L fo r i= l ,2 , . . . , n (8.2-58)
at L

Even though the mass balance equation (8.2-58) is written for all
species, we need to solve for only n-1 components. The concentration of
the n-th species is then given by eq.(8.2-49). Substituting the constitutive
flux equation eq. (8.2-55) into the mass balance equation (8.2-58), we get:

By observing eq. (8.2-59), we see that the obvious choice for the
characteristic time is simply the square of the characteristic length divided
by the characteristic diffusivity

t0 = — (8.2-60)

With this characteristic time, the nondimensional time is:

t* = — = - 5 l l (8.2-61)

and the mass balance equation will become:

$ - = V-{[B*(y)]~Vyl (8.2-62)

With boundary and initial conditions appropriate for the given system,
eq. (8.2-62) can be readily integrated numerically to yield solutions for the
concentration of n-1 components (y,, y2, ..., yn_,). Knowing these
concentrations as a function of distance and time, the concentration of the
n-th component is:

and the fluxes of the n-1 components at any time and any position then can
be evaluated from eq. (8.2-55) by substituting the concentrations into such
equation. Of importance to engineers are the values of fluxes at the
boundary, and these are calculated from the following equation for the
fluxes of the n-1 components
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where the subscript dV denotes for the boundary. The corresponding flux
of the n-th component at the same boundary is:

n-l

N "lav av
(8.2-64b)

Knowing the fluxes of all components at the boundary, the total flux is
then the summation of all the fluxes, that is:

N T L = Z N J I V (8-2"65)

If readers are interested in the diffusive fluxes at the boundary, they are
calculated from:

JL = N L - ( N T L W (8.2-66)

8.2.4 Stefan Tube with Binary System

Having presented the flux equations for a multicomponent system, we will
apply the Stefan-Maxwell's approach to solve for fluxes in the Stefan tube at steady
state. Consider a Stefan tube (Figure 8.2-3) containing a liquid of species 1. Its
vapour above the liquid surface diffuses up the tube into an environment in which a
species 2 is flowing across the top, which is assumed to be nonsoluble in liquid.

Species 2
•

Liquid
Concentration Profiles

Figure 8.2-3: Concentration profile and flux directions in Stefan tube
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The Stefan-Maxwell equation for the component 1 in a binary system is
(obtained from eq. 8.2-34 by setting n = 2):

v y . N 2 - y 2 N ,

cD12

This is the only independent constitutive flux equation. The mole fraction of the
species 2 is:

y 2 = l - y i (8.2-67b)

Eq. (8.2-67a) then can be written in terms of the mole fraction of the component
1

Hv.
fN2) (8.2-68)N ^ c D . ^

dz

which is the familiar equation for the flux equation commonly seen in many books
in transport phenomena (for example Bird et al., 1960).

Since we assume that the gas (species 2) is insoluble in the liquid (species 1),
then N2 = 0. Hence, eq. (8.2-68) can be rewritten in terms of flux and driving force
of the component 1:

- y i
(8.2-69)

This is the flux equation written in terms of the concentration gradient, the driving
force for mass transfer with the apparent Fickian diffusivity as

(8.2-70)

Note that the higher is the mole fraction, the higher is the apparent diffusivity.
Having obtained the proper constitutive flux equation (8.2-69) for this binary

system, we now turn to obtaining the mass balance equation. Doing the mass
balance across a thin element in the gas space above the liquid surface, we obtain
the following mass balance equation at steady state:

• ^ - = 0 (8.2-71)
dz

implying that the flux along the tube is constant, which is physically expected as the
evaporating species 1 does not react or adsorb during its course of diffusion from
the liquid surface to the top of the tube. Using this with eq. (8.2-69), we get:
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N , = - CC>12 d Y l ^ constant (8.2-72)
l-yx dz

The boundary conditions of this problem are conditions at two ends of the tube:

z = 0; y 1 = y 1 0

z = L; y i=Yi L

The solution can be readily obtained by integrating eq. (8.2-72) subject to the
conditions (8.2-73) to give the following concentration distribution of the species 1
along the tube:

( 8 . 2 . 74)

Knowing this concentration profile, the evaporation flux can be then calculated
from the flux equation (8.2-69)

^ J l z y ] (8.2-75)

which is indeed a constant, that is independent of distance z.
Eq. (8.2-75) is the equation yielding the evaporation rate of the species 1 per

unit area of the tube. To determine the pressure and temperature dependence of this
evaporation flux, we make use of the following expressions:

(8.2-76C)

in which we have assumed the gas behaviour is ideal, and the molecular diffusivity
D12 is inversely proportional to total pressure and is proportional to the temperature
raised to 1.75 power. Here D ^ is the molecular diffusivity at some reference

pressure Po and temperature To. The vapor pressure is assumed to follow the
Antoine equation:

—) (8.2-77)
T + cJ
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Substitution of eqs. (8.2-76) and (8.2-77) into the evaporation flux equation
-75) gives:(8.2-75) gives:

1 LRgT0VTy [ l - e x p [ A - B / ( T + C)]/PJ

Very often the Stefan tube experiment is conducted with very high flow of gas
above the tube, thus molecules of the component 1 are swept away very quickly by
the gas stream, implying that the mole fraction of the component 1 can be
effectively assumed as zero at the top of the tube. Thus, the evaporation written
explicitly in terms of temperature and pressure is:

°N l = J^_LL In
LRgT0 VT

1
l-exp(A-B/(T + C))/P

(8.2-79)

2-fff| Benzene evaporation from a tube into a flowing air
stream

To have some idea of the magnitude of the evaporation rate, let us take
an example of benzene evaporation from a test tube having a diffusion
length of 10 cm. Air is flowing across the tube at a rate such that the mole
fraction of benzene at the top of the tube is very close to zero. The
temperature and the pressure of the system are 25 °C and 760 Torr,
respectively. The vapor pressure of benzene at this temperature is 100
Torr. The molecular diffusiviry of benzene in air at 25 °C and 760 Torr is
0.0962 cm2/sec.

Knowing the vapor pressure at the temperature concerned, the mole
fraction of benzene vapor at the gas-liquid interface is:

PvaP>l 100
y10 = — — = = 0.1316

10 P 760
Assuming an ideal behaviour, the total molar concentration is:

c = = = 4 . 1 x l O ^
RgT (82.0572 arm - cm3 / mole / K) x (298 K) cm3

Substituting these values into the flux equation (8.2-75), we get the
evaporation flux for benzene:
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cD,, ( l - y , , ^ (4.1xlO~5 moles/cm3)(0.0962cm2/sec)
, = —In H±-\ =- T '-i -In
1 L U y y (10 cm)

N, =
1 l - y 1 ( j (10 cm) VI-0.1316/

_4 moles
= 2x10"

cm2 — hr

The flux expressed in mole/cmVhr is hard to give us a feel about the
evaporation rate. It would be useful to have it expressed in terms of liquid
volume per unit time. Knowing the molecular weight of benzene is 78
g/mole, and its liquid density is 0.879 g/cc, the evaporation rate of benzene
is

N , = (2 x 1 0 - 4 moles ¥ 7 8 g
V 2A¥ 7 8 l f

c m 2 - h r A mole){0.879 g

N l = 0.01778 V 2
cm - hr cm - day

This means that the liquid benzene level will drop by 0.43 cm per day.

8.2r5:| Benzene evaporation at sub-ambient pressure
Let us study the evaporation rate at another total pressure to investigate

numerically the pressure dependence. We take a case of sub-ambient
pressure with P = 300 Torr. The temperature is remained the same at 25
°C. With this new condition, the mole fraction of benzene right above the
gas-liquid interface is:

y =-J^iL = — = 03333
yw P 300

The total molar concentration at the new condition is:

P (300/760 arm) 5 moles
c = = =1.6x10 —

RgT (82.0572 arm - cm3 / mole / K) x (298 K) cm3

At the new condition of 25 °C and 300 Torr, the binary diffusivity is
calculated from (see eq. 7.7-9):
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D12 @ 25° C and 300 Torr = ( D 1 2 @ 25° C and 760 Torr)
f 760 Torr

,300 Torr>

rm2V7£rT\
= 0.0962

= 0 . 2 4 4 ^

f
sec A 300

sec

With these new values, the evaporation flux is readily calculated using eq.
(8.2-75) as:

N, =5.7xlO"4

cm2 - h r

Thus, the molar evaporation rate is higher when the total pressure is
decreased. This is solely due to the increase in the mole fraction of
benzene at the liquid interface (from 0.13 in the last example to 0.33 in this
example). The increase in the molecular diffusivity as the total pressure
increases is exactly compensated by the decrease in the total molar
concentration.

pxarijple|B.2-6i Error of the Fick 's calculation

Let us now attempt to calculate the evaporation rate based on the
simple Fick's law (that is, ignoring the convective contribution of the mass
transfer which is the second term in the RHS of eq. 8.2-68). For this case,
the evaporation flux is:

(8.2-80)

Substitute the appropriate values at 25 °C and 760 Torr in Example 8.2-4
into the above Fick's law equation, we get:

cm - hr

which is not much different from the value of 2 xlO*4 using the exact
Maxwell-Stefan equation. This is the case because at this temperature, the
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convective flux of benzene vapour (which is the second term in the RHS of
eq. 8.2-68) is not significant compared to the diffusion flux term.

The effect of convection will be significant if we consider a higher
temperature situation. Take the case where the temperature is 60 °C and
the total pressure is 1 arm. The vapor pressure of benzene at this
temperature is 400 Torr. Using the Stefan-Maxwell result (eq. 8.2-75), we
calculate the evaporation flux as 1.06 x 10"3 moles/cmVhr, compared to
7.47 xlO'4 moles/cmVhr calculated by the Fick law equation. An error of
nearly 30% underpredicted by the Fick's law shows the importance of the
convection term in the Stefan-Maxwell equation.

8.2.4.1 The Importance of the Convection Term

The numerical calculation of Example 8.2-6 shows the importance of the
convective term in the flux equation. Let us now explore a bit further about this
term. The molar flux of the component 1 is given as in eq. (8.2-75), and since the
molar flux of the second component is zero, the total molar flux is simply:

NT =N, +N2 =^i l lnf lzyikl+o = f ^ l n f l ^ ^ - l (8.2-81)

The Stefan-Maxwell equation for the component 2 in a binary system is:

y 2 ( 8 g )

cD12

that is, for one dimensional system considered here for the Stefan tube we have:

N 2 = - c D 1 2 - ^ _ + y 2 ( N 1 + N 2 ) (8.2-83)
dz

Since y2 = 1- y,, we substitute eq. (8.2-74) for yj and eq. (8.2-81) for NT into the
above equation to get:

N2 =
cD 12 J - , =0 (8.2-84)

which indeed shows that the flux of the component 2 is zero. The first term in the
RHS of eq. (8.2-84) is the diffusive flux of the component 2 down toward the liquid
surface as a result of its concentration gradient, while the second term is the
convective flux of that component up the tube carried upward by the total flux.
These two contributions exactly balance each other, yielding N2 = 0.
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To get the magnitude of this diffusive flux, we calculate it at the liquid interface
(z = 0) for the case of benzene evaporation in air at 30 °C and 1 arm of Example 8.2-
4, we obtain the diffusive flux of air at z = 0 of 1.74 x 10'4 moles/cm2/hr (compared
to the benzene evaporation flux of 2 x 10'4 moles/cmVhr). This diffusive flux of air
is balanced exactly by an amount carried by the total flow up the tube. We must
note here that although the flux relative to a fixed frame of coordinate (N) is
constant along the tube, the diffusive flux (J) is not, but rather a function of distance.

8.2.4.2 Determination of the Molecular Diffusivity

The flux equation (8.2-75) can be used to calculate the molecular diffusivity,
that is if N, can be measured experimentally, the molecular diffusivity can be
calculated from:

( 8-2"8 5 )

U-yJ
The flux N1 can be measured by either observing the drop of the liquid level versus
time or by analysing the benzene concentration in a known constant rate of air flow.
The mole fraction of benzene at the top of the tube can be controlled to zero (or
close to it), and its mole fraction at the liquid interface can be calculated from the
information of the vapor pressure. Thus, the molecular diffusivity is readily
obtained from eq. (8.2-85).

Although such determination for the molecular diffusivity is very simple, the
value obtained should be treated as the first estimate for the molecular diffusivity as
in practice the flow of vapor from the liquid interface to the top is usually laminar;
that is there exists a velocity distribution across the tube which the analysis dealt
with here did not take into account. The readers should refer to Whitaker (1991) for
detailed exposition of the influence of the velocity profile.

8.2.5 Stefan Tube for Ternary System

We have considered the Stefan tube with pure liquid in the tube. Now we
consider the case whereby the liquid contains two components. These two species
will evaporate and diffuse along the tube into the flow of a third component across
the top of the tube. The third component is assumed to be non-soluble in the liquid.
What we will consider next is the Maxwell-Stefan analysis of this ternary system,
and then apply it to the experimental data of Carty and Schrodt (1975) where they
used a liquid mixture of acetone and methanol. The mole fractions of acetone and
methanol just above the liquid surface of the tube are 0.319 and 0.528, respectively.
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The other component in the system is air, and the length of the diffusion path in the
tube is 23.8 cm. The total pressure is 99.5 kPa, the temperature is 328 K and the
three binary diffusivities at these conditions are:

D12 = 0.0848, D13 = 0.1372, D23= 0.1991 cmVsec

Here we use the numeric notation for the three diffusing species:
1 = acetone
2 = methanol
3 = air

Since air is not soluble in liquid, we write

N3 = 0 (8.2-86)

The three Stefan-Maxwell equations for the fluxes of the three components in terms
of mole fraction gradients are (obtained from eq. 8.2-34):

( g 2 g

dz

dz

dz

cD12

cD12

cD13

cDI3

cD23

cD23
c )

These three equations are not independent because the sum of the above
equations is zero. Any two of those three equations together with eq. (8.2-86) will
provide the necessary three independent equations for the three fluxes in terms of
the concentration gradients.

Similar to the case of binary systems, the mass balance carried out at steady
state shows that all molar fluxes are constant. We take the first two independent
equations of eqs. (8.2-87), set N3 to zero and then numerically integrate (for
example, using the Runge-Kutta method) them with respect to distance z after
assuming some values for N, and N2. This numerical integration will yield the mole
fraction profiles for the components 1 and 2. If the calculated mole fractions at the
exit of the tube match the imposed boundary conditions then the assumed values for
N, and N2 are the correct molar fluxes required. Otherwise, another set of N, and N2

values is assumed, and the integration procedure is repeated until the boundary
conditions at the exit are met. This is the basis of a method called the shooting
method, as suggested by Taylor and Krishna (1993). We shall present this method
in the following example.
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Example 8 ;2-7: Shooting method for a ternary system in a Stefan tube
Integration of eqs. (8.2-87a) and (8.2-87b) with N3 = 0 and assumed

values for N, and N2 will yield the mole fraction of the components 1 and 2
at the top of the tube. We let these be y1(N1 ,N2)| and

y2(N1?N2) , respectively. The trial and error procedure for the

shooting method is as follows.
The trial and error method can be evaluated systematically by applying

the Newton-Raphson on the following equations at the exit of the tube:

f , (N 1 ,N 2 )=y 1 (N 1 ,N 2 ) | z = L -y 1 L =0

def ?

f 2 ( N 1 , N 2 ) = y 2 ( N 1 , N 2 ) | z = L - y 2 L = 0

(8.2-88a)

(8.2-88b)

The iteration formulas for finding the solutions for N, and N2 are (by
application of the Newton-Raphson method):

N)] f(k)(M)
where

M = [N, N 2 ] T

and J is the Jacobian of eqs.(8.2-88) and is defined as:

(8.2-89)

(8.2-90a)

(8.2-90b)

J =

af,
aN, aN2
af> af?

dyx dyx

(8.2-91)

z=L

The elements
ay, ay,

-, and are obtained by appropriately

differentiating eqs. (8.2-87a) and (8.2-87b). For example the first element
is obtained by integrating the following equation, which is obtained by
differentiating eq.(8.2-87a) with respect to N, :
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dz cD12

ay,
'dN cD,

-N,S?--y , (8-2-92)

Similarly, we can obtain the corresponding differential equations for
dy] dy2 dy?

—, ——, and —— with respect to z from eqs(8.2-87a and b) by

differentiating them with respect to Nt and N2. These four equations are
then numerically integrated together with the two diffusion equations (8.2-
87a and b), and then apply the Newton-Ralphson formula (eq. 8.2-89) to
obtain the next estimate for the molar fluxes N, and N2. This process is
repeated until the convergence in the molar fluxes N, and N2 is achieved to
some required tolerance.

From the integration, it is found that

N, = 1.783 x 10~7 moles/cm2/sec; N2 = 3.127 x 10~7 moles/cmVsec

The mole fraction profiles of acetone and methanol after the
convergence has been achieved are shown in Figure 8.2-4. Alternatively,
one could use the vector analysis presented in Appendix 8.2 to solve for the
fluxes without using the shooting method. We will present the method in
the next section when we deal with a Stefan tube containing "n"
components, that is we have "n-1" components in the liquid and the n-th
component is the non-soluble gas flowing across the tube.

Mole
fraction

5 10 15 20
Distance from liquid surface (cm)

Figure 8.2-4: Methanol, acetone and air concentration profiles in Stefan tube
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8.2.6 Stefan Tube with "n" Component Mixtures
We have seen the analysis of a binary system where the analytical solution for

the evaporation flux is possible, and the analysis of a ternary system where we show
that a numerical method called the shooting method is required to obtain the desired
solutions. Here, we will analyze the same system, but this time we have (n-1)
components in the liquid phase, and these (n-1) species evaporate and diffuse up the
tube into the flowing stream of the n-th component, which is non-soluble in the
liquid phase. In terms of solution procedure, we will present here a vector-matrix
method to obtain an analytical solution. This method is elegant and is more
effective in terms of computation than the shooting method shown in the last
example.

For a system with n species, the relevant Stefan Maxwell equations for
describing this constant pressure system are:

dy. " y i N i - y j N :

- T L = Z n
 (8'2"93)

dz p cDg
for i= 1, 2, 3,..., n.

We let the n-th species be the insoluble gas flowing across the tube, then:

N n = 0 (8.2-94)

Substituting eq.(8.2-94) into eq.(8.2-93) and making use of the relation
n-1

yn = i-Zvj (8-2-95)

eq (8.2-93) is now written exclusively in terms of concentrations and flux of the (n-
1) components:

_A = g y | , y i , J j ^ ,8.2.96,
dz £ CD, cDu

fori= 1,2, 3,..., n-1.
If we now define a vector y_ having (n-1) elements, the above equation (8.2-96)

then can be cast into a vector form relating the flux vector and the concentration
gradient vector as follows:
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dy
(8.2-97a)

where the mole fraction vector y_ and the flux vector N are:

y = [yi y2 ••• y n- i ]T (8.2-97b)

N = [N, N2 - Nn_,]T (8.2-97C)

and the matrix B having the units of the inverse of the diffusivity is defined as

follows:

B =

j=i
n-1

Din
f o r i =

for

(8.2-97d)

The matrix B can also be obtained directly from eq.(8.2-48c) by setting v{ (i = 1,2,

..., n-1) to zero.
Alternately, we can write eq.(8.2-96) relating the concentration gradient vector

and the concentration vector as follows:

(8.2-98)

where the matrix A and the vector y are defined as:

for i = j

for i

A

N i

cDin

N j

cDin

WcD«

N;
CDy

(8.2-99a)

cDin

(8.2-99b)

fori,j = l ,2 , ..., n-1.
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Solutions of eqs. (8.2-97a) and (8.2-98) are given in Appendix 8.2. For the
boundary conditions of the form:

z = 0; y = yQ (8.2-100a)

z = L; y = yL (8.2-100b)

the solution for the fluxes is given by either

H = c[2(Zo)] '^[expfLAj-l]"' (yQ - y j (8.2-101a)

or

N ̂ c^yJJ^AexpfLAjjexpfLAJ-l]"1 (yQ - y j (8.2-101b)

The difference between the above two equations is the evaluation of the matrix
B. In eq.(8.2-101a), it is evaluated at z = 0, while it is evaluated at z = L in eq.(8.2-

101b).
The solution for the concentration profile is (Appendix 8.2):

y-yo ^expfzAj-lJjexpfLA)-!]"1 (yL - y j (8.2-102)

We illustrate below an example of solving the Stefan tube with "n" diffusing species
by the method of Newton-Raphson.

10^\ Newton-Ralphson method for n-component system in a
Stefan tube

Eq.(8.2-101) is a set of (n-1) nonlinear algebraic equations in terms of
the fluxes of the (n-1) diffusing components because the matrix A is a

function of fluxes N (eq. 8.2-99a). This set of equations is readily solved
by the Newton-Ralphson method. This method requires an initial guess for
the flux vector, and this is simply achieved by considering eq.(8.2-97a).
Solving for the flux in terms of the concentration gradient, we get

- ^ (8.2-103)
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If we approximate the matrix B by a constant matrix, which is the

matrix B evaluated at the mean concentration y^ , that is:

^ J (8.2-104a)

where

y + y
= . o - L (8.2-104b)

^-ave 2

and approximate the concentration gradient as the linear difference as given
below

AIJ^^ (8.2-105)
dz L

then the initial guess for the molar flux vector is:

N(o) = -c [ f i fy) ] * " L ~° (8.2-106)

The iteration formula for the flux vector N of dimension (n-1) is simply

f(k) (8.2-107)

where J is the Jacobian of the following vector fas (from eq. 8.2-101):

f = N-cfBfyJ] AJexp(LA)-ll (yQ -yL ) (8.2-108a)

or

f = N-c[B(y )| Aexp(LA)fexp(LA)-l]"Vy - y ) (8.2-108b)

The Jacobian matrix is

_ f df: )
(8.2-108c)

fori,j = 1,2, ..., n-1.
The functional form of the vector function f is rather complex in terms

of N; therefore the Jacobian is best evaluated numerically as follows:
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The Newton-Raphson method usually converges within a few
iterations. Once the flux vector N are obtained numerically, the
concentration (mole fraction) profiles of the (n-1) diffusing species are
obtained from eq.(8.2-102). The mole fraction of the n-th component at
any position then can be obtained from:

yn(z) = l - X y j ( z ) (8.2-110)

This is the simplest way to obtain the concentration profile of the n-th
component. However, if the reader is interested just the n-th component
concentration profile, we could start with the Stefan-Maxwell equation (eq.
8.2-93) written for the n-th component (note that Nn = 0):

For constant fluxes N, the above equation can be integrated from 0 to z,
and we obtain:

(8.2-112)

As mentioned before, the fluxes N are determined from eq.(8.2-101).
Once this is known, the concentration profile of the n-th component is then
givenineq.(8.2-112).

Somewhat interesting in eq.(8.2-112) is that if we evaluate it at z = L,
we get:

yn(L) = yn(0) exp - ^ i (8.2-113)
\C j=i Un,jj

This shows that the fluxes N in a special way (LHS of eq. 8.2-113) are
related to the mole fractions of the n-th component at the end points of the
Stefan tube.
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Solution of this problem is provided with the MatLab code
STEFTUBE. The user is asked by this code to supply:

1. The number of component in the system, including the nonsoluble
flowing gas

2. The respective mole fractions at two ends of the tube
3. The length of the tube
4. The operating conditions, that is the temperature and pressure
5. The binary diffusivity matrix

For a typical three component system, the code takes approximately a
few seconds to run on a 586/90 MHz computer to yield the fluxes as well
as the concentration profiles. We take the example of Carty and Schrodt
(1975) in Example 8.2-7, and execute the STEFTUBE code. The
following table shows the evaporation fluxes of acetone (1) and methanol
(2) as a function of the diffusion path L.

~L (cm) N, x 107 (moIe/cmVs) N2 x 107 (mole/cmVs)
7.49
5.00
3.74
3.14
2.50
2.14
L87

* the length used by Carty and Schrodt (1975)

8.2.6.1 Drop in the Liquid Level

Since the evaporation of the species from the tube, the liquid level will drop.
To calculate for this decrease in the liquid level, we need to set up a mass balance
equation around the liquid body, and obtain the following mass balance equation for
the species j :

dn:
—U-SN: (8.2-114)
dt J

where S is the cross section area of the tube, and nj is the number of moles in the
liquid. The liquid volume contributed by the component j in the liquid is given by:

n.M:
V : = - ^ - ^ - (8.2-115)

10
15
20
23.8*
30
35
40

4.27
2.85
2.13
1.79
1.42
1.22
1.07
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where pLJ is the liquid density and Mj is the molecular weight of the species j .
Combining eqs. (8.2-114) and (8.2-115), we get:

dV: M :N :
^ = A J J (8.2-116)

dt p L J

Summing the above equation for all evaporating species (n-1), we get:

— = - A Y j j (8.2-117)
d t j t l PLJ

in which we have assumed that there is no change in volume upon mixing. Since V
= A(L0 - L) where Lo is the total length of the tube, eq. (8.2-117) can now be written
in terms of the diffusion length L:

— = Y - ^ - l (8.2-118)
d t H PLJ

Thus, knowing the fluxes in eq.(8.2-101) the diffusion length can be obtained
by integrating the above equation. One must note, however, that since the
evaporation rates will be different for different species, the compositions of the (n-1)
components in the liquid phase will vary with time. This means that the mole
fractions at z = 0 will also change with time, according to some law, for example the
Raoult's law:

@ z=0; Pyj = XjPj0 (8.2-119)

where Pj° is the vapor pressure of the species j . However, for small change in the

liquid level, the mole fractions at z=0 can be considered constant, and eq.(8.2-118)
can be integrated to give:

L ,
J n , AA XT = t (8.2-120)
J "Hi M -N •

t PL
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8.3 Transient Diffusion of Ideal Gaseous Mixtures in Loschmidt's tube:

Section 8.2.6 shows the usage of the Stefan-Maxwell equations for the steady
state analysis of the Stefan tube, in which we have shown the elegance of the vector-
matrix presentation in dealing with steady state diffusion problem. Now we will
show the application of the constitutive Stefan-Maxwell equation to an unsteady
state problem. Here we shall take a transient diffusion problem of a Loschmidt's
tube, which is commonly used in the study of diffusion coefficient.

The Loschmidt tube is simply a tube with an impermeable partition separating
the two sections of the tube (Figure 8.3-1). Initially, the partition is in the position
that gases in the two sections do not mix with each other. Here we shall assume
that the total pressure is the same in both sections of the tube, and the initial
compositions are different in the two parts of the tube. At time t = 0+ , the
partition is removed and the diffusion process is started.

Figure 8.3-1: Schematic diagram of the Loschmidt's tube

8.3.1 The Mass Balance Equations

The constitutive Stefan-Maxwell equations for the description of fluxes of an n
component system is:

ay " ( y i N j - y i N : )
- - ^ - = Y ^ iL (8.3-1)

dz p cD̂

for i = 1, 2, ..., n. The partial derivative is used because of the time-dependent
concentrations in this unsteady state problem.

Since the total pressure is constant in the tube and this will remain so
throughout the course of diffusion, the sum of all fluxes must be zero, that is
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from which the flux of the n-th component is related to all other fluxes as follows:

n-1

N n = - X N j (8.3-3)

Since only (n-1) equations of eq. (8.3-1) are independent, coupling these first (n-1)
equations with eq. (8.3-3) will yield the following constitutive Stefan-Maxwell
equations written in vector form as follows (in which all vectors have n-1
dimensions and matrices have [(n-1), (n-1)] dimensions):

-c J = B(y)N (8.3-4)
dz = -

where

y = [y, y2 - yn-i]T (8.3-5a)

N = [N, N2 ••• Nn_,]T (8.3-5b)

and the matrix B of dimension (n-1, n-1) is given by (obtained from eq. 8.2-48c

after setting V; = 1)

(8.3-6)

It should be reminded here that the matrix B is a function of mole fractions y_,

and note the summation in eq. (8.3-6) ranges from 1 to n. Note also that this matrix
B is different from the matrix B (eq. 8.2-97d) in the Stefan tube problem. This is

because of the difference in the physical constraints of these problems. In the Stefan
tube problem, the physical constraint is that the flux of the n-th species is zero (eq.
8.2-94), while in this problem the physical constraint is that the sum of all fluxes is
zero.

Eq. (8.3-4) now can be inverted to obtain an expression for the flux written in
terms of concentrations and concentration gradients of n-1 species:

r -i-i dy
N = -c[B(y)j - ^ (8.3-7)
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Setting up the mass balance equation in either the sections of the Loschmidt's
tube, we obtain the following equation for the conservation of mass

c - ^ = -—(N) (8.3-8)

Combining eqs. (8.3-7) and (8.3-8), we get the following mass balance equation
written wholly in terms of the mole fractions of the (n-1) species:

dy

(8.3-9)

This equation is the general mass balance equation. It is applicable for both sections
of the tube. We now denote the upperscripts I and II for the two sections, and
formally write the following mass balance equations, initial conditions and
boundary conditions of the two sections as below:

Section I

ay1

at

t = 0;

z , = .

z, =L,;

N'l
Iz,

(LHS

d f[
dzx [I

y

0;

A

of the tube)

B(y ) —=—\
= ~ J dzx

' = y ' ( 0 )

- = - - o

- N "
z2=L2

(8.3-10a)

(8.3-10b)

(8.3-lOc)

(8.3-10d)

(8.3-10e)

Section

ay"
at

. . .

z2 =

z2=L

N"

II(RHS

8 kn
dz2 [12

= 0 ; •

2~> y "

z2=L2

of the tube)

-ay"]

az2]

df
dz2

- o

Z2=L2
 =y- z,=L,

- N '
z, = L,

(8.3-1 la)

(8.3-1 lb)

(8.3-1lc)

(8.3-1 Id)

(8.3-1le)

Eqs. (8.3-10d), (8.3-10e), (8.3-1 Id) and (8.3-1 le) are simply the statement of
continuity of concentrations (mole fractions) and fluxes. The minus sign in eqs.
(8.3-10e) and (8.3-1 le) is due to the choice of coordinates zx and z2 in the opposite
direction, as shown in Figure 8.3-1. There we choose the origins of the two sections
at the impermeable ends of their respective sections. Note that the two sets of mass
balance equation for the two sections are identical in form. They represent the mass
balance at any points in their respective domains.
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8.3.2 The Overall Mass Balance

The overall mass balance equation of the whole tube can be obtained by
integrating eq. (8.3-10a) with respect to zx from 0 to L, and eq. (8.3-1 la) with
respect to z2 from 0 to L2, and summing the results we obtain the following
equation:

dt
jy"(z2,t)dz2 = 0 (8.3-12)

in which we have used the continuity of flux equation (eq. 8.3-10e or 8.3-1 le).
Next, we integrate eq. (8.3-12) with respect to time and make use of the initial

conditions (eqs. 8.3-10b and 8.3-1 lb) to finally obtain:

L, L2

jyl(zl9t)dzl + {yn(z2,t)dz2 =^(0)1^ + yn(0)L2 (8.3-13)

Multiplying the above equation by Ac, where A is the cross-sectional area of the
Loschmidt tube and c (the total molar concentration), we obtain what is known as
the overall mass balance equation:

v,
c

0

v2

jyn(z2,t)dV2 =c[yI(0)V1 + yn(0)V2] (8.3-14)

where V, and V2 are volumes of Sections 1 and 2, respectively. The LHS is the total
number of moles of any component in the two sections at any time t, while the RHS
is the total moles in the system of that component before the partition between the
two sections is removed.

From eq. (8.3-14), we can easily derive the final steady state mole fraction,
which must be the same in both sections when t -> oo, that is

v

8.3.3 Numerical Analysis

The transient analysis of eqs. (8.3-10) and (8.3-11), which are in the form of
coupled partial differential equations, must be carried out numerically. The method
used by the author is the orthogonal collocation method in order to convert this set
of PDEs to a larger but simpler set of ODEs with respect to time, which in turn can
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be numerically integrated by any standard integration routine, such as the Runge-
Kutta method. Readers may choose other methods to obtain numerical solutions,
with methods such as finite difference to convert PDEs into ODEs. To facilitate
with the orthogonal collocation analysis, it is convenient to cast the model equations
in nondimensional form as suggested in Section 8.2.3.3 (eq. 8.2-62). The necessary
model equations in nondimensional form as:

Section I

dC dr|i

t*=0;

„-*
Til

Hi = 1

z' =
ay

= 1&

&T)2

^Hi J

y'(0)(8

i

- = 0 (8

= 1; 1

.3-16b)

.3-16c)

BV)]

Section

at*

•

Tl2 =

| = 1 = y "

1

n

0;

= 0;

1 2 = 1

= -

1

z" =
ay"
dx\2

' 2

•jiBvr
y"(0)

. . .

(8.3-17b)

(8.3-17c)

(8.3-16d)

J (8.3-16e)

where the nondimensional variables and parameters are defined below

[if] * = D T [ 2 ]
 ! (8.3-18a)

Zi z2 ^ • DTt
(8.3-18b)

The characteristic diffusion coefficient DT is arbitrary. We can define that as the
sum of binary diffusion coefficients of (n-1) species with respect to the n-th species,
that is

n-1

(8.3-18d)
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Readers can choose other characteristic diffusion coefficient if they so wish. For
example, you can choose it as the minimum binary diffusivity or the maximum
binary diffusivity.

The nondimensional matrix B , defined as in eq.(8.3-18a), is written explicitly

below:

B =
(D,,n/DT) S ( D i > k / D T )

(8.3-19)

1 1 1 , . .
for l * i\ D i > B / D T D y / D T

The details of the collocation analysis are given in Appendix 8.3.

Methane/Argon/Hydrogen diffusion in the Loschmidt tube

To illustrate the Stefan-Maxwell approach in the analysis of the
Loschmidt diffusion tube, we apply it to the experimental results obtained
by Arnold and Toor (1967). The system is a ternary mixture containing
methane, argon and hydrogen. The tube length is 0.40885 m and the two
sections of the tube are equal in length. The operating conditions are:

T = 34 °C = 307 K

P= 101.3 kPa

We denote
1 = methane
2 = argon
3 = hydrogen

The binary diffusivities of these three species at 307K and 101.3 kPa are:

D12 = 2.157 x 10-5m2/sec
D13 = 7.716 x 10"5m2/sec
D23 = 8.335 x 10-5m2/sec

Before the partition separating the two sections of the tube is removed, the
mole fractions of the three components are:

Section 1 Section 2
y,(0) = 0 y,(0) = 0.515
y2(0) = 0.509 y2(0) = 0.485
y,(0) = 0.491 y,(0) = 0
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The above parameters as well as initial conditions are supplied into a
MatLab code named LOSCHMI.M. The typical number of interior
collocation points used in each sections of the tube is 3 or 5. Typical
execution time is about 2 to 10 minutes on a 586/90 MHz personal
computer. Figures 8.3-2 and 8.3-3 show the trajectories of the average
mole fractions of methane and argon in the two sections. Experimental
data of Arnold and Toor are shown in Figure 8.3-3 as symbols.

Mole
fraction

0.5 1.0 1.5

Time (hr)

Figure 8.3-2a: Plots of mole fractions in Section I

2.0

Mole 0.4
fraction

0.3

0.2

0.1
0.0

Methane

0.0 0.5 1.0
Time (hr)

1.5 2.0

Figure 8.3-2b: Plots of mole fractions in Section II

One interesting observation is that of the diffusion of argon. Initially the
argon concentration in the Section 2 of the tube is lower than that in the
Section 1. When the diffusion is started we observe that argon diffuses
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from the Section 2 to the Section 1, an uphill diffusion. This uphill
diffusion is sustained during the initial period of 20 minutes, after which
the downhill diffusion is observed. The reason for this uphill diffusion of
argon is due to the drag effect of the methane diffusion from Section 2 to
the Section 1. Methane's downhill diffusion rate is in a magnitude such
that it drags argon along with its direction of flow, resulting in the uphill
diffusion of argon. Once the rate of diffusion of methane has decreased,
the diffusion of argon follows the usual flow, that is from high
concentration to low concentration.

0.60

Mole
fraction
of argon

0.55

0.50

0.45

0.40

Section I

0.0 0.5 1.0 1.5
Time (hr)

2.0

Figure 8.3-3a: Plot of the mole fraction of argon versus time

0.6

0.5

Mole 0.4
fraction of
methane 0-3

Section"!

0.5 1.0 1.5

Time (hr)
2.0

Figure 8.3-3b: Plot of the mole fraction of methane versus time
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The Maxwell-Stefan analysis explains well the experimental data of
Arnold and Toor (1967), justifying the importance of the Maxwell-Stefan
formulation for the diffusion of multicomponent system.

8.4 Transient Diffusion of Ideal Gaseous Mixtures in Two Bulb Method

So far we have analysed the two systems using the Maxwell-Stefan approach:
the steady state analysis of the Stefan tube and the transient analysis of the
Loschmidt's tube, and they are conveniently used to study the diffusion
characteristic of the system. Here, we consider another example which is also useful
in the determination of diffusion characteristics. This system is the two bulb
method, in which a small capillary tube or a bundle of capillaries is bounded by two
well-mixed reservoirs as shown in Figure 7.2-3.

The constitutive Maxwell-Stefan flux equations are the same as those presented
in the last section (Section 8.3) because in this case to maintain the constant pressure
of the closed system the sum of all fluxes must be zero, the same requirement as that
in the Loschmidt tube. The flux equations are given by eqs. (8.3-7) with the matrix
B given by eq. (8.3-6).

Setting the mass balance equation around a very thin element in the capillary
between the two reservoir and making use of the constitutive flux relation (8.3-7),
we have:

(8.4-1)

The fluxes at two ends of the capillary tube are needed for the mass balances of the
two reservoirs, and they are obtained from eq.(8.3-7) by evaluating that equation at
z = 0 and z = L (length of the capillary), respectively, that is:

NU = "C fey)]"111 ; N|z=L = -c fey)]"11|
I- J z=0 I. J z=L

(8.4-2)

The boundary conditions for the mass balance (eq. 8.4-1) in the capillary are:

z = 0; y = yQ (8.4-3a)

z=L; y = yL (8.4-3b)
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where y and y are the mole fractions in the left and right bulbs, respectively.

These mole fractions change with time due to the mass transfer in and out of the two
reservoirs. Carrying out the mass balance around the two bulbs, we get:

(8.4-4a)

V L c - ^ = +AN|z = L (8.4-4b)

where A is the cross-sectional area of the capillary, and Vo and VL are volumes of
LHS bulb and RHS bulb, respectively.

Substituting eqs. (8.4-2) for the fluxes at two ends of the capillary into the mass
balance equations for the two bulbs (eqs. 8.4-4), we get:

dt
z=0

z=L

(8.4-5a,

<8-4-5b)

Eqs. (8.4-1), (8.4-3) and (8.4-5) completely define the behaviour of the two-
bulb system after the initial state for the system is chosen. We shall assume that the
partition is on the left of the capillary, that is at z = 0. Thus, the initial conditions of
this system are:

t = °; yo=Zo ( o ) ; iL=iLi0)> z = y L
( 0 ) (8-4-6)

8.4.1 The Overall Mass Balance Equation:

The overall mass balance equation can be found by integrating the mass balance
for the capillary (eq. 8.4-1) with respect to z from 0 to L and combining the result
with the mass balance equations for the two bulbs (eqs. 8.4-5), we get:

dt
= 0 (8.4-7)

The square bracket term in the above equation is simply the total number of moles
in the system, and it is invariant with respect to time as expected for a closed
system.
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Integrating eq.(8.4-7) with respect to time from 0 to t, and making use of the initial
conditions (eq. 8.4-6) we obtain the following integral mass balance equation:

L

A Jydz + VoyQ + VLy_L = AL yL (0) + Vo yQ(0) + VL y_L(0) (8.4-8)
0

At steady state, the mole fractions in the two bulbs and in the capillary of any
component will be the same, that is:

Substitution of eq.(8.4-9) into eq.(8.4-8) yields the following solution for the steady
state mole fraction vector

ALy L(0) tV0yo ,Q) + VLyL(0)
" AL + V0+VL '

Usually, the volume of the capillary is much smaller than the volumes of the two
bulbs. Thus, we write:

| ) a ) V o y o (O) + VLyL(O) ^ ^
(oo)«

8.4.2 Non-Dimensionalization of the Mass Balance Equations

The system equations (eqs. 8.4-1 and 8.4-5) are coupled nonlinear partial
differential equations and must be solved numerically. To facilitate with the
numerical analysis, we define the following nondimensional variables

n = f;f=^l (8.4-12)

where the characteristic diffusion coefficient DT is chosen as the sum of binary
diffusion coefficients of (n-1) species with respect to the n-th species as given in eq.
(8.3-18d). As mentioned earlier, readers can choose other characteristic diffusivity
as they wish, for example the minimum binary diffusivity or the maximum binary
diffusivity.

With these definitions, the nondimensional mass balance equations are:
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where

dt'

%

dt*

ccn =•

T|=0

AL
Otr = •

AL

The boundary conditions of eq.(8.4-13a) are:
Tl = 0; y = yQ

(8.4-13b)

(8.4-13c)

(8.4-14)

(8.4-15a)

(8.4-15b)

The collocation analysis of this problem is given in Appendix 8.4, and the MatLab
code TWOBULB.M is available for the solution of this problem.

Transient ternary diffusion of hydrogen, nitrogen and CO2

To illustrate the solution procedure of this Stefan-Maxwell approach,
we apply it to the experimental results of Duncan and Toor (1962). The
two well-mixed bulbs used have volumes of 7.8 x 10~5 and 7.86 x 10'5 m3,
respectively, and the capillary tube has a length and a diameter of 0.086 m
and 0.00208 m, respectively. The operating conditions are 35 °C and 101.3
kPa. Duncan and Toor (1962) used a ternary system of hydrogen, nitrogen
and carbon dioxide in their experiment. We use the following numerical
values to denote the three components used in their experiment: 1-
hydrogen; 2-nitrogen and 3-carbon dioxide.

The binary diffusivities at the above operating conditions of 35 °C and
101.3 kPa are given below.

D12 = 8.33 x 10"5, D13 = 6.80 x 10"5 mVsec, D23 = 1.68 x 10"5 m2/sec

The initial conditions for the two bulbs are given in the following table:

LHS bulb RHS bulb
Yi(0) = 0
y2(0) = 0.50086
y,(0) = 0.49914

y,(0) = 0.50121
y2(0) = 0.49879

The MatLab code TWOBULB is executed and the results are shown in
Figures 8.4-1 and 8.4-2 for the mole fractions of hydrogen and nitrogen.
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Experimental data of Duncan and Toor (1962) are shown as symbols. The
mole fraction of nitrogen in the LHS bulb is initially slightly higher than
that in the RHS bulb. One would then expect to see the diffusion of
nitrogen from LHS to RHS (downhill diffusion). But the experimental
results as well as the computational results show the opposite, that is an
uphill diffusion of nitrogen. This is due to the flow of hydrogen from the
RHS to LHS bulb and its rate is such that it drags nitrogen molecules along
with it, resulting in the uphill diffusion of nitrogen. Later on, the mole
fraction of nitrogen in the LHS is high enough to overcome the reverse
diffusion effect and hence the mole fraction of nitrogen will decrease and
finally reach the steady state mole fraction.
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Figure 8.4-1: Mole fractions of hydrogen for LHS and RHS bulbs
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Figure 8.4-2: Mole fractions of nitrogen for LHS and RHS bulbs
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8.5 Diffusion in Nonideal Fluids

8.5.1 The Driving Force for Diffusion

Nonideal fluids, such as high pressure gaseous mixture or liquid mixture, have
higher density than the ideal gaseous mixtures dealt with in the previous section
(Section 8.2). Thus, when dealing with such fluids, it is not possible to assume that
collision is taken place by the two molecules, but three or more molecules may
occur simultaneously. In this case, the Maxwell-Stefan approach still applies, but
the driving force d^ is replaced by the following equation written in terms of the
chemical potential:

di = ^ F V n i (8.5-1)
R TRgT

Here (j.s is the chemical potential of the species i, which is given by:

H i^ io+RgTh t fPYi y i ) (8.5-2a)

where y is the activity coefficient and is a function of mole fractions of all species,
that is

Yi=Yi(y) (8.5-2b)

Equilibrium is characterized by the equality of the chemical potential.
Nonequilibrium is therefore induced by the gradient of the chemical potential. In
the thermodynamics of irreversible processes, chemical potential gradient is the
fundamentally correct driving force for diffusion. According to the Gibbs-Duhem
equation (2.3-5), we have:

2 > i V ^ = ° (8.5-3)
i = l

therefore substituting eq. (8.5-1) into eq. (8.5-3), we get

2>=0 (8-5-4)
i=l

Because of this Gibbs-Duhem equation, only n-1 Maxwell-Stefan equations are
independent.
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8.5.2 The Maxwell-Stefan Equation for Nonideal Fluids

The generalised Maxwell-Stefan equation for the case of nonideal fluids
containing n species is given below for one dimensional problems:

RgT dz

for i = 1, 2, ..., n-1. Only (n-1) above equations are independent because of the
Gibbs-Duhem restriction on the chemical potential (eq. 8.5-3). Eq.(8.5-5) is the
generalized Maxwell-Stefan constitutive relation. However, such form is not useful
to engineers for analysis purposes. To achieve this, we need to express the chemical
potential in terms of mole fractions. This is done by using eq. (8.5-2) into the
constitutive flux equation (8.5-5).

Expressing the chemical potential gradient in terms of the mole fraction
gradient, we have:

For constant pressure systems, the above equation becomes:

(8.5-6b)

Taking the total differentiation of the activity coefficient with respect to all the mole
fractions, we then get:

where

(8.5-8)

Here 5̂  is the Kronecker delta function. It is equal to 1 when i = j ; otherwise it takes
a value of zero.

The Maxwell-Stefan constitutive equation, in terms of the mole fraction
gradients, will become (by combining eqs. 8.2-7 and 8.2-5):
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(8.5-9)

for i = 1, 2, ..., n-1. We now illustrate below in Example 8.5-1 the constitutive flux
equation for a non-ideal binary system.

Constitutive flux equation for a non-ideal binary system

For example, for a binary system, we have the following diffusion
equations for the components 1 and 2, obtained from eq. (8.5-9) for i = 1
and 2:

+ ainr£y,,ya)l + ^ Y ^ ) = y,N y,N, ^ j
dy J dy2 cD1

12

CD12

But for binary systems only one of the above two equations is independent,
as by summing these two equations we get zero in the RHS and also zero in
the LHS. The LHS equalling to zero is due to the Gibbs-Duhem relation.
To illustrate this, we take the following equations for the activity
coefficients (regular solution model)

lny, =Ay2
1 (8.5-1 la)

lny2 = Ay2 (8.5-1 lb)

Using these activity coefficients into the Maxwell-Stefan equations (8.5-
10), we obtain:

+ 2Ay lY2 Vy2 = ^ ^ ^ ^ 1 (8.5-12a)
cDcD12

2Ay lY2 Vy i + Vy2 = Jl l^Jl l (8.5-12b)

Indeed, we see that by adding the above two equations, we find that both
sides equal to zero, indicating that the two equations are not independent.
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Keeping the first equation and using the relation y2 = 1 - yb we have the
following Maxwell-Stefan equation for the binary system:

( 8 . 5 . 1 3 )

'12

When A = 0 (that is ideal system), the above equation reduces to the
Maxwell-Stefan equation for ideal binary systems.

8.5.3 Special Case: Ideal Fluids

The ideal fluid is a special case of the nonideal fluid, that is when the activity
coefficient is unity. For such cases, the chemical potential is:

U i ^ o + R g T l n ^ y i ) (8.5-14)

For constant pressure, we have

[1 fori = j

hence:

ij 10 for i

i - V u i = V y i (8.5-15)
RgT

we then obtain the same Stefan-Maxwell equation for ideal fluids (eq. 8.2-34),
where the driving force is the gradient of the mole fraction.

8.5.4 Table of Formula of Constitutive Relations

The following table summarises the formulas for the case of bulk diffusion in
nonideal systems.

Table 8.5-1 Constitutive equations for the bulk diffusion

^i=±y^-^> for i=1;2,.,n_l(8.5-i6b)
dz £ DSJ*»
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These equations were obtained when the pressure is a constant. When the system's
pressure and temperature are not constant, the proper equations to use are:

dp- >^yiNi-yiNi
•=*- = Y J J for i = l ,2 , - ,n- l (8.5-18)
dz £ D

for nonideal and ideal systems, respectively. Haynes (1986) used the momentum
transfer approach to derive the above two formulas. In this approach the appropriate
driving force for diffusion is the gradient of the partial pressure as we have argued
in Section 8.2. The driving force of concentration gradient is only applicable to
isothermal systems, while the driving force of mole fraction is applicable to systems
having constant pressure and temperature. When one incorrectly uses the mole
fraction gradient as the driving force for a nonisobaric system, the sum of mole
fractions are not equal to unity. We shall discuss in more detail about non-isobaric
systems in Section 8.8.

The reason why only n-1 equations in the Stefan-Maxwell equation are
independent is not surprising since these equations describe only momentum
exchange between pairs of species, and they lack the necessary boundary conditions
defining the rate of momentum transfer to the capillary walls (Burghdardt, 1986).

Since there are only n-1 flux equations, the other condition needed to solve the
problem is tied to the specific problem, such as the Graham's law of diffusion in an
open system or the flux of the n-th species is zero for the case of Stefan tube. The
latter is the case that we shall deal with in the next example.

I Example 8>5-2:| Nonideal binary systems in a Stefan tube

Let us now consider the importance of the nonideality in the diffusion
of a binary system in a Stefan tube. The relevant Maxwell-Stefan equation
is given in eq. (8.5-10), and if the activity coefficient is given by eq. (8.5-
11) the resulting constitutive flux equation is given by eq. (8.5-13).

If the flowing gas (component 2) across the tube is not soluble in
liquid 1, we have N2 = 0 and eq. (8.5-13) then can be rewritten:
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D12[l-2Ayi(l-yi)]

(i-y,)
(8.5-19)

from which the apparent diffusivity takes the following concentration
dependence form as:

(8.5-20)

For A < 2, the apparent diffusivity is positive for all range of concentration.
For A = 2, the diffusivity is zero at the mole fraction of 0.5. What this
means is that the slope of concentration gradient is infinite at this point.

Figure 8.5-1 shows the plot of y i ( l - y i ) and versus v,.
2A

0.30

0.25

(1/2A)

0.20

^ 1 U 5

0.10

0.05
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y

0.8 1.0

Figure 8.5-1: Plotofy(l-y) versus y

When A > 2, we see that the line intersects the curve Vi(l-Vi) at two
2A

critical mole fractions v* and v**, given bv:

„ 1 (1 1
v* = — +

2 U 2A

(8.5-21a)

y * * = _ _ _ _ -

2 U :
(8.5-21b)

At these two concentrations, the apparent diffusivitv is zero, and for anv
concentrations between y** and y*, the apparent diffusivity is negative



468 Kinetics

suggesting the uphill diffusion! For concentrations either greater than y*
or less than y**, the apparent diffusivity is positive.

Let us take the case whereby the mole fraction just above the liquid
surface is y10 greater than y*. The mole fraction will decrease from y10 to
y* at the position z*, at which the slope is infinite due to the zero apparent
diffusivity at y*. At the position z*(+) the mole fraction jumps to a lower
value y** at which the concentration gradient is also infinite due to the
zero apparent diffusivity also at that point. Figure 8.5-2 shows the typical
concentration profile.

Mole
fraction

0.0 0.2 0.4 0.6 0.8

Figure 8.5-2: Mole fraction profile

For constant flux, eq. (8.5-19) can be integrated between z = 0 and z*
to yield the following equation:

= - c

>[l-2Ay,(l-y,)] K [l - 2Ay,(l - y,)]
( i -y . ) d y ' - c D » J ( i -y.) •

that is

N,z* = cD 12 (8.5-22)

Similarly, we also integrate eq. (8.5-19) from z = z* to z = L and get

(L-z*)N, =cD 1 2yi^_j-A(y** 2- y^) | (8.5-23)
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The two equations (8.5-22 and 8.5-23) contain two unknowns Nj and z*.
The evaporation flux N, can be obtained by summing these two equations,
and we get:

N, =
cD 12 In i - y

l - y l o ' l - y
- A ( y ? 0 - : , * * 2 _ V 2 (8.5-24)

The position z* at which the phase transition takes place is obtained by
combining eqs. (8.5-22) and (8.5-24).

z* = L.

In i - y * i - -A(y2
0-y*2+y**2-y2

L)

(8.5-25)

To obtain the concentration profile for distance between 0 and z*, we
integrate eq. (8.5-19) from 0 to z, that is:

(8.5-26)

where N, is given in eq. (8.5-24). Upon substitution eq. (8.5-24) into the
above equation, we have the following concentration profile:

• = f (8.5-27)

forO<z<z*.
Similarly, to obtain the concentration profile for distance between z*

and L, we integrate eq. (8.5-19) from L to z and obtain the following result:

In i - y

J-y,o i -

for z*< z < L.

- A ( y 2
0 - y*2 +y>

= 1-— (8.5-28)
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Numerical example:

We take the case of A= 2.5, the two critical mole fractions (from eqs. 8.5-

21) are

y* = 0.7236 (8.5-29a)

y * * = 0.2764 (8.5-29b)

Consider the Stefan tube having y10 = 0.8 and y1L = 0. We compute the

flux from eq. (8.5-24) as:

J-LLL = ln( ! ~ ° 7 2 3 6 . — 1 ~ ° ] -2.5(0.82 -0.72362 + 0.27642 - 0 2 )
cD12 I 1-0.8 1-0.2764; T8 5 30^

N ' L =0.165
cD12

The position z* at which the phase transition exists is (eq. 8.5-25)

lnf 1 ~ 0 7 2 3 6 ] _ 2.5(o.82 -0.72362

z* V 1-0.8

L " 0.165 (8.5-31)
7 *
— = 0.197

The concentration profile for distance between 0 and z* is given by eq.

(8.5-27), that is for this case A = 2.5, it is

ln[5(l - y)] - 1 (0.64 - y2) = 0.165^) (8.5-32)

and the concentration profile for distance between z* and L is given by eq.

(8.5-28)

feM^H) <8-5-33>
The concentration profiles are given in Figure 8.5-2, where we see the

abrupt change in the mole fraction at the critical position z*.

8.6 Maxwell-Stefan Formulation for Bulk-Knudsen Diffusion in a Capillary

The last sections (Section 8.2 to 8.5) demonstrates the Maxwell-Stefan analysis

of the situation when the bulk diffusion is the only diffusion mechanism, that is

when the mean free path of the molecules is much shorter than the pore dimension.
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However, when the mean free path is much greater than the pore dimension
which is usually the case for most practical solids, the molecules will collide with
the wall more frequently than they do between themselves. This is the basis of the
Knudsen diffusion mechanism. When the mean free path is comparable to the pore
dimension, the overall transport of molecules is due to the reflection of molecules
from the wall as well as to the collisions between the diffusing molecules. This is
the case where the bulk diffusion and the Knudsen diffusion will occur together. To
combine these two modes of transport in a systematic way, let us adopt a dusty gas
model proposed by Mason and co-workers in the late 60. In this model, the porous
solid is modelled as a collection of stationary giant molecules. If we have n
diffusing species in the gas phase, the solid is treated as the (n+l)-th species,
uniformly distributed in space with a zero velocity. Now we apply the Maxwell-
Stefan equation for the species i by balancing the force acting on a mole of species i
with other species including the giant solid object, that is

But the giant molecule (that is solid) is assumed stationary (vn+1 = 0), the above
equation then becomes:

g
equation then becomes:

where DKi is the Knudsen diffusivity defined as follows:

D K J ^ ^ 1 (8-6-2b)
yn+i

Since the concentration distribution of the solid molecules is assumed uniform,
the above Knudsen diffusivity is a constant across the domain of interest. As
defined in eq. (8.6-2b), the Knudsen diffusivity does not show any explicit
dependence on the solid properties as well as the diffusing species properties.
However, as learnt in Chapter 7, we have shown that the Knudsen diffusivity takes
the following form for a cylindrical pore of diameter d:

(8.6-3a)

while for a porous solid with arbitrary pore cross section, it has the form
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4Kn 8R.T
3 y nM{

where KQ is the structural parameter for Knudsen diffusion.
The constitutive flux equation written as in eq. (8.6-2) is not useful for mass

transfer calculation. Written in terms of the fluxes (Nj = c^), the desired
constitutive flux equations are:

RgT dz £ cDy cDi>K

for i = 1, 2, ..., n. For ideal gas system, where the chemical potential is related to
the gas phase partial pressure

u; = j iO f i+RgTlnP i (8.6-5)

the above equation can be written in terms of the partial pressure gradients as
follows:

RgTdz £ Dy D K > i

for i= 1, 2,..., n.
It is important to note that n of these equations are linearly independent and can

be applied to determine the flux N uniquely, although in the case of bulk diffusion
only (n-1) equations are linearly independent. This is due to the fact that the above
equation contain the term N/DK which characterises momentum transfer to the wall
as a boundary condition (Burghardt, 1986).

8.6.1 Non-Ideal Systems :

For nonideal gas systems, the chemical potential of the component "i" is given
by:

Hi = \xi0 +RgTln(yjPi) (8.6-7)

where the activity coefficient is a function of mole fractions of all species as:

Yi=Yi(y) (8-6-8)



Diffusion in Porous Media: Maxwell-Stefan Approach 473

Substitution of eq.(8.6-7) into eq.(8.6-4), we get:

d l n ( Y i p , ) = A y j N i - y i N j + _ N i _

dz £? cDfi c D i K

or written explicitly in terms of the mole fraction gradients

j dz ft cDy c D i K
f o r i . , , 2 n ( 8 . 6 . 1 0 )

If we define the following thermodynamic correction matrix F as follows:

for i, j = 1, 2, ..., n, where 6̂  is the Kronecker delta function, eq.(8.6-10) will
become:

for i = 1, 2, ..., n. Eq.(8.6-12) is the general Stefan-Maxwell constitutive equation
for a constant pressure system where the bulk diffusion and the Knudsen diffusion
are simultaneously operating. The nonisobaric case will be discussed in Section 8.8.

|fe^^?;l;:l Non-ideal binary systems

Now let us apply the Stefan-Maxwell equation (8.6-12) to a binary
system with the following expressions to describe the activity coefficients

lnY l=Ay 2
2 , l ny 2 =Ay? (8.6-13)

With these forms, the Stefan-Maxwell equations of eq.(8.6-12) will
become:

^ 2 A y i y 2 ^ + - A - (8.6-14)
dz dz D D12 cDK 1

^ 2 A y i y 2 f
dz dz
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Summing these two equations gives (note that y, + y2 = 1):

N, (8.6-16)

which is the usual looking Graham law of diffusion for a binary system.
Substituting the Graham law of diffusion into eq.(8.6-14), we get the

final form for the constitutive flux equation for the component 1:

(8.6-17a)
c[l-2Ay,

1 1-
D K 1

( 1 -

-O,j

DI2

y.)

.yi

dy,

dz

where

a 1 2 = 1 - (8.6-17b)

Knowing the flux for the component 1, the flux of the component 2 is
calculated from the Graham law of diffusion equation (8.6-16).

8.6.2 Formulas for Bulk and Knudsen Diffusion case

The following table summarises the formulas for the combined bulk-Knudsen
diffusion.

Table 8.6-1 Equation formulas for the case of bulk-Knudsen diffusion

dz
+cDSj cD i )K

f o r i = l ,2,- ,n (8.6-18a)

IDEAL SYSTEMS: --Z± =
dz CD, cDj

IDEAL SYSTEMS:
N-

R g Tdz D

f o r i = ij2,...,n (8.6-18b)

- u - . . <-.*>

f o r i = i,2,-»,n (8.6-18d)

i>K
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As discussed in Section 8.5, the correct driving force for mass transfer in
nonisothermal, non-isobaric conditions is the partial pressure gradient. Written in
terms of these gradients (Appendix 8.5) the constitutive Maxwell-Stefan flux
equations are:

^ L f ^ - ^ . i L for i=1)2,.,n(8.6-19a)

and

- - ^ — ^ L = y Z i _ 2 — ^ _ L + J i i _ for i = l,2,---,n (8.6-1%)
RgT dz p D{j Di>K

for nonideal and ideal systems, respectively. For constant pressure conditions, the
above equations reduce to eqs. (8.6-18) tabulated in Table 8.6-1.

Example 8:6-2:1 Binary systems in a constant pressure capillary

We have presented the necessary equation to relate flux and mole
fraction gradient for a multicomponent system (eqs. 8.6-18) when both
molecular diffusion and Knudsen diffusion are operating. Let us now treat
a special case of binary systems. For such a case, the Stefan-Maxwell
equations are:

dc, _ y 2 N , - y i N 2 N!

dz D12 DK t l
(8.6-20a)

dz

Adding the above equations, we get

dc,
dz

For constant pressure, we

dc2

dz

have

N

DK

dc, dc2

N2

DK ,2

= 0

(8.6-21)

dz dz

and since the Knudsen diffusivity is inversely proportional to the square
root of molecular weight (eq. 8.6-3), eq. (8.6-21) is reduced to:
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(8.6-22)

which is the usual Graham law of diffusion for a binary system.
By carrying out the mass balance for the component 1 over a thin shell

in the capillary we have:

dz
= 0 (8.6-23)

By using the Grahams law equation (8.6-22) into the Stefan-Maxwell
equation (8.6-20a), we obtain the following equation expressing the flux in
terms of concentration gradient for the component 1:

N , = -

D .2 D K,

(8.6-24)

where a12 is defined as follows:

(8-6-25)

Substitution of this equation into the mass balance equation yields Nj =A

(i.e. constant flux). Integrating this equation one more time using the
following two boundary conditions at two ends of the capillary:

we obtain the following solution for the flux of the component 1

=
La

12

(8.6-26)

(8.6-27a)

This is the steady flux passing through a capillary tube at constant pressure.
This flux depends on pressure as well as the pore size. We note that D12 is
inversely proportional to pressure while DKtl is proportional to pore radius.
With this, we can write eq.(8.6-27a) as follows:

RgTLa12

in
1 -

l-o12y.o+(D?2/D°K,1)(P0/P)/(r/r0)
(8.6-27b)
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where D°2 is the binary diffusivity at some reference pressure Po, and

D ^ ! is the Knudsen diffusivity at some reference pore radius r0. The

following figure (8.6-1) shows the variation of the flux versus the pressure

or pore radius for three values of D ̂  / D^ j .

Normalised 1.0
flux

20
P/Po or r/r0

Figure 8.6-1: Plot of the normalised flux versus P/Po or r/r0

Here we note that when the pressure is low or the pore radius is small,
the flux increases with an increase in either pressure or radius. This is the
Knudsen diffusion control regime, in which the higher is the pressure, the
more collision by the molecules with the wall occurs and hence the higher
flux. However, when the pressure is high or the pore radius is large, the
normalised flux is independent of the pressure or the pore radius. This is
so because we are in the bulk diffusion regime, and in this regime the pore
radius does not have any influence on the transport of molecules. Also in
this regime, an increase in pressure results in an increase in the total molar
density and a decrease in the diffusivity. These two effects exactly balance
each other, resulting in a constant flux with pressure.

If the capillary diameter is fairly large, that is the mean free path is
smaller than the capillary size, we would expect the molecular diffusion
will dominate the transport, that is D°2 / D ^ , approaches zero and the flux

of the component 1 in eq.(8.6-27a) will become:

XT _ C D 1 2

>12
(8.6-28)
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The total concentration is proportional to the total pressure, while the
molecular diffusivity is inversely proportional to the pressure; therefore the
flux will be independent of pressure in the case of molecular diffusion as
long as the mole fractions at two ends points of the capillary remain
constant (Scott and Dullien, 1962; Rothfield, 1963).

When the capillary size is much smaller than the mean free path, the
Knudsen diffusion will dominate the transport, and the flux equation (eq.
8.6-27a) will reduce to:

( 8 ' 6 ' 2 9 )

The molar concentration is proportional to the total pressure; thus, the flux
increases with pressure which is contrast to the case when the molecular
diffusion dominates the transport. Also the Knudsen diffusivity is
proportional to the pore radius, hence the flux increases with the size of the
pore.

To delineate the regions of validity for molecular diffusion and Knudsen

diffusion, we need to compare the mean free path (X) to the pore size (r). The

following criteria delineate those regions:

X/2T > 10 : Knudsen mechanism

0.01 <XI2x< 10 : Transition (8.6-30)

A,/2r < 0.01 : Continuum diffusion

Steady state diffusion of helium-nitrogen in a capillary

We take the following example of a binary system of helium and
nitrogen diffusing in a capillary of 1 cm in length. Pure helium is at one
end of the capillary while pure nitrogen is at the other end. The mean pore
size (radius) of the capillary is 1 micron.

We let 1 to denote helium and 2 to denote nitrogen. The binary
diffusivity of helium-nitrogen system at 25 °C and 1 arm is:

D12 = 0.769cm2 / sec @ 25° C & 1 arm

From the given pore size of the capillary (1 micron), the Knudsen
diffusivity is calculated from the formula (Table 7.4-2):

I 298K
D K 1 =9700x( lx l0" 4 cm)J = 8.372cm2 / sec (8.6-31)

\ 4g / mole
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Note that the Knudsen diffusivity is about one order of magnitude higher
than that of the molecular diffusivity at 25 °C and 1 arm. Therefore, one
would expect that molecular diffusion will control the diffusion flux, and
the proper equation to calculate the flux is eq.(8.6-28).

We have the parameter a12 in eq.(8.6-25) as:

0 , 2 = 1 - ^ = 0.622 (8.6-32)

Let us first study the situation where the total pressure is 1 arm.

1 arm condition:
For a pressure of 1 arm and the temperature of 25°C, the total molar

concentration is:

P latm
c = •

RgT (82.057atm - cc / mole - K) (298K)

We calculate the flux of helium from eq.(8.6-27a):

• = 4.0895 xlO"5cm3/ sec

! = 4.264 x 10"5 m ° l e (8.6-33)
cm - sec

This flux is equivalent to 1.043 cc of gas at 25 °C and 1 arm per cm^ of
capillary per second.

Knowing the flux of helium, the flux of nitrogen is calculated from the
Graham law of diffusion (eq. 8.6-22):

N2 = _ N i \K = _4.264 x 10-%/A = _ L 6 1 2 x 10"5 ™ l e S (8.6-34)
2 ]\M2 \28 cm 2 - s ec

A negative sign implies that nitrogen is flowing in the opposite direction to
that of helium. Therefore, the total flux will be:

NT = N, + N2 = (4.264 - 1.612) x 10"5 = 2.652 x 10"5 ™°leS (8.6-35)
cm - sec

which is positive, indicating that the total flow is in the same direction as
that of helium.

0.1 arm condition:
Let us now consider the situation where the total pressure is reduced by

a factor of 10 from the previous example, that is a new total pressure of 0.1
arm. At this pressure, the molecular diffusivity is ten times the binary
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diffusivity in the previous case because the binary diffusivity is inversely
proportional to the total pressure, that is:

D12( @0.1 atm) = D12( @1 atm) a t m = 0.769 x 10 = 7.69cm2 / sec

This binary diffusivity is now comparable to the Knudsen diffusivity
(which is 8.372 cm2/sec in eq. 8.6-31). Therefore, we expect both of these
diffusion mechanisms are contributing to the overall diffusion flux. For a
pressure of 0.1 atm, the total molar concentration is:

c = — = — = 4.0895 x lO 'W / sec
RgT (82.057atm - cc / mole - K) (298K)

We therefore can calculate the flux of helium as:

cDr

La,

DK = N, = 1.98xlO"5-
mole

cm - sec

This flux is equivalent to 4.8 cc of gas at 25 °C and 0.1 atm per cm^ per
second.

Knowing the flux of helium, the flux of nitrogen is calculated from the
Graham law of diffusion

I K = _L98 x l0-\f± = - 7.48 x 10"6

M V2828 cm - sec

A negative sign implies that nitrogen is flowing in the opposite direction to
that of helium. Therefore, the total flux will be

NT = N t + N2 = (1.98 - 0.748) x 10"5 = 1.23 x 10"5 m ° l e S

cm2 - sec

which is equivalent to 0.3 cc/cm2-sec at 25 °C and 1 atm, or 3 cc/cm^-sec at
25 °C and 0.1 atm.

[Examples §6-4: j Steady state ternary system in an open capillary
Ternary systems were first dealt with by Cunningham and Geankoplis

(1968) and by Remick and Geankoplis (1970). Cunningham and
Geankoplis (1968) studied open systems as well as closed systems. In the
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closed systems where the pressure is constant, equimolar diffusion occurs.
In the open systems, however, there are sources and sinks of infinite extent,
which is generally the case for diffusion studies in porous solids, equimolar
diffusion does not occur, but rather the fluxes will follow the Graham law.

For open systems with three diffusing species, the two independent
flux equations are:

dz D1 2 D n D K 1
12 B KA (8.6-36)

dc2 = y i N 2 - y 2 N 1 | y 3 N 2 - y 2 N 3 | N 2

dz D12 D23 D K 2

and the Graham law of diffusion for a ternary system is:

M 7 + N 3 > / M 7 = O (8.6-37)
Note that yj + y2 + y3 = 1. At steady state, these three fluxes are constant,
and Cunningham and Geankoplis (1968) solved this set using the boundary
conditions:

z = 0; yj = yj0 and z = L; Y j = yjL (8.6-38)

They obtained solutions, but to find the flux they had to use the trial and
error method, because the concentration profiles are written in terms of the
flux which is not known a-priori. Differentiate the concentration profiles
and evaluate the result at either end of the domain, they obtained algebraic
equations written in terms of Nj and N2, from which they can be solved

numerically. In the next section where we present a multicomponent
system containing n species in a capillary, we will obtain the solution by
using the vector-matrix method, which is more compact and elegant than
the trial-and-error method of Cunningham and Geankoplis.

Remick and Geankoplis (1970, 1974) tested their solutions with
experimental data of helium, neon and argon diffusion in an open system.
These components were chosen such that they differ in molecular weights
and there are no surface flow. The capillary radius is chosen such that the
Knudsen diffusivity is the same order as the molecular diffusivity at 25 °C
and 1 arm. Osmotic diffusion (i.e. diffusion occuring even if the
concentration gradient is zero) was observed for argon in the transition and
molecular regions, and osmotic diffusion does not occur in the Knudsen
region. More details of their experimental set up are given in their papers.
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8.6.3 Steady State Multicomponent System at Constant Pressure Conditions

We have shown the Stefan-Maxwell approach in solving for combined bulk and
Knudsen diffusion in binary and ternary systems. Now we would like to present the
analysis of a multicomponent system, and will show that the analysis can be
elegantly presented in the form of vector-matrix format.

The neccessary constitutive equation relating the fluxes and mole fraction
gradients is the following so-called modified Stefan-Maxwell equation (from eq.
8.6-6):

K i

where c is the total molar concentration. Only n-1 equations are independent
because of the constant pressure condition, that is

(8.6-40)

Eq.(8.6-39) can be summed with respect to all species to give:

_ (8.6-41)

But the Knudsen diffusivity is inversely proportional to the square root of the
molecular weight, hence we get

n

0 (8.6-42)

which is the statement of the Graham's law of diffusion in open system. From this,
we can solve for the flux of the n-th species in terms of the other fluxes, that is:

n-l

Nn = - ^ V j Nj = 0 (8.6-43a)

where Vj relates the molecular weight of the species j to that of the species n.

" (8.6-43b)

Taking the last term out of the second term in the RHS of eq.(8.6-39), we get
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dz
Nn Nj

^̂ ^̂ _̂_ _p — — (8.6-44)
^

J*'

for i = 1, 2, ..., n-1.
Substituting eq.(8.6-43a) for the flux of the n-th component into eq.(8.6-44), we

obtain:

- — = Nj ^-^--Yi X — - + Yi Z - ^ ^ + - ^ — (8.6-45)
dZ • , CiJ:: • . CL):: • , CL): „ C1J î  :

for i = 1, 2, ..., n-1, or we can write it in such a way to group the terms having Nj
and N: as factor as follows:

dz y +
^ c D y cDi>n cDK i
ji

n-1 XT .

-y-Y—
1 ^ cD

n-1

(8.6-46)

for i= 1,2, ..., n-1.
With the form of eq.(8.6-46) where terms associated with Nj and Nj are

separated, we can now rewrite it into a compact vector-matrix form as follows:

dy
: r B(y)N
dz = -

where y_ and N are (n-1) tupled vectors defined as:

y = [yi yi ••• yn- i]T

N2 ...

and the matrix B having a dimension of (n-1, n-1) is defined as:

DK . i

D i

j=i

f or i = j

for i

(8.6-47)

(8.6-48a)

(8.6-48b)

(8.6-49)
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Eq.(8.6-47) expresses the relationship between the concentration gradient vector and
the flux vector. We can also write eq.(8.6-39) as a relationship between the
concentration and its gradient. This is done as follows.

Rewrite eq.(8.6-39) as follows:

dyi _ YJ±_ yn ^ Nj i Nj

dZ 1T1CD:: 1 cDi,n H c D i . j cDK,i

But
n-l

(8.6-50)

(8.6-51)

Eq.(8.6-50) will become:

dz ' £ c D s cDin
ji

c D K,i
(8.6-52a)

We now group the terms associated with y4 together and those associated with y}

together, and finally obtain:

A\r N; N;
- +

1 • "> (8.6-52b)

for i = 1, 2, ..., n-l. Eq.(8.6-52b) can be put in a vector form as:

dy
- = = A(N)y + V(N)
dz = - —

(8.6-53)

where y , N are defined in eqs.(8.6-48), and A ( n - l , n - l ) and v|/(n-l) are

defined as follows:

1 1

c D i i,n

N:

for i = j

for i * j

(8.6-54)

and
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For a capillary with constant boundary conditions:

z = 0; y = yQ (8.6-56a)

z = L; y = yL (8.6-56b)

eqs. (8.6-47) and (8.6-53) can be integrated with constant boundary conditions to
give the following solution for the fluxes (Appendix 8.2):

^^Zo^^h^ljtZo -1L) (8.6-57a)
or

N = c [B(yL)]'1 A.exp(LA)[exp(LA) - 1 ] " 1 ^ - y j (8.6-57b)

The difference between eqs.(8.6-57a) and (8.6-57b) is the evaluation of the matrix
B. In eq.(8.6-57a) it is evaluated at y while in eq.(8.6-57b) it is evaluated at y .

Note that eq.(8.6-57a) or (8.6-57b) is a set of nonlinear algebraic equations in
terms of (n-1) fluxes because the matrix A is a function of N. Thus it must be

solved by a numerical method, such as the Newton-Raphson method. For using
such method, the initial guess for the fluxes is

(8.6-58a)

where

The code CAPILL2 written in MATLAB is available for the numerical solution
of eq. (8.6-57). Knowing the fluxes of the (n-1) components, the n-th flux can be
obtained from eq.(8.6-43a).

Also, knowing the fluxes, the concentration profiles are given by (Appendix
8.2)

y-yo =[exp(zA)-l][exp(LA)-l]"1(yL - y j (8.6-59)

The following example illustrates the numerical evaluation of the flux solution
(eq. 8.6-57) by using the code CAPILL2.
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: Steady state ternary diffusion of hydrogen/nitrogen/CO2

through a capillary

We take an example of diffusion of hydrogen (1), nitrogen (2) and
carbon dioxide (3) through a capillary having a length of 0.086 m and a
pore radius of 0.2 micron. The conditions of this system are 35 °C and 1
arm.

Knowing the temperature of the system and the pore radius, we
calculate the Knudsen diffusivities of all three species (Table 7.4-2):

D K,I = 9700 (2 x 10"5) I 3 5 4 " 2 7 3 = 2.41 cm2 / sec

DK 2 = 9700 (2 x 10"°) J = 0.643 cm2 / sec

D K 3 = 9700(2 x 10"5) I 3 5 * 2 7 3 = 0.513 cm2 /secK'3 V Jy M3

The binary diffusivities at the conditions of 35 °C and 1 arm are:

D12 = 0.833 cmVsec, D13 = 0.680 cm2/sec, D23 = 0.168 cmVsec

The mole fractions of these three components at two ends of the
capillary are given in the following table

@z =

y, = 0 y, = 0.50121
y2 = 0.50086 y2 = 0.49879
y, = 4.9914 ya = 0

Using the code CAPILL2, we calculate the fluxes of the three components
are:

N, = - 1.6 x 10"6, N2 = + 1.134 x 10-8, N3 = + 3.318 x 107 mole/cmVsec

The sum of these fluxes is - 1.256 x 10'6 mole/cmVsec, indicating that the
bulk flow is in the direction from z = L to z = 0. We also note that the
above fluxes values satisfies the Graham's law of diffusion (eq. 8.6-42).
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8.7 Stefan-Maxwell Approach for Bulk-Knudsen Diffusion in Complex System
of Capillaries

We have seen in Section 8.6 that the analysis using the Stefan-Maxwell
approach is readily carried out for the case of a simple capillary, namely a uniformly
sized capillary. In this section we will extend the analysis to more complex pore
networks and will consider the three cases:

(i) bundle of parallel capillaries
(ii) two capillaries in series
(iii) network of three capillaries

to illustrate the application of the Stefan-Maxwell approach to complex
configurations of capillaries.

8.7.1 Bundle of Parallel Capillaries

We first consider the case of two parallel capillaries as shown in Figure 8.7-1.

Figure 8.7-1: Bundle of parallel capillaries

In this case, the results obtained in Section 8.6 are directly applicable here as
the two capillaries are acting independently, that is the fluxes passing through the
two capillaries for the n-1 components are (eq. 8.6-57a):

N(1) =c[B(1)(yo)]"1A(1)[exp(LA(1))-l]"1(yo - y j (8.7-la)

and

N ( 2 ) = c A(2)[exp(LA(2)) -l]" '(yo - y j (8.7-lb)

where N(1) and N(2) are diffusive fluxes for the two capillaries, and A(1) and A (2)

are matrices, which are function of N

A ( 1 )=A ( 1 )(N ( 1 )) (8.7-2a)
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A (2 )=A (2>(N (2>) (8.7-2b)

Here we use the upperscript to denote the capillary. The matrix B is defined in

eq.(8.6-49) and the matrix A is defined in eq.(8.6-54). Eq.(8.7-la) is a set of n-1

nonlinear algebraic equations, from which we can solve for fluxes for the n-1
components through the capillary # 1. Similarly, solving eq.(8.7-lb) will yield
fluxes through the capillary # 2.

The average fluxes across the bundle of the two capillaries is then simply:

where S(1) and S(2) are the cross-section areas of the two capillaries, respectively.
The same analysis can be carried out when we have a bundle of parallel

capillaries with a distribution in capillary pore radius. The distribution function is
f(r) with f(r)dr being the void area of capillaries having radii between r and r + dr
per unit cross-sectional area of the medium. Thus the porosity of the medium is
then the integral of f(r)dr over the complete range of pore radius, that is

'max

:= ff(r)dr (8.7-4)

The fluxes of (n-1) components through a capillary of radius r are given by (eq.
8.6-57a)

( y Q - y L ) (8.7-5)

Note that B is a function of the capillary radius because of its dependence through

the Knudsen diffusivity (see eqs. 8.6-49 and 8.6-3). It is reminded that A is a

function of N as given in eq. (8.6-54).

The mass transfer per unit area through the capillaries having radii between r
and r+dr is

dM = N.f(r)dr (8.7-6)

Thus, the total mass transfer per unit area of the medium passing through all
capillaries is the integration of the above equation over the complete range of pore
radius:
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'max

M= Jf(r)Ndr (8.7-7)

The average flux is defined as the mass transfer divided by the area available for
diffusion, that is:

Jf(r) N dr

The mass transfer rate in eq. (8.7-7) can be approximated by the following
quadrature formula:

_Q_ . ,

(8.7-9)

where Wj is the weighting factor, and r, is the radius at the j-th quadrature point.
Here Nj is the flux vector at the radius ij and it is solved from the algebraic equation
(8.7-5).

An alternative to the above approach is to define a mean pore radius at which
the matrix B can be calculated. The mean pore radius can be calculated from

(Wang and Smith, 1983), assuming a uniform cylindrical pore

2V
r = — (8.7-10a)

Sg

where V is the void volume and Sg is the internal surface area, and they can be
calculated from the knowledge of the pore size distribution:

Jf(r)dr
- = JVnin (8.7-10b)

The approximate mass transfer per unit area of the medium is then given by

1 •A-[exp(LA)-l]'1(yo - y j (8.7-11)
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8.7.2 Capillaries in Series

Having considered the bundle of capillaries in parallel in the previous section,
we now consider two capillaries in series as shown in Figure 8.7-2. The length and
radius of the section 1 are L, and rb respectively. Similarly, those for the section 2
are L2 and r2.

2r,

Figure 8.7-2: Two capillaries in series

To tackle this problem, we shall consider the two sections separately and then
enforce the continuity of flux at the junction between the two sections to determine
the desired solution. Let the mole fractions at the junction of the two sections are
y *, which are unknown at this stage. The fluxes leaving the section 1 (eq. 8.6-57a)

are

N(1) =c[B(1)(yo)]"1A(1)[exp(L1A(1))-l]"1(yo -y*) (8.7-12)

Here we use the matrix B evaluated at y which is known, and

A ( 1 )=A ( 1 ) (N ( 1 ) )

The upperscript is used to denote the section.
The fluxes leaving the section 2 (eq. 8.6-57b) are

(8.7-13)

N ( 2 ) = c [B (2 ) (yL)]"1 A ( 2 ) .exp(L2 A
(2))[exp(L2 A

( 2 )) - i ] " 1 (y * - y L) (8.7-14)

The matrix B (2) is evaluated at y (which is also a known mole fraction) and the

matrix A (2) is a function of N ( 2 ) , that is

A (2 )=A (2 )(N (2 )) (8.7-15)
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The continuity of mass at the junction between the two capillaries requires that

M = S ( 1 )N ( 1 )=S ( 2 )N ( 2 ) (8.7-16)

which relates the flux vector of the capillary 1 to that of the capillary 2. Eq. (8.7-

12), (8.7-14) and (8.7-16) are three equations in terms of N (1), N (2 ) and y *. Thus,

by solving these three equations we will obtain the solutions for the fluxes as well as
the mole fractions at the junction between the two sections. What we shall do in an
example below is the application of the elimination method to solve for the fluxes.

i^fe Two capillaries in series

Substitution of eqs. (8.7-12) and (8.7-14) into the equation of
continuity (eq. 8.7-16) gives:

M = S<1)c[B<1»(yo)]"IA(1)[exp(L1A(1))-l]"'(yo -y*) . ^

= S<2>c[B<2»(yL)]"lA<2»exp(L2A«2»)[exp(L2A<2>)-Ip(y*-yL)

To simplify the notation, we let

( 1 ) [ ( 1 ) ] " 1 (8.7-18a)

C<*> = S
(2> [B< 2 ) (y L )]"' A ( 2 ) . exp(L2 A

( 2 ) ) • [exp(L2 A
( 2 ) ) - 1 ] " ' (8.7-18b)

Eq.(8.7-17) then becomes:

M = c C ( I ) ( y o - y * ) = c C ( 2 ) ( y * - y L ) (8.7-19)

This equation is the required equation to solve for the mole fraction at the
junction, y_*. We make use of the following equation:

z * - y L
= ( y o - y L ) - ( Z o - z * ) <8-7-20)

and substitute this into eq.(8.7-19) to get

C(1) (y0 - y*) = C(2)[(yQ - yL ) - (yo - y*)] (8.7-21)

Solving for (y - y*), we have:
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(8.7-22)

Substitute eq.(8.7-22) into eq.(8.7-19), we obtain the following desired
solution for the mass transfer rate:

M = S(1)N(1) =c-C ( 1 ) . [c ( 1>+C ( 2 )]" 'c ( 2 )(yo-yL) (8.7-23)

written in terms of the known overall driving force. Note that C ^ is a

function of N(1) and C(2) is a function of N (2) . But N (2) is related to

N*1' according to eq.(8.7-16). Thus, the above equation is a set of (n-1)

nonlinear algebraic equations in terms of N*1^, which can be solved

numerically.
Instead of using eq.(8.7-20), we could use:

Substitution of this equation into eq.(8.7-19), we have:

from which we can solve for y * - y

1C(1)(yQ - y L ) (8.7-26)

Thus, substituting eq.(8.7-26) into eq.(8.7-19), we obtain another
expression for the mass flux

M = S(2>N<2) =C.C (2)[C (1) + C ( 2 ) ] " 1 C ( 1 ) ( y o - y J (8.7-27)

The mass transfer rate M calculated from eqs. (8.7-27) and (8.7-23) must
be the same. Thus

C ( 2 ) [C(1) + C ( 2 ) ] " ' C(1) = C(1) [C(1) + C ( 2 ) ] " ' C ( 2 ) (8.7-28)

which is mathematically the case (Appendix 8.6).
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8.7.3 A Simple Pore Network:

Having solved the steady state mass transfer problem for two simple
configurations of pore, we now turn to a more complicated pore network as shown
in Figure 8.7-3. Like the previous example, we denote the mole fraction at the
junction of three capillaries be y *, and then solve for the fluxes of the three

capillaries separately. Once this is done, we then enforce the continuity of fluxes at
the junction of these capillaries to obtain the desired solutions.

Figure 8.7-3: A simple pore network

The fluxes from A to B are given by (from eq. 8.6-57a):

( 1 ) ( y o ) ^ - y * ) (8.7-29)

Similarly, the fluxes from C to B and those form D to B are (using eq. 8.6-57b
rather than 8.6-57a because y * is still unknown):

N ( 2 ) = c fB(2) (yL )]" ! A ( 2 ) (N(2)).[exp(L2 A
( 2 ) (N ( 2 ))) - i ] ' * (yL - y *) (8.7-30)

and

N(3) =c[B(3)(y )r1A(3)(N(3)).[exp(L3A(3)(N(3)))-ir1(y -y*) (8.7-31)
L— — L j — L — - j \— L — /

respectively.
Continuity of fluxes at the junction B requires that
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s(i)M0) +S<
2>N<2> + S<3)N(3) = 0 (8.7-32)

that is:

S(3) JB ( 3 ) (yL ) ]" ' A (3 )(N (3 )).[exp(L3 A
( 3 ) (N ( 3 ) ) ) - 1 ] " 1 (yL - y *) = Q (8.7-33)

Eq.(8.7-33) represents a set of (n-1) nonlinear algebraic equations in terms of y*.

We let the function f to denote eq.(8.7-33), then the iteration formula for the
Newton-Raphson method to find y* is

where I is the Jacobian defined as:

The iteration procedure is done as follows:

(i) Choose an initial guess for y*(0)

(ii) For each value of y_*(k), N(1), N(2) and N(3) are evaluated from eqs.(8.7-29), (8.7-

30) and (8.7-31), respectively. Then evaluate f<k) from eq.(8.7-33), and J(k) is

evaluated by a numerical procedure.
(iii) Obtain the next iterated solution from eq.(8.7-34) and check for convergence.

If convergence is not met, go back to step (ii).
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8.8 Stefan-Maxwell for Bulk-Knudsen-Viscous Flow

In the last sections, you have learnt about the basic analysis of bulk flow, bulk
flow and Knudsen flow using the Stefan-Maxwell approach. Very often when we
deal with diffusion and adsorption system, the total pressure changes with time as
well as with distance within a particle due to either the nonequimolar diffusion or
loss of mass from the gas phase as a result of adsorption onto the surface of the
particle. When such situations happen, there will be an additional mechanism for
mass transfer: the viscous flow. This section will deal with the general case where
bulk diffusion, Knudsen diffusion and viscous flow occur simultaneously within a
porous medium (Jackson, 1977).

When the system is subject to a pressure variation instead of the assumption of
isobaric made in the previous sections, the flux equation will contain an additional
term to account for the viscous flow. Using the argument of momentum transfer,
the total flux will be the sum of a flux due to the diffusion mechanism and a flux
due to the viscous mechanism. The flux due to the diffusion mechanism is governed
by the following modified Stefan-Maxwell equation for the component "i" (eq. 8.6-
6):

DK,i

The viscous flux for the component "i" is governed by the Hagen-Poiseuille
type equation (see Chapter 7 for more detailed exposition of this mechanism):

N,'-^-2£f (8.8-2a,
RgT JLX dz

where P is the total pressure, Bo is the structural parameter of the solid
characterising the viscous flow ( = rV8 for cylindrical pore) and |! is the viscosity of
the mixture. Here we use the upperscipts "D" and "V" for diffusive and viscous
flows, respectively. The viscosity is evaluated at the mixture condition, and it can
be calculated from the semi-empirical formula of Wilke (Bird et al., 1960):

^ = 1 ^ ^ (8'8"2b)

where
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* i j = V8
M:

-1/2 W
1/2 r x . \ 1/4

(8.8-2c)

The flux of the component "i" is then the summation of the flux due to the
diffusion mechanism and the flux due to the viscous mechanism, that is:

Nj = N P + N ^ (8.8-3)

Eqs.(8.8-1) to (8.8-3) are applicable for all components, that is for i = 1, 2, 3,..., n.

8.8.1 The Basic Equation written in terms of Fluxes N

We have presented above the three basic equations (8.8-1 to 8.8-3) for the case
where bulk diffusion-Knudsen diffusion-viscous flows are simultaneously
operating. What we will do in this section is to combine them to obtain a form
which is useful for analysis and subsequent computation as we shall show in
Chapters 9 and 10.

8.8.1.1 In Component Form

If we substitute the viscous flux equation (eq. 8.8-2a) into eq. (8.8-3) and then
solve for the flux NjD contributed by the diffusion mechanism to get:

* M * (8.8.4)N N l +

RgT uT dz

Next, we substitute the above equation into the modified Stefan-Maxwell equation
(8.8-1), we obtain the following constitutive equation to describe the flux in terms of
the partial pressure gradient and the total pressure gradient:

" y jNj-y jNj > N . i dPi Yi B0P dP

P Dy D K i RgT dz RgT nDK i dz

for i = 1, 2, 3, ..., n. The first term in the RHS of eq.(8.8-5) is the driving force due
to the partial pressure gradient while the second term is the driving force due to the
total pressure gradient.

If we express the partial pressure gradient in the first term in the RHS of
eq.(8.8-5) in terms of the total pressure and the mole fraction
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the constitutive equation (8.8-5) can be written in terms of the mole fraction
gradient and the total pressure gradient:

DSj DK>i R g T dz R g H M D K J dz

Eq. (8.8-5) or (8.8-6) is the basic equation for the case of diffusion under
nonisobaric conditions. Alternative derivation of these two equations is given in
Appendix 8.7. Knowing the individual fluxes obtained from eq.(8.8-6), the total
flux NT and the diffusive fluxes J are given by:

N T = ^ N j (8.8-7a)
j=i

J ^ N i - y i N - r (8.8-7b)

for i= 1, 2, ..., n.
Summing eq.(8.8-6) with respect to all components, we get the pressure drop

equation written in terms of all fluxes:

y N i = dP i f B0PA 1
(8.8-8)

This equation expresses how the total pressure changes in terms of the fluxes.
Under the isobaric conditions (that is dP/dz = 0), the above equation reduces to:

V—'- = 0

which is basically the Graham law of diffusion as the Knudsen diffusivity is
inversely proportional to the square root of the molecular weight. This proves that
the Graham law of diffusion is only valid for constant pressure systems.

8.8.1.2 In Vector Form

With n components in the mixture, the constitutive equation (8.8-6) can be
conveniently cast into more compact form by using the vector-matrix format. We
define the following n-tupled vectors

, N2 ... Nn]; y = [y, y2 - yn] (8.8-9)
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Eq.(8.8-6) then becomes:

B y N = = ~ I + ^Ay
=v~/- RgTdz RgTdzl= JI = J -

where the matrix B having a dimension of (n, n) is defined as below

' —— for i = j
DK,i

for i

and the diagonal matrix A is given by:

(8.8-10)

(8.8-1 la)

A = A,, = •
D,

(8.8-1lb)

and I is an identity matrix. All the elements of B and A have units of inverse of

the diffusion coefficients (sec/m2).
The constitutive flux equation in vector form (8.8-10) can now be inverted to

yield the flux vector in terms of mole fraction gradients and the total pressure
gradient. We get:

N = - f y ) ] [B(y
RJl=wJ dz RoTdzH-

(8.8-12)

In the case of isobaric conditions, the second term in the RHS of eq.(8.8-12)
becomes zero, and hence it reduces to the equation

I-I dy

obtained earlier for isobaric conditions.
The constitutive flux equation can be written in terms of partial pressure

gradients and total pressure gradient as follows:

where
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P2 Pnf (8.8-13b)

Eqs. (8.8-12) or (8.8-13) are the basic constitutive flux equations for the case
where molecular diffusion, Knudsen diffusion and viscous flow are all operating.
They are in the form suitable to be used in the mass balance equation, which we
shall show later in this chapter as well as in Chapters 9 and 10.

Knowing the fluxes of all components, the total flux (scalar) can be obtained as
by summing all elements of the flux vector as shown below:

and the diffusive flux vector (relative to the moving mixture) is obtained from:

J = N - N T y (8.8-15)

where
J = [J, J2 ••• Jn] (8.8-16)

It is reminded here that these n diffusive fluxes are not linearly independent as

E J i = ° (8-8-17)
i = l

which can be easily proved from eq. (8.8-15) by summing all the elements of eq.
(8.8-15) and noting that

8.8.2 The Basic Equations Written in terms of Diffusive Fluxes J

We have presented in Section 8.8.1 the basic equations (8.8-12) or (8.8-13)
written in terms of the fluxes N, relative to a fixed frame of coordinate. Very often
that we need to solve for the diffusive fluxes J (for example in a moving mixture),
and in this section we will present the basic equation written in terms of those
fluxes.

8.8.2.1 In component form

Knowing the fluxes Nj (i = 1, 2, 3,..., n), the diffusive fluxes can be obtained
from:

J ^ N j - y j N - r (8.8-18)
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where NT is the total flux given in eq. (8.8-14).
Substituting eqs.(8.8-18) and (8.8-14) into eq.(8.8-6), we obtain the following

equation for the diffusive flux after some algebraic manipulation:

P dYi

RgT dz RT

k=l

— (8.8-19a)
dz

for i = 1, 2, 3,..., (n-1). Detailed derivation of this equation is given in Appendix
8.8.

The parameter Ay in the above equation is the modified binary diffusivity and is
given by:

1 1 1

k=l

(8.8-19b)

Note that this modified binary diffusivity is symmetric, that is

(8.8-20)

Unlike the starting equation (8.8-6) which is linearly independent for n species,
eq.(8.8-19) is only linearly independent for (n-1) components because summing
eq.(8.8-19a) with respect to i from 1 to n will yield zero on both sides of the
resulting equation.

The (n-1) equations of eq.(8.8-19a) together with the following equation

I'.-o (8.8-21)

will form a complete set of n linearly independent equations for the diffusive fluxes.
Knowing the diffusive fluxes, the total flux NT and the individual fluxes are
calculated from:

BnP
(8.8-22a)

(8.8-22b)
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where the function y is given by

(8.8-22c)

8.8.2.2 In Vector Form

Like the previous Section 8.8.1.2, we now recast the diffusive flux equation
(8.8-19a) in the more elegant vector form as shown below:

where J and y_ is the (n-l)-tupled vectors defined as:

J,

y =
Yl (8.8-24)

(J) and A(J)The matrices B ( J ) and A(J) are (n-1, n-1) matrices defined as follows:

Y — for i = i

- ^ for i ^ j

(8.8-25a)

(8.8-25b)

Knowing the diffusive flux of the (n-1) components, the diffusive flux of the n-
th component (Jn) is given in eq.(8.8-21) and the total flux is by eq.(8.8-22b).
Finally the fluxes relative to the fixed frame of coordinates are calculated from:

N = J + NTy (8.8-26)
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8.8.3 Another Form of Basic Equations in terms ofN

We have presented in Sections 8.8.1 and 8.8.2 the two sets of basic equations
written in terms of the flux N and the diffusive J, respectively. Here, we present
another formulation which is also useful.

Substituting eq.(8.8-18) into eq.(8.8-19a) we get

H L

P dyj

RgT dz
y L

RgT
1 —

k=l

— (8.8-27a)
dz

Also, substituting eq. (8.8-22b) into eq. (8.8-22a), we obtain an additional
equation:

y N i = i f B0PA y{ )dP
, 1 + - (8.8-27b)

Eqs.(8.8-27) provide n equations for the n unknown fluxes Nf (i = 1, 2, ..., n). The
total flux and the diffusive fluxes are then given in eqs. (8.8-7).

8.8.4 Limiting Cases

We have presented the three different formulations for the bulk diffusion-
Knudsen diffusion-viscous flow in Sections 8.8.1 to 8.8.3. Now we will show how
these formulations can be used to derive useful equations for limiting cases which
are often encountered in adsorption systems.

8.8.4.1 Dilute systems

Let us consider the simplest limiting case, where all species have very low
concentration except the n-th species (the solvent), that is:

y{

(8.8-28a)

In this case, the modified Stefan-Maxwell equation (eq. 8.8-1) for component i = 1,
2, ...,(n-l) is reduced to:
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R g T d z D i n D K i

in which we have made use of eq.(8.8-28a). Solving for this flux contributed by
diffusion mechanism, we get:

N P = - - ^ - ^ - (8.8-29a)

RgT dz

where

- i - = —!—+ -J— (8.8-29b)
D" D K i D i n

This relation is known as the Bosanquet relation. The upperscript (0) is denoted for
dilute condition.

The viscous flux is given by eq.(8.8-2) with the viscosity now being replaced
by the viscosity of the n-th species as it is the dominant species in the mixture.
Thus, the flux of the species i (i = 1, 2, 3,..., n-1) is the sum of the diffusive flux in
eq. (8.8.29a) and the viscous flux:

RgT dz RgT^ ' un ) dz

where |in is the viscosity of the n-th component. The above equation is further
approximated by

D A*,

(8.8-30b)1 RgT dz

because the mole fraction y{ is much smaller than unity.

8.8.4.2 Knudsen Diffusion Control

When the pore size is very small or/ and the pressure is very low, the mean free
path is larger than the size of the pore. In such cases the Knudsen diffusion controls
the transport as the diffusing molecules are more likely to collide with the pore wall
than with themselves. In this case, the Knudsen diffusivity is much smaller than the
binary diffusivities D^ as the Knudsen diffusivity is proportional to the pore size
while the binary diffusivity is inversely proportional to the total pressure.

In this case of Knudsen diffusion control, the flux contributed by diffusion is:
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dz
(8.8-31)

that is each species is diffusing under its own partial pressure gradient, independent
of the presence of the others. Combining this flux with the viscous flux, we get the
following constitutive relation under the limiting case of Knudsen control.

D K i +
RgT dz R g T \ K'] u J d z

(8.8.32)

Eq.(8.8-32) is identical in form to eq. (8.8-30) obtained under the case of dilute
conditions, with a number of subtle differences shown in the following table.

Limiting case Diffusivity Viscosity Validity
Dilute conditions D° that of n-th species Valid for (n-1) species
Knudsen control IX that of mixture Valid for n species

8.8.4.3 Bulk Diffusion Control

We now consider the case whereby the pore is reasonably large and the pressure
is high. In this case the mean free path is much shorter than the pore size, one
would expect that the molecular diffusion will control the transport as the binary
diffusivity D^ is much smaller than the Knudsen diffusivity. If one accepted this
argument and removed the contributions of Knudsen diffusion in eq.(8.8-6), the
resulting constitutive relation for the flux would be:

V*5

that is all terms having the Knudsen diffusivity have been removed. In so doing, we
would run into an inconsistency because by summing the above equation with
respect to all species, we get

0 * — — (8.8-34)
RgT dz V }

Under the nonisobaric conditions, the above equation is obviously wrong.
Therefore, we can not ignore the contribution of the Knudsen terms as they are the
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terms which relate the momentum transfer from the bulk to the boundary, which is
necessary for the variation in the total pressure.

So mathematically, what went wrong when we neglect the Knudsen
contributions? The fact is that the small values of binary diffusivities do not mean
that the molecular diffusion term will entirely dominate as the numerator in the first
term of eq.(8.8-6) appeared in the form of a difference can also be a small number.

The proper starting equation to derive the reduced equation for this limiting
case is eq. (8.8-19a). The dependence of the Knudsen diffusivity, the binary
diffusion coefficient and the viscous flow parameter Bo on the pore size and pressure
is:

D W = D S L . I - (8.8-35a)

(8.8-35b)

tSQ - t $ n | (8.8-35c)

where the upperscript 0 is used to denote values at pore size r0 or the pressure Po.
To compare the magnitude of the two terms in the RHS of eq. (8.8-1%), we

investigate their ratio

k=l

iJ° D°
r l f P i K>i K'vk=,

D
(8.8-36)

For large pore size or large pressure, the above ratio is large, and hence the modified
diffusivity Ay is reduced to Dy. Thus, the proper equation for the case of bulk
diffusion control is (from eq. 8.8-19a):

RgT dz RgT
1 —

V k=l

^ (8.8-37)
dz

for i = 1, 2,..., (n-1). The diffusive flux of the n-th component is given by eq.(8.8-
21).
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The total flux is calculated from eq.(8.8-22a). However, in studying the two
terms in the bracket of the second term of that equation, we consider the ratio:

< 8- 8- 3 8 a )

where y is defined in eq.(8.5-22c). We learnt from Chapter 7 that

1. Bo is proportional to the square of pore size
2. DK is proportional to pore size

Thus, the ratio of eq. (8.8-38a) will become:

~P*9P ~]JL

-£- (8.8-38b)(1/yj

Bopo

k=l

where Po and r0 are the reference pressure and pore size, respectively. We see from
the above equation that under the conditions of large pore size and large pressure
that ratio is a large number, suggesting that the second term in the bracket of the
RHS of eq. (8.8-22a) is negligible compared to the first term. Thus, under the
conditions of bulk diffusion control, the total flux equation is:

* (8.8.39)
dz

Knowing the diffusive fluxes and the total flux, the fluxes relative to the fixed frame
of coordinates are given by eq.(8.8-22b).

The necessary equations in this limiting case are eqs.(8.8-37), (8.8-39) and (8.8-
22b), and we see that even though the bulk diffusion controls the diffusion transport,
the Knudsen diffusivity seems to play a part in the determination of fluxes. This at
first looks interesting, but observing the relevant equations in this case (eqs. 8.8-37
and 8.8-39) we see that the Knudsen diffusivities appear only in ratio form, and
since the Knudsen diffusivity is inversely proportional to the molecular weight

(8.8-40)

eqs. (8.8-37) and (8.8-39) can now be rewritten in terms of molecular weights rather
than Knudsen diffusivities as follows:
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^ yjJ\ ~ y\J j _ r ayj y{

71 ^ ~~RgT dz ~R!T
J=l U 5 5

1 — -

V k = l

— (8.8-4 la)
dz

fori=l,2,3,...,(n-l), and

N T = - B0PdP

RgT u dz
(8.8-41b)

where we see that there is no dependence of the above constitutive equations on the
pore radius, which should be expected for the case of bulk diffusion control.

8.8.4.4 Pure Gas

For pure gas, that is n = 1, y = 1, the relevant constitutive flux equation is:

N I = S ~ L D K 1 + M *
R g T ^ ' jLij ) dz

(8.8-42)

This simple equation for pure gas gives us a useful tool to study the structure of a
porous solid. Making use of information such as the Knudsen diffusivity is
proportional to square root of temperature and inversely proportional to the
molecular weight, we can carry out experiments with different gases having
different molecular weights and at different temperatures to determine the value for
the tortuosity in the Knudsen relation and the viscous parameter Bo.

We note from the two terms appearing in the bracket in the RHS of eq.(8.8-42)
that the viscous mechanism is more important than the Knudsen mechanism at high
pressures.

If the Knudsen diffusivity takes the form

T
(8.8-43)

where Ko is the structural parameter for Knudsen flow, eq.(8.8-42) will become:

|8RaT
N, = — (8.8-44)
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For a uniform cylindrical pore of radius r, the structural parameters KQ and Bo

take the following form

and

Eq.(8.8-44) shows the explicit dependence of the flux in terms of pressure,
temperature, the properties of the diffusing gas (that is, molecular weight and
viscosity) and the structural parameters of the solid Ko and Bo.

Steady state flow of pure gas through a capillary

For a capillary where the pressures at two ends are constant, the flux
equation (8.8-44) can be integrated to give the following integral equation
for the flux written in terms of the pressures at two ends:

1 R T | 3 ^TCM L 2u L | V '

in which we have assumed the viscosity is independent of pressure. For
gases at moderate pressures, such an assumption is reasonable.

Eq.(8.8-45) can be rearranged as follows:

A plot of N! RgT/[(P0 - PL) / L] versus the mean pressure (Po + PL) / 2

would yield a straight line with a slope of

^ (8.8-47a)

and an intercept of

dv. /8R-T
(8.8-47b)

Knowing the viscosity of the diffusing gas and its molecular weight, the
structural parameters Ko and Bo can be determined from such plot.
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[Example 8,8-2:| Effect of temperature on the steady state flow of pure gas

To see the effect of temperature on the Knudsen flow and the viscous
flow, we need only to consider the ratio of the two terms in the RHS of
eq.(8.8-46):

(8.8-48)
Knudsen

Viscous

4K

3

Bo

0

i
ft

8RgT

7lM,

»+PL)

4

3
Ko^

Bo

i
(Po

8RgT

JIM,

+ P L ) /2

For gases, the viscosity increases with temperature; thus the above ratio
increases with temperature, meaning that the Knudsen flow is more
important than the viscous flow at high temperatures.

[Example 8 >&-3 \ Pure gas flow through two capillaries in series

When two capillaries of different radii are connected in series and the
pressures at two ends are kept constant, the fluxes through these two
capillaries are:

(O .49 . )

where P* is the pressure at the junction of the two capillaries. The
upperscripts (1) and (2) denotes the first and second capillaries,
respectively.

Continuity of mass at the junction of the two capillaries requires that:

A(DN(1)=A(2)N(2) ( 8 8 . 5 0 )

For a given Po and PL, eqs.(8.8-49) and (8.8-50) represent three algebraic
equations in terms of three unknowns N(1), N(2) and P*.
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8.9 Transient Analysis of Bulk-Knudsen - Viscous Flow in a Capillary

We have presented the various constitutive flux equations for the general case
of combined bulk-Knudsen and viscous flow in the last section. Now let us
illustrate its application to the simple case of transient flow of a diffusing mixture in
a capillary exposed to an infinite environment.

The mass balance equation describing the partial pressure variation of the
component "i" in the capillary is:

8z
(8.9-1)

for i = 1, 2,..., n. Or written in terms of vector form, the above equation becomes:

d( P

where p = [Pl p2 - p n ] T and N = [N, N2 - N J T .

The molar flux Nf in eq. (8.9-2) is related to the total pressure gradient and the
partial pressure gradients of all species according to eq.(8.8-13a). Substitution of
this equation into eq. (8.9-2) will give the following form for the mass balance
equation:

f f B ( y , P , T , r ) r + [B(y,P,T
g 3z[RgT H - f\ dz umRgT dz H - j

where Bl y) and A are function of mole fraction, total pressure and temperature as

given in eq.(8.8-l 1), and the mole fractions are given by:

y = | (8.9-4)

The parameter um is the viscosity of the mixture, and for gases at moderate
pressures (less than 10 arm) it is adequately calculated from the semi-empirical
formula of Wilke et al. (Bird et al., 1960)
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where y is the mole fraction vector, u is the pure component viscosity vector and

<t>|j in the denominator is given by

oa=ii3
-1/2 1 / 2 f\K ^ 1 M

2

(8.9-6)

Eq.(8.9-3) represent n partial differential equations for the n unknowns p,, p2, ..., pn.
The boundary conditions for this problem are:

dp
z = 0; - ^ = 0 (8.9-7a)

dz ~

z = L; p = pb (8.9-7b)

where gb are constant partial pressures in the bulk surrounding the capillary.
The initial conditions are:

t = 0; p = p. (8.9-8)

8.9.1 Nondimensional Equations:

The mass balance equations presented above are non-linear and must be solved
numerically. We have maintained our practice that before the equations are solved
numerically, they must be cast into a non-dimensional form, at least the spatial
variable must be normalised as it is convenient to discretise a spatial domain having
a range of (0, 1). We define the following nondimensional variables

* T = 2 l l (8.9-9)
L L

where DT is some reference diffusion coefficient. In terms of these nondimensional
variables, the governing mass balance equation will become

where Po is some reference pressure, u0 is some reference viscosity, and the
parameter O is a dimensionless group that characterise the strength of the viscous
flow relative to the diffusive flow and is defined as follows:
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(8.9-11)

The role of the viscous flow is to dissipate any variation in the total pressure,
that is the larger is the parameter O the faster is the system towards isobaric
conditions. To illustrate the magnitude of this parameter, we take the following
parameters typical for diffusion of most gases at ambient temperature in a capillary
having a radius of 2 micron:

ji0 = 1 x 10~4 g cm"1 sec"1 (typical for most gases @ 20° C)

Po = 1 x 106 g cm"1 sec"2 » (1 arm)

= 2xlO" 4 cm => Bo = — = 5 x 10"9 cm2

88

DT = 0.5 cm2/sec

We calculate the non-dimensional parameter O:

_ (5xl0" 9 ) ( lx l0 6 ) _

(lxl0"4)(0.5)

This order of magnitude of 100 suggests that the viscous flow is so significant in
this capillary of 1 micron, and hence any disturbance in the total pressure will be
dissipated very quickly by the action of the viscous flow before any diffusive
processes occur. For smaller pores, say r = 0.2 micron, the viscous parameter O is
equal to 1, suggesting that the viscous flow is very comparable to the diffusion flow
and it can not be neglected in the description of flow into the particle. What this
means is that the total pressure variation will persist in the system while the mass
transfers of all diffusing species are occurring.

The boundary and initial conditions of eqs.(8.9-10) are:

Dp
r| = 0; -^- = 0 (8.9-12a)

TI = 1; p = pK (8.9-12b)
— —b

t* = 0; p = p. (8.9-13)

The set of non-dimensional model equations (eqs. 8.9-10 to 8.9-13) is solved
numerically by a combination of the orthogonal collocation method and the Runge-
Kutta method. Details of the collocation analysis are given in Appendix 8.9. A
programming code ADSORB5A is provided with this book to give the reader a
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means to investigate the adsorption kinetics into a capillary where bulk diffusion,
Knudsen diffusion and viscous flow are all operating. We illustrate this exercise
with the following examples.

Methane (1)
Argon (2)
Hydrogen (3)

16
40
2

[Example 8,9*1:1 Diffusion of methane, argon and hydrogen in a capillary

We take a system studied by Arnold and Toor (1967) where the three
diffusing species are methane (1), argon (2) and hydrogen (3). The
capillary is having a length of 20 cm and a pore radius of 8 x 10'5 cm. The
operating conditions are 307 K and 1 atm. At these conditions, the binary
diffusivities are:

D12 = 0.2157 cnvVsec, D13 = 0.7716 cm2/sec, D23 = 0.8335 cmVsec

Other properties of the three diffusing species are listed below.

MW n (g/cm/sec)
1.1 x lO4

2.3 x W4

0.91 x 1Q-4

The Knudsen diffusivities are calculated using eq. (7.4-10):

DK1 =3.4 cirrVsec, DK2 = 2.15 cm2/sec, DK3 = 9.61 cm2/sec

To simulate the problem using the code ADSORB5A, we need to specify
the initial pressures and the pressures of the bulk surrounding the capillary.
We use the following initial and boundary conditions:

Initial partial pressure (atm) Bulk partial pressure(atm)
p(l) = 0.515 p(l) = 0
p(2) = 0.485 p(2) = 0.509
p(3) - 0 p(3) = 0.491

Using the code, we obtain the partial pressure profiles of all species as a
function of time. Figure 8.9-1 shows the mean total pressure in the
capillary versus time. Here we see that the mean total pressure in the
capillary increases with time during the early stage of the diffusion. This is
due to the faster diffusion of hydrogen into the capillary, more than to
compensate for the slower outflux of methane. After this initial stage, the
total pressure finally decays to the equilibrium total pressure of 1 atm.
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Figure 8.9-1: Plot of the mean total pressure versus time

Figure 8.9-2 shows plots of the mean partial pressures of methane,
argon and hydrogen as a function of time. The behaviour of methane and
hydrogen as expected, that is downhill diffusion. The behaviour of argon
is interesting. Instead of going up from the initial pressure of 0.485 to a
final bulk pressure of 0.509 atm, the argon mean partial pressure decreases
with time during the early stage of diffusion. This behaviour is due to the
outflux of methane and it drags argon to the bulk, resulting in the initial
drop of argon pressure. Once the rate of outflux of methane is decreased,
the argon would diffuse in a normal fashion, that is higher pressure of
argon in the bulk will cause a diffusion into the capillary, resulting in an
increase in the argon pressure in the capillary (see Do and Do (1998) for
more simulations).

Partial
pressure Q 3

(atm)

1000 2000 3000

Time (sec)

4000

Figure 8.9-2: Plots of the partial pressures versus time
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8.10 Maxwell-Stefan for Surface Diffusion

We have considered the Maxwell-Stefan approach in dealing with the bulk
diffusion, Knudsen diffusion and viscous flow. Now we apply the concept of
friction to surface diffusion where adsorbed molecules exhibit mobility on a surface.
Here we view the surface diffusion as the hopping by the molecule from one site to
the next. The hopping mechanism was considered by de Boer (1953, 1968) and
Gilliland et al. (1974), and it offers a reasonable description of surface transport in
systems having adsorption energies exceeding the thermal energy of the adsorbate
molecule. Because of the heterogeneity of the surface the surface diffusivity
increases with an increase in the surface loading, owing to the fact of progressive
filling of sites of decreasing strength.

To deal with surface diffusion, it is usually assumed that (Cunningham and
Williams, 1980)

1. The adsorbed molecules are located on a plane that is parallel to the solid
surface and located at a distance corresponding to the minimum of the total
potential energy.

2. The adsorbed molecules can move randomly over this surface.
3. The adsorbed molecules form a two dimensional rarefied gas in which only

binary collisions are important.
4. The solid is at thermodynamic equilibrium
5. The phenomena of adsorption and desorption have no effect on transport

properties of the adsorbed molecules.

Let CSJ be the surface concentration of the species j measured as mole of j per
unit area. The total surface concentration is the sum of all these concentrations, i.e.

(8.10-1)

The fractional of sorption sites taken up by the species j is:

C s i

0 ±J (8.10-2)

where Csm is the saturation concentration. The fraction of the vacant site is:

n

ev = i-et = i-Xe j (8.10-3)
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To formulate the Stefan-Maxwell approach for surface diffusion, we will treat
the adsorption site as the pseudo-species in the mixture, a concept put forwards by
Krishna (1993). If we have n species in the system, the pseudo species is denoted as
the (n+l)-th species, just like the way we dealt with Knudsen diffusion where the
solid object is regarded as an assembly of giant molecules stationary in space. We
balance the force of the species i by the friction between that species i with all other
species to obtain:

<s,o-4)

for i = 1, 2,..., n. The coefficient Di)V is the single component surface diffusivity, and
it describes the exchange between the sorbed species and the vacant sites. The
coefficient D^8 can be regarded as the counter exchange coefficient between the
species i and the species j at the same site. This counter exchange coefficient is
related to the single component surface diffusivities, D{ v and Dj v, and is given by
(Krishna, 1990)

/ \ei/(e:+0i) / xej/fei+e:)

f p 1 J ( v ) 1 1 1 >} (8.10-5)
which is originally suggested by Vignes (1966).

The surface chemical potential is given by the equilibrium relationship with the
gas phase:

^ = H ? + RgTlnfi (8.10-6)

where JIJO is the chemical potential at the standard state, and f j is the fugacity of the

species i in the bulk fluid mixture.
Written in terms of velocity is not useful for direct flux calculation, we now

write eq. (8.10-4) in terms of the surface flux which is defined in the following
equation:

N^ = Csme iVi (8.10-7)

It is noted that the total surface concentration is the same for all species. Using this
definition, the Stefan-Maxwell equation to describe surface diffusion is:

CsmD*v
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The surface chemical potential gradient can be expressed in terms of the surface
concentration as follows:

9 i d ^ = Y F{:—*- (8.10-9a)

RgT dz p 1J dz V '

where

rij=Qi^L (8.10-9b)

For the Langmuir isotherm, where the fractional coverage is expressed in terms
of the fugacities of all species, the coefficient 1̂ - is:

1^=8^+-^- (8.6-10)

Krishna (1990) used the argument that the vacancy flux must balance the sum
of fluxes of all species, i.e.

N S
V = - £ N J (8.10-11)

H

This relates the vacancy flux in terms of the other fluxes.

8.10.1 Surface Diffusivity of Single Species

The surface diffusion is related to the jump distance as well as the jump
frequency as follows:

Dj>v=A,2vj(8j) (8.10-12)

where the jump frequency would depend on the fractional coverage. Readers
interested in this approach to surface diffusion should refer to Krishna (1990) for
further exposition of this topic.

8.11 Conclusion

We have presented in this chapter a systematic approach of Maxwell-Stefan
approach in dealing with flow in homogeneous media as well as inside a capillary or
porous media. The approach using the concept of friction is elegant, and it puts the
various flow mechanisms under the same framework. For large pore space, the
Maxwell-Stefan approach is comprehensive, and it is able to describe experimental
results, such as the uphill diffusion, which the traditional Fick's law approach can
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not explain. Section 8.8 is the most general, and it provides constitutive flux
equations that are applicable under general non-isobaric and non-isothermal
conditions. You will find the application of this Maxwell-Stefan approach to
adsorption systems in Chapters 9 and 10. The theory of surface diffusion using the
Maxwell-Stefan approach is not as mature as the Maxwell-Stefan approach to the
flow mechanisms in the large void space of the particle. The inherent difficulty of
this approach to surface diffusion is that the surface structure is very complex, and
its microstructure has a significant influence on the surface diffusion rate. Our
present failure of fully understanding this microstructure has prevented us from
achieving a good theory for surface diffusion. However, research in this area has
achieved great progress in the last few years, and it is hoped that we will see some
significant progress in the near future.



9
Analysis of Adsorption Kinetics in a

Single Homogeneous Particle

9.1 Introduction

We have discussed in the last two chapters about the various transport
mechanisms (diffusive and viscous flows) within a porous particle (Chapter 7) and
the systematic approach of Stefan-Maxwell in solving multicomponent problems
(Chapter 8). The role of diffusion in adsorption processes is important in the sense
that in almost every adsorption process diffusion is the rate limiting step owing to
the fact that the intrinsic adsorption rate is usually much faster than the diffusion
rate. This rate controlling step has been recognized by McBain almost a century ago
(McBain, 1919). This has prompted much research in adsorption to study the
diffusion process and how this diffusional resistance can be minimized as the
smaller is the time scale of adsorption the better is the performance of a process.

Modelling of diffusion in adsorption process is usually started with the
assumption of treating solid as a unstructured homogeneous medium, that is the
solid characteristics is uniform throughout the solid volume. The diffusion process
is usually characterized by a Fickian like diffusion law with a parameter called the
effective diffusivity, which is a function of mechanisms of flow within the particle
(Figure 9.1-1). Detailed study of diffusion in Chapters 7 and 8 gives information on
how this effective diffusivity can be calculated. For example, if the diffusion
process is controlled by a combination of the Knudsen diffusion and the continuum
diffusion, the effective diffusivity can be calculated by the formula given in eq. (8.8-
29b). The advantage of this simple Fickian formulation is that analytical solutions
are usually possible, allowing us to have physical insight about an adsorption
process. If further details are required, more complex models must be formulated
and computed usually numerically, and even in this case simple analytical solutions
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are valuable to confirm the numerical computation of the complex models when
some limits are met. Complex models usually incorporate most or all possible
phenomena occurring in the particle, and hence solution of a complex model always
gives information about adsorption kinetics as a function of system parameters in
greater details but at the expense of extra effort in the analysis.

Homogeneous particle

dCC
J = -eD —

M''W^ p p d
Diffii$i0?i in adsofrMl phase:

Figure 9.1-1: Schematic diagram of a homogeneous particle

In this chapter, we will present the analysis of a number of adsorption models
commonly used in the literature. We will start first with a simple model. This is
important to show you how adsorption kinetics would vary with parameters such as
particle size, bulk concentration, pressure, temperature, pore size, and adsorption
affinity. This will be studied for single component system with special adsorption
isotherm such as linear isotherm and irreversible isotherm (rectangular isotherm).
When dealing with nonlinear isotherm, numerical methods have to be employed to
solve coupled governing equations. After understanding how single component
systems behave, we will discuss multicomponent systems and apply the Stefan-
Maxwell approach learnt in Chapter 8 to formulate model equations. For such cases
numerical methods are used to solve the governing equations. Orthogonal
collocation method is useful for this task and is chosen simply due to the author's
personal taste. This book contains a number of programming codes written in
MatLab language to solve some practical multicomponent systems. Students can
use these interactively to understand better how a multicomponent system behaves.

After understanding the various features exhibited by a homogeneous system,
the next chapter (Chapter 10) will deal with zeolitic particles and Chapter 11 will
address heterogeneous systems as it is now increasingly recognized that most
practical solids are not homogeneous, but rather heterogeneous in the sense that the
pore structure is not uniform but rather distributed, that is the interaction energy
between solid and adsorbate molecule is not constant but rather distributed. The
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heterogeneity in pore structure (that is the coexistence of small and large pores) is
actually quite beneficial from the practical view point because large pores are good
for transport, while small pores are good for capacity. Thus, the extra complexity in
modelling is well worth an effort to determine how we could further utilise this
heterogeneity to our advantage.

9.2 Adsorption Models for Isothermal Single Component Systems

We first discuss the various simple models, and start with linear models,
favoured for the possibility of analytical solution which allows us to study the
system behaviour in a more explicit way. Next we will discuss nonlinear models,
and under special conditions such as the case of rectangular isotherm with pore
diffusion analytical solution is also possible. Nonisothermal conditions are also
dealt with by simply adding an energy balance equation to mass balance equations.
We then discuss adsorption behaviour of multicomponent systems.

9.2.1 Linear Isotherms

Damkohler (1935) is perhaps one of the pioneers to develop diffusion models to
understand adsorption process within a particle. In his development he assumed a
parallel transport of molecules occurring in both the void space as well as the
adsorbed phase (Figure 9.2-1).

r O - • O • Pore phase diffusion

;

O O
II 1^ Mass exchange between two phases

• Surface diffusion

Figure 9.2-1: Schematic of parallel pore and surface diffusion

The constitutive flux equation accounting for this dual flow of molecule is:

J = -eDp ( l - e ) D s — - (9.2-la)

This combined transport is known to exist in many systems. The partition
between the fluid and adsorbed phases is assumed linear as one would understand
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that a nonlinear partition would require numerical computation, a luxury not readily
available in the early 30's. To set the consistency of the terminology used in this
chapter as well as in subsequent chapters, we will define carefully all the variables
in a way that there is no ambiguity and the complete list of variables as well as
parameters used are listed in the nomenclature section. The mass balance equation
can be obtained by carrying out mass balance around a thin shell element in the
particle, and in so doing we obtain the following equation:

where 8 is the voidage of the particle (cc void volume/cc of total particle including
void and solid volume), C is the fluid concentration (mole/cc of fluid), C^ is the
concentration in the adsorbed phase (mole/cc of adsorbed phase), Dp is the pore
diffusivity (based on the empty cross section of the particle), Ds is the surface
diffusivity (based on the solid cross section), and s is the particle shape factor (s = 0,
land 2 for slab, cylinder and sphere, respectively). The definition of the voidage
requires some further explanation. The voidage 8 is the transport void fraction, that
is only the void space available for the transport is accounted for in this porosity;
since only macropore and mesopore are available for transport by free molecules,
this porosity can be known as the macropore porosity. The volume of the adsorbed
phase in the definition of the adsorbed concentration, C p is the volume of the
particle excluding the transport void volume.

In eq. (9.2-lb), we have assumed that the pore diffusivity as well as the surface
diffusivity are independent of position, time as well as concentration. The surface
diffusivity is known to exhibit a very strong concentration dependence over the
range where adsorption isotherm is nonlinear. For the linear isotherm dealt with
here, the assumption of constant surface diffusivity is usually valid.

The free molecules in the pore space and the adsorbed molecules at any point
within a particle are in equilibrium with each other even though their concentration
gradients exist within the particle. This local equilibrium is feasible only when at
any point within the particle the local adsorption kinetics is much faster than the
diffusion process into the particle. This is usually the case in most practical solids.
In this section, we will assume a linear partition between the two phases; thus the
relationship is known as the local linear adsorption isotherm. The term local is
because that particular condition is only applicable to a given position; as time
approaches infinity this local adsorption isotherm will become the global adsorption
isotherm (true equilibrium) as there is no gradient in concentration either in the pore
space or on the surface phase at t = oo. The local linear isotherm takes the form:
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C^ = KC (9.2-2a)

where K is called the Henry constant, and is defined as

(9.2-2b)

with K^ being the Henry constant at infinite temperature, and Q being the heat of
adsorption. The Henry constant has the units of

(moles/cc solid) (cc gas)
K = -^ ^- = -f ^- = dimensionless (9.2-2c)

(moles / cc gas) (cc solid)

Substituting eq. (9.2-2a) into eq. (9.2-lb), we obtain the familiar looking Fickian
diffusion equation written in terms of only the gas phase concentration

~ D a p p V 2 C (9.2-3a)

which is only applicable when the assumptions of local equilibrium and linear
isotherm hold.

The parameter Dapp is called the apparent diffusivity because it embeds both the
two diffusion coefficients and the slope of the isotherm, K. It is defined as follows:

eD D +( l -e )KD s
Dapp = — — L (9.2-3b)

The apparent diffusivity describes the approach of a system response to equilibrium.
The larger is this parameter, the sooner the system approaches equilibrium. A
system having high mobility in both free and adsorbed phases does not necessarily
mean that it would approach equilibrium quickly. It does also depend on the
quantity which can be accommodated by the solid at equilibrium. The speed to
approach equilibrium depends on the two factors - mobility and capacity - in the
form of ratio as reflected in the definition of the apparent diffusivity. Let us
demonstrate this with the following two systems.

Svstem # 1
8 =0.33
Dp = 0.01 cm2 s1

K = 1000
D, =1 x 10s em's1

The system #1 has higher mobility as reflected in the value of eDp + (1 - e)KDs of
0.01 cm2 s"1 compared to 3.3 x 10'4 for the system # 2. Despite its much higher

Svstem # 2
8

Dp
K
D,

= 0.33
= 0.001 cm
= 10
= 0 cm2 s"1
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mobility, the system # 1 takes longer time to approach equilibrium as its apparent
diffusivity of 1.5 x 10~5 cm2 s"1 is lower than that of the system # 2 of 4.7 x 10"5.

Before solving the adsorption equation (9.2-3a), it is important to study the
behaviour of various diffusivities with respect to temperature.

9.2.1.1 Temperature Dependence of the Apparent Diffusivity Dapp

The apparent diffusivity of eq.(9.2-3b) involves the contribution of the pore
diffusion and the surface diffusion. The relative importance of the pore and surface
diffusions must be studied to have an insight on how this would vary with
temperature.

9.2.1.1.1 The Relative Importance of Pore and Surface Diffusions

To investigate the relative contribution of these two processes, let us study the
following ratio:

E D P

(9.2-4)

The temperature dependence of the relevant parameters in eq.(9.2-4) is given below:

(9.2-5a)

(9.2-5b)

D s=D s o oexp[-^M (9.2-5C)

where the exponent a = 0.5 if Knudsen mechanism controls the pore diffusion and it
is equal to about 1.75 if molecular-molecular collision mechanism controls (see
Chapter 7). In eqs.(9.2-5), Dsoo is the surface diffusivity at infinite temperature and
Dpo is the pore diffusivity at some reference temperature To.

Substitution of eqs.(9.2-5) into eq.(9.2-4) gives:

^ (9.2-6)5 =

eDp 0(T/T0)a

Since the heat of adsorption is usually larger than the activation energy for surface
diffusion (Q > Es), the ratio 8 will decrease as temperature increases, indicating that
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the surface diffusion is less important at high temperatures compared to the pore
diffusion. Schneider and Smith (1968) have utilized this fact to study surface
diffusion in the butane/silica gel adsorption system. Their procedure is briefly
described here. Firstly experiments are conducted at high temperatures such that
pore diffusion is the only transport mechanism. Analysing of these experiments
allows us to understand the characteristics of pore diffusion. Once this is done,
experimental results of lower temperatures are analysed to derive information about
the surface diffusion rate and thence the surface diffusivity.

9.2.1.1.2 Temperature Dependence of the Combined Diffusivity sDp + (1- s)KDs

The combined diffusivitv eDp +(l-e)KDs is a measure of the steady state

flux as solving eq. (9.2-3a) at steady state subject to constant boundary conditions
would give:

0 - S)KD,1 ̂  -
v ; sj L

Thus an understanding of this combined diffusivity with temperature will give a
direct information on how the steady state flux would vary with temperature for a
given concentration gradient (AC/L). For a given pressure gradient AP/L, the
temperature-dependent coefficient of the flux equation is

[eDp+(l-e)KDs]/RgT (9.2-7)

This coefficient is known as the permeability coefficient, and its units are mole m2 s'
1 Joule1.

Substitution of K, Dp and Ds in eqs.(9.2-5) as function of temperature into the
permeability coefficient (eq. 9.2-7) yields

eDp+(l-e)KD s *u*o[^") n ' - e j ^ s o ^ P l - y

R?f
(92-8)

g

where KQ and Ds0 are the Henry constant and surface diffusivity at some reference
temperature To, respectively, and the parameter group y and the non-dimensional
temperature 0 are defined as follows:

y=^r^ (9-2-9a)
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0 = ^ (9.2-9b)

We define the following dimensionless permeability coefficient by scaling it
against the pore diffusivity at the reference temperature To:

eDp0 T 1 + 0

where 50 is the value of 8 defined in (eq. 9.2-4) at the temperature To.

The range of some parameters
Before we investigate the behaviour of the combined diffusivity with

respect to temperature, it is important to note the practical range of the
relevant parameters. The parameter a characterises the variation of pore
diffusivity with temperature. It has the following range

0.5 <cc< 1.75

The value of 0.5 for a corresponds to the Knudsen diffusion mechanism,
i.e. molecule-wall collision dominates and a = 1.75 corresponds to the
molecule-molecule collision.

The heat of adsorption usually ranges from 10 to 60 kJoule/mole and
the activation energy for surface diffusion ranges from about one third of
the heat of adsorption to the heat of adsorption. Thus the parameter y has
the following practical range

2 < y < 1 2

The parameter 80 is the measure of the surface diffusion flux to the
pore diffusion flux. It ranges from 0 (no surface diffusion) to a very large
value corresponding to a system of high mobility of the adsorbed phase.
Typically

0<8<2

Now back to our dimensionless permeability coefficient (eq. 9.2-10). To
investigate how F(0) changes with 0, we investigate its first derivative with respect
to0:
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e)a-5
F(9)=-

- + 1 exp - y i + e.
(9.2-11)

When a < 1, the above first derivative is always negative; therefore the permeability
coefficient of eq. (9.2-7) always decreases with temperature. However, when a > 1,
a stationary point is possible when F'(0 *) = 0 , where 0* is the solution of the

following equation:

^ * » T ' ( J i ) (9.2.I2)
0[Y+(1

An investigation of eq.(9.2-12) reveals that there is always a solution 0* within the
physical range of temperature (that is 0 > - 1 or T > 0).

To see whether the stationary point is a minimum or a maximum, we investigate
the sign of the second derivative at the stationary point:

> 0 (9.2-13)

Thus, the stationary point is a minimum for a > 1. Figure 9.2-2 presents a plot of
F(0) versus 0 for a = 1.75, 50 = 1 and y = 5, which shows a minimum in the
dimensionless coefficient F(0). The existence of this minimum with respect to
temperature suggests that for a given pressure gradient and a > 1 the steady state
flux of gases or vapours through a pellet decreases initially with temperature and
when the temperature is greater than the threshold temperature 0* the steady state
flux then increases with temperature (Figure 9.2-2). This behaviour with respect to
temperature can be explained as follows. The initial sharp decrease is due to rapid
decrease in the amount adsorbed on the surface and hence the contribution of the
surface diffusion becomes insignificant towards the total flux. As temperature
increases further, the surface diffusion no longer contributes to the overall flux and
the increase in the overall flux is due to the increase in the pore diffusivity with
temperature, which increases slowly with T according to eq. (9.2-5b).



528 Kinetics

F(6) 6 -

Figure 9.2-2: Plot of the non-dimensional permeability versus non-dimensional temperature

Temperature dependence of the combined diffusivity

Here we illustrate the behaviour of the steady state flux with
temperature using the following parameters.

Parameter
Porosity
Reference temperature To

Pore diffusivity at To

Pore diffusivity exponent
Surface diffusivity at To

Henry constant
Heat of adsorption
Activation energy for surface diffusion

Symbol
8

To
Dpo
a

Dso
K
Q
E,

Value
0.33
298
0.1
1.75
1 x lO5

10000
40000
20000

Units
-
K
cirrVsec
-
cm2/sec
-
Joule/mole
Joule/mole

With the values of various parameters in the above table, we calculate

Q - E s (40000-20000)
Y = R To (8.314)(298)

- = 8.07

c (l - e)KDs0 (1 - 0.33)(10000)(l x 10"5)
50 = = -eDr

= 2.03
,p 0 (0.33)(0.1)

Solving the nonlinear algebraic equation (9.2-12) for the threshold
temperature 0*, we get

0* = 0.423
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Thus, the temperature at which the combined diffusivity (hence the steady
state flux) is minimum is:

T* = (1 + 6*) To = 424 K = 151 °C

The steady state flux is calculated from the following equation:

j JeDp+(l-e)KDs] AP

RgT L

Expressing this equation explicitly in terms of temperature, we get:

J s s
 8Dpo(1+6)a + (1" 8 ) K ° D s 0 e x p ( ~ Y TTe)

(AP / L) ~ RgTo(l + 0)

Figure 9.2-3 shows the plot of the above equation versus temperature.

0.00020

0.00015

0.00010

0.00005

0.00000

300 400 500 600 700

Temperature (K)

Figure 9.2-3: Plot of the steady state flux per unit pressure gradient versus temperature

Also plotted on the same figure are the contributions of the pore diffusion
(curve I) and the surface diffusion (curve II) (the first and second terms of
the above equation, respectively). Here we see that the surface diffusion
decreases rapidly with temperature, which is due to the rapid decrease of
the amount adsorbed with respect to temperature. The increase of the
overall flux in the latter part of temperature range is due to the increase in
the pore diffusivity with temperature.
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9.2.1.1.3 The Temperature Dependence of the Apparent Diffusivity Dapp

We have seen the behaviour of the combined diffusivity with respect to
temperature, which is applicable in steady state situations. When dealing with a
transient problem, the appropriate parameter which characterises the approach to
equilibrium is the apparent diffusivity (eq. 9.2-3b). This apparent diffusivity is
effectively the measure of the ability of the adsorbate to diffuse into the particle
relative to the ability of the solid to accommodate adsorbate molecules, that is:

_ eDp + (l-e)KDB _ Ability to diffuse into the particle
app 8 + (1 - e)K Capacity to accommodate adsorbate molecules in both phases

We consider the temperature dependence of the apparent diffusivity by
substituting eq.(9.2-5) into the above equation to get

D < • > . » ( . -
aPP " p . f i

8 + 11 —
(

(l-E)Koexp^-yH

where 80 is the value of 8 (eq. 9.2-4) at temperature To, y and G are defined in eqs.
(9.2-9) and the new parameter yH is defined below:

yH = - Q - > Y = Q ~ E S (9.2-16)
"R T "R T
K g X o K g L o

We define a nondimensional apparent diffusivity by scaling the apparent
diffusivity with the pore diffusivity at To as shown below:

(9.2-17)

where the parameter

c = il^fc (9.2-18)
8

is a measure of the capacity in the adsorbed phase relative to that in the gas phase,
which is usually a very large number.
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We plot G(0) versus 0 as shown in Figure 9.2-4 for a = 1, 50 = 1, y = 5, yH = 10
and a = 100. There we see that the apparent diffusivity montonically increases with
temperature, suggesting that the approach to equilibrium is faster at higher
temperature. This is attributed mostly to the amount that can be accommodated by
the particle being smaller at higher temperatures.

Figure 9.2-4: Plot of the reduced apparent diffusivity Dapp versus non-dimensional temperature

9.2.1.2 Pore Diffusion Model

When the solid has low surface area or the adsorbed species is rather immobile
(that is strong affinity to the surface), the contribution of surface diffusion can be
neglected compared to that of pore diffusion, that is (l-e)Ds « eDp, the apparent
diffusivity (9.2-3b) will become:

D -app (9.2-19)

Thus, for solids which exhibit negligible surface diffusion compared to pore
diffusion, we see that when the adsorption affinity is high (that is large value of the
Henry constant) the apparent diffusivity will be small; hence the system will take
longer to reach equilibrium. This is the case because when the solid has high
capacity the penetration of the adsorbate into the particle is retarded due to the large
uptake of molecule to the surface. To further show this, we take the case of a
spherical particle, and the time for the system to reach half of its equilibrium
capacity, called the half time, is given by (we defer the derivation until Section
9.2.1.4):
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t0 5 = 0.03055 A '—*— (9.2-20)

where R is the radius of the solid. What can be learnt from this equation is that the
half time is proportional to the square of the particle radius, a characteristic of a
diffusion process, and is approximately proportional to the Henry constant K
(because in most practical solids the pore capacity is much less than the adsorbed
capacity, that is 6 « (l-e)K ). This means that a double increase in the Henry
constant will take the system twice as long to reach equilibrium, a property which is
valid only for systems exhibiting linear isotherm. This conclusion does not hold
when we deal with nonlinear isotherm as we shall see in Section 9.2.2.

9.2.1.3 Surface Diffusion Model

We now consider the other extreme, that is the surface diffusion dominates the
transport. In this case adsorbate molecules in the bulk phase surrounding the
particle will locally equilibrate with adsorbed molecules at the mouth of the pore,
and adsorbed molecules diffuse into the particle under its own gradient. For such a
case, (l-e)Ds » eDp, and the apparent diffusivity (9.2-3b) becomes:

. _O-0KD._D i (92 .21)

For most practical solids (at least in gas phase application), the Henry constant
K is usually of the order of 10 to 1000, that is the adsorbed phase is approximately
10 to 1000 times more dense than the gas phase; hence the apparent diffusivity is
approximately equal to the surface diffusivity. This extreme is called the solid or
surface diffusion model, commonly used to describe diffusion in solids such as ion-
exchange resins and zeolite crystals. The half time for the case of surface diffusion
model in a spherical particle is (Section 9.2.1.4):

R2

tO 5= 0.03055 (9.2-22)

The difference between the pore diffusion model and the surface diffusion
model is that in the pore diffusion model it takes longer to equilibriate the solid with
higher adsorption affinity (higher K) while in the surface diffusion model the
diffusion time is independent of the Henry constant. This is so because in the case
of surface diffusion adsorption occurs at the pore mouth at which point the
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equilibrium with the bulk phase is reached and the diffusion process is simply due to
the gradient of the adsorbed concentration rather than its quantity.

9.2.1.4 The Combined Diffusion Model

The linear equation (9.2-3a) was solved analytically by various means such as
separation of variables, or Laplace transforms (Edeskuty and Amundson, 1952a, b).
The particle is initially uniformly distributed with adsorbate molecules of
concentration Q:

t = 0; C = Q (9.2-23)

and the boundary conditions allow for the resistance in the stagnant fluid film
surrounding the particle:

(9.2-24a)

| = k m ( c | R - C b ) (9.2-24b)
lr=R

For slab object R is the half length, while for cylindrical and spherical objects, R is
their respective radius. Here Cb is the concentration of the adsorbate in the bulk
surrounding the particle. The first boundary condition is the usual symmetry
condition at the center of the particle, and the second condition simply states that the
flux into the particle at the surface is equal to that passing through the thin film
surrounding the particle. The parameter characterizing the resistance to mass
transfer in the film is the mass transfer coefficient, 1^. Example 9.2.2 shows how
this mass transfer coefficient can be calculated.

The solution for the concentration distribution within the particle is given below
in the form of an infinite series (Alternative solution to eq. 9.2-3a is obtained
numerically as shown in Appendix 9.1):

(9.2-25)

where ^n is the eigenvalue, K^x) is the eigenfunction corresponding to the
eigenvalue £,n, and the non-dimensional distance and time are defined as:
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Expressions for an, K^x) and £n for three different particle geometries are given in
Table 9.2-1. Appendix 9.2 tabulates the first ten eigenvalues for slab, cylinder and
spherical particles.

Table 9.2-1: Concentration distribution solutions for three particle geometries

Shape a,, K,,(x) ^ Eq. No.

Slab ^ ^ s i n 2 O c o s (^x) $i.smSn=Bi-cos$n (9.2-27a)

Bi

Cylinder e , .r _ , .n.,2l h(^) i^J .^J = Bi • J0(^n) (9.2-27b)

Sphere J ~^JJ~Y~ s i n(^x) 4ncos^n =(l-Bi)-sin^n (9.2-27c)

Here J is the Bessel function and Bi is the non-dimensional Biot number, defined as:

B i = r 7*^- : T (9.2-27d)

[EDp+(l-e)KDs]
The Biot number measures the relative resistance contributed by the stagnant film
surrounding the particle to the internal diffusional resistance. For most gas phase
applications, this number is of the order of 10 to 100, indicating that the internal
diffusional resistance is more important than the film resistance.

MM Mass transfer coefficient and the Biot number

The mass transfer coefficient for a stagnant film surrounding a solid
adsorbent packed inside a fixed bed adsorber can be calculated from the
following correlation (Wakao and Kaguei, 1982):

Sh = 2 + l.lRea6Sc1/3

where
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Here, k^ is the mass transfer coefficient, R is the particle radius, p and u
are fluid density and viscosity, u is the velocity around the particle and D^
is the fluid binary diffusivity.

We take an example of ethane (20%) and nitrogen (80%) at 1 arm and
303 K. The particle radius is 0.1 cm. The relevant properties of ethane and
nitrogen are listed in the following table.

Species
mitrogen
ethane

MW (g/mol)
28
30

The density of the gaseous

where

Pi I R T

p 2 _

u (g/cm/s)
0.00018
0.0000925

D12 (cm7s)
0.1483

i mixture p is calculated from

P = Pi + P2

0.8
82.057 x 303

0.2

g
cc

- 2 . 4 x l O ' 4 g

RT 82.057 x 303 cc

Thus

P = Pi+P2 =H.4xlO"4 g/cc

The viscosity of the mixture is calculated from the semi-empirical
formula of Wilke et al. (Bird et al., 1960)

i=i

1
1 + -

-1/2

M:

Knowing the pure component viscosity and the mole fractions, we
calculate the mixture viscosity using the above equation to get:

u = 1.55xlO"4 g / c m / s

We calculate the Schmidt number
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pD12 ^11.4xl0~4](0.1483)
=0.917

For a range of velocity, we calculate the mass transfer coefficient using

the correlation Sh = 2 + 1.1 Re06Sc1/3, and the results are tabulated in the

following table:

u (cm/s)
0
2
5
10
15
20
100
1000

Re(-)
0
2.94
7.36
14.71
22.06
29.42
147.10
1471.0

km (cm/s)
1.48
3.00
4.11
5.46
6.55
7.51
17.31
64.51

Bi(-)
7.4
15
21
27
33
38
87
322

The Biot number is calculated from eq. (9.2-27d), and if the apparent
diffusivity of the porous solid is 0.02 cm2/s the Biot number can be
calculated and they are listed in the above table. We will show later that
the mass transfer resistance in the stagnant film surrounding the particle
can be neglected compared to the internal diffusion when the Biot number
is greater than about 50. For this specific system, to neglect the external
mass transfer resistance, a minimum velocity of 100 cm/s must be
maintained.

More about Biot number
Although in most gas phase applications, the Biot number is usually

greater than 100, indicating that the gas film resistance is not as important
as the internal diffusional resistance. In systems with fast surface diffusion,
this may not be true as we shall see in this example.

Particle radius, R 0.1 cm
Particle porosity, 8 0.33
Pore diffusivity, Dp 0.32 cm7s
Surface diffusivity, Ds 1 x 10"5 cm2/s
Henry constant, K 10,000
Mass transfer coefficient, k^ 5.5 cm/s
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With the above values typical for adsorption of low hydrocarbons in
activated carbon, we calculate the combined diffusivity

eDp + (l - e)KDs = 0.776 cm2 / s

Thus the Biot number is calculated as Bi = 0.71. This low value of the Biot
number suggests that the resistance contributed by the gas film is very
much comparable to the diffusional resistance within the particle.

Now let us consider the same set of values but this time we assume that
there is no surface diffusion. The Biot number in this case is Bi = 52.
Thus we see that in the absence of surface diffusion the gas film resistance
becomes negligible compared to the internal diffusional resistance.

9.2.1.4.1 Fractional uptake

Once the solution for the concentration distribution is known (for example, eq.
9.2-25 for the linear isotherm case), the amount uptake per unit volume of the
particle can be calculated from:

) (9.2-28)
v p

where Vp is the volume of the particle, and C(t) and C^(t) are the volumetric mean

concentrations in the gas and adsorbed phases, defined as follows:

C(t) = ^ jC(t,r) dV; C^t ) = ^ j c , ( t , r ) dV (9.2-29)
v v

When time approaches infinity, the amount uptake by the solid per unit volume is
simply:

— ^ = eC(oo) + (1 - e)CV (QO) (9.2-30)

where C^(oo) is the adsorbed concentration which is in equilibrium with C(oo),

which is equal to the bulk phase concentration Cb. The fractional uptake commonly
used in adsorption studies is defined as the ratio of the amount adsorbed from t = 0
to time t to the amount taken by the solid from t = 0 to time infinity, that is:
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M ( t ) - M ( 0 ) f e C ( t ) + 0 - e ) C ^ ( t ) ] - f s C ( O ) + ( 1 ) M ( )
p = i_£ v ' — _L__ J L J (9 2-31)

M ( ) M ( O ) ^ C ( ) (1 ) C V ( ) ] [ C ( 0 ) (1 ) C ( 0 ) ]M(oo) - M(0) feC(oo) + (1 - s)C» (oo)l - feC(O) + (1 - e)C^ (0)1
L J L J

Eq. (9.2-31) is valid for any isotherm. For linear isotherm between the two phases
(eq. 9.2-2), the above equation for the fractional uptake can be reduced to:

r_ [
[[e + (1 - e)K]C(oo) - [e + (1 - e)K]Ci Cb - C{

The solutions for the concentration distribution in the case of linear isotherm
(eq. 9.2-25) are substituted into eq. (9.2-32) and we obtain the following expression
for the fractional uptake:

GO

X ( 2 ) (9.2-33)

where T is the non-dimensional time defined in eq. (9.2-26), the coefficient bn are
tabulated in Table 9.2-2 for three different shapes of particle, and the eigenvalues ^n

are given as solution of transcendental equations given in Table 9.2-1.

Table 9.2-2; The coefficient bn for the fractional uptake equation (9.2-33)

Shape ^ Eq. No.

Slab 2 s i n 2 ^ " (9.2-34a)

Cylinder 4 (9.2-34b)

Sphere °ls inSn ~ Sn co^n) (9.2-34c)
, cos2I
J I

When the film resistance becomes negligible compared to the internal diffusional
resistance, that is when Bi is very large, the fractional uptake given in eq.(9.2-33)
will reduce to simpler form, tabulated in Table 9.2-3 for the three shapes of particle.
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Table 9.2-3: Fractional uptake for three particle geometries when Bi ->oo

Shape

Slab

Fractional

n

uptake

•

2%L
i

r) 2 exp

Eq. No.

(9.2-35a)

Cylinder

n=l

Sphere F = i _ _^_£ J_exp(- n V T )

(9.2-35b)

(9.2-35c)

These solutions for the fractional uptake listed in Table 9.2-3 are used often in the
literature, when linear isotherm is valid. The fractional uptake versus non-
dimensional time T is shown in Figure 9.2-5a for three different shapes of the
particle for the case of infinite stirring in the surrounding (Bi -> oo). The computer
code UPTAKEP.M written in MatLab is provided with this book to help the reader
to obtain the fractional uptake versus time. As seen in Figure 9.2-5a, for the given R
and Dapp the spherical particle has the fastest dynamics as it has the highest exterior
surface area per unit volume.

Fractional
uptake, F

0.5 1.0

Non-dimensional time, x

1.5

Figure 9.2-5a: Plots of the fractional uptake versus x for slab, cylinder and sphere for Bi = oo
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Determination of diffusivity from fractional uptake data

Figure 9.2-5a can be used to determine the diffusivity. We take the
following adsorption kinetic data of fractional uptake versus time for an
adsorption system with linear isotherm (the first two columns of the
following table). The particle is spherical.

t (sec)
60
90
160
275
425
660
1000
1600
2200

Fractional uptake
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95

T (from Figure 9.2-5)
0.005
0.011
0.020
0.033
0.051
0.079
0.120
0.190
0.260

Using Figure 9.2-5a, we obtain the non-dimensional time T for each value
of the fractional uptake. This is tabulated in the third column of the above
table. According to the definition of the dimensionless time (9.2-26), a plot
of T versus t (Figure 9.2-5b) gives a straight line with a slope of Dapp/R2.

0.30

500 25001000 1500 2000

t(sec)
Figure 9.2-5b: Plot of x versus t

Using the data in the above table, we find this slope as 1.2 x 10~4 sec1 , i.e.

D a p p / R 2 = 1 . 2 x l ( T 4 sec"1

Thus if the particle radius is known, the apparent diffusivity can be
calculated.
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The effect of Biot number (film resistance relative to internal diffusion) is
shown in Figure 9.2-6, where it is seen that when Bi approaches infinity the uptake
curve reaches an asymptote, indicating that the system is controlled by the internal
diffusion. The criterion that the gas film resistance can be neglected is Bi > 50.

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Figure 9.2-6: Plots of the fractional uptake versus T for a spherical particle

An increase in particle radius will increase the time taken by the system to reach
equilibrium (Figure 9.2-7). In fact, this time increases with the square of the particle
length scale by the virtue of the definition of the non-dimensional time T and the
solution for the fractional uptake is only a function of T.

0.4

0.2

0.0 '
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Figure 9.2-7: Plots of the fractional uptake versus T0 for a spherical particle

An increase in temperature also increases the speed of adsorption, that is the
time to approach equilibrium, because of the two factors: the increase in diffusivity
and the reduction in adsorption capacity. This has been demonstrated in Figure 9.2-
4 where the apparent diffusivity increases monotonically with temperature.
Although the increase in temperature makes the system to approach equilibrium
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faster, the rate of adsorption actually decreases with temperature. Let us write the
rate of adsorption from eq. (9.2-31) as

When temperature increases, dF/dt increases because of the increase in the apparent
diffusivity; but since the amount adsorbed at equilibrium M(oo) decreases with
temperature at a rate faster than the increase in dF/dt with temperature the net result
is that the rate of adsorption dM(t)/dt decreases with temperature. We should not
confuse between the rate of adsorption and the time taken to reach equilibrium, that
is even though the rate of adsorption is low at higher temperature the time taken to
reach equilibrium is less because of the lesser equilibrium capacity accommodated
by the solid at high temperature.

9.2.1.4.2 The Half-Time

The half time of adsorption, that is the time it takes for the solid to attain half of
the equilibrium amount, can be calculated from eqs. (9.2-35) by simply setting the
fractional uptake F to one half for the case of no external mass transfer resistance.
When this is done, we obtain the following half times for three shapes of particle:

f 0.19674 slab

x0 5 =
 app

2
05 = J 0.06310 cylinder (9.2-36a)

R [0.03055 sphere

The dimensional half time is then given by

R2 R2[e + (l-e)Kl
t O 5 = a = a L-^—r-^—L (9.2-36b)

05 Dapp eD p +( l -e )KD s

where a = 0.19674, 0.06310 and 0.03055 for slab, cylinder and sphere, respectively.
It is clear from eq.(9.2-36b) that the half time is proportional to the square of
particle radius. The temperature dependence of the half time is that the half time
decreases with temperature as the apparent diffusivity Dapp increases with
temperature (see Figure 9.2-4).

As seen in eq. (9.2-36) that the half time for sphere is smallest and that of slab
is highest. This is because the sphere has the highest external surface area per unit
volume; hence it takes shorter time to reach equilibrium. If we write the above
equation for half time in terms of the volume to external surface area ratio, defined
as
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f (V/Se x t) slab

R = J2(V/Se x t) cylinder

[3(V/S e x t) sphere

then the half time of adsorption of eq. (9.2-36) is given by:

f 0.197 slab
app a s = J0.252 cylinder (9.2-37)

( V / b e x t ) [0.275 sphere

This means that if the half time is calculated based on the unit of volume to external
surface area, the non-dimensional times defined are closer for all three shapes of
particle. The small difference is attributed to the curvature effect during the course
of adsorption, which can not be accounted for by the simple argument of volume to
surface area. Eq. (9.2-37) is useful to calculate the half time of solid having an
arbitrary shape, that is by simply measuring volume and external surface area of the
solid object the half time can be estimated from eq. (9.2-37).

9.2.1.4.3 Short Time Solution

Very often in the literature short time solutions are needed to investigate the
behaviour of adsorption during the initial stage of adsorption. For linear problems,
this can be achieved analytically by taking Laplace transform of model equations
and then considering the behaviour of the solution when the Laplace variable s
approaches infinity. Applying this to the case of linear isotherm (eq. 9.2-3), we
obtain the following solution for the fractional uptake at short times:

^ (9.2-38)

where s = 0, 1, and 2 for slab, cylinder and sphere, respectively, and T is defined in
eq. (9.2-26).

Written in terms of the dimensional quantities, eq.(9.2-38) becomes:

M(t)-M(0) 2(s + l) eDp+(l-s)KDg r- (9 2

M(a>)-M(0)~ V^ |[e + (l-e)K]R2 J

where

M(oo) = v[eCb + (1 - e)KCb] (9.2-40a)
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M(0) = vfeQ + (l - s)KCi ] 9.2-40b)

Thus the amount adsorbed per unit volume of the particle from t = 0 to t is:

This means that if one plots the change of the amount adsorbed per unit volume of
the particle versus the square root of time using only initial data, a straight line
should be resulted from such plot with the slope given by:

2(s + l ) (C h -C:) / 7 r— I 7 :
slope = — ^ ^ 8 + (l - e)K • ^/eDp + (l - e)KDs (9.2-42a)

or in terms of pressure difference

+ ( l - e ) K ^ s D p + ( l - s ) K D s ( 9 > 2_4 2 b )

The slope is often utilised to determine the combined diffusivity. The nice feature
about this type of plot is that we only need the initial data to quickly obtain the
diffusivity.

To find the temperature dependence of this slope, we substitute the temperature
dependence of the relevant parameters (eqs. 9.2-5) and obtain the following
temperature dependence factor of the above slope:

V . l(l + e)a+80exp(-<I I N - r l l / 4 / ^ \ « - « . o 1 "

+ aexp - yH

(1 + 9)
(9.2-43)

where y is given in eq.(9.2-9a), 80 in eq.(9.2-4), yH in eq.(9.2-16) and a in eq.(9.2-
18).

The following figure shows the dependence of the reduced slope versus non-
dimensional temperature 0 (Figure 9.2-8) for a = 100, a = 1.75, y = 5, yH = 10, and
80 = 1. We see that the slope decreases with temperature for a given pressure
difference, and this decrease is due to the decrease in the amount adsorbed at high
temperature (the first term in the numerator of eq. 9.2-43).

We have completed the analysis of system with linear isotherm, and local
equilibrium between the two phases. The local equilibrium assumption is generally
valid in many systems; the linearity between the two phases is, however, restricted
to systems with very low concentration of adsorbate, usually not possible with many
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practical systems even with purification systems. We will discuss the analysis of
nonlinear systems in the next section, and point out the behaviours which are not
manifested in linear systems.

5

Figure 9.2-8: Plot of the reduced slope of the initial uptake versus 0

9.2.2 Nonlinear Models:

In nonlinear adsorption systems where parallel diffusion mechanisms hold, the
mass balance equation given in eq. (9.2-lb) is still valid. The difference is in the
functional relationship between the concentrations of the two phases, that is the
local adsorption isotherm. In general, this relationship can take any form that can
describe well equilibrium data. Adsorption isotherm such as Langmuir, Unilan,
Toth, Sips can be used. In this section we present the mathematical model for a
general isotherm and then perform simulations with a Langmuir isotherm as it is
adequate to show the effect of isotherm nonlinearity on the dynamics behaviour.
The adsorption isotherm takes the following functional form:

^ = f(C) (9.2-44)

The mass balance equation is obtained for the case of nonlinear isotherm by
substituting the isotherm equation (eq. 9.2-44) into the mass balance equation (9.2-
lb)

[8 + (1 - s)f ( C ) ] ^ = ^ | { r - 8) f (Q D (9.245.)

subject to the following boundary conditions:
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dC
r = 0; — = 0 (9.2-45b)

or

r = R; [ e + ( l - s ) f ( C ) D s ] ^ = k m ( C b - C ) (9.2-45c)

and the following initial condition

t = 0; C = C{; CM = C^ = f (C{) (9.2-45d)

where Cb is the bulk concentration surrounding the particle, Q is the initial
concentration, and C^ is the initial adsorbed concentration which is in equilibrium
with Q. The model equations (9.2-45) completely define the system dynamic
behaviour. Solving this set of equations will yield the concentration distribution of
the free species within the particle. From this we can calculate the concentration
distribution of the adsorbed species by using eq. (9.2-44), and then the amount
adsorbed per unit particle volume from eq. (9.2-28) and the fractional uptake from
eq. (9.2-31).

It is important to note that the mass balance equation (9.2-45a) contains the
concentration-independent surface diffusivity. In general this surface diffusivity is a
function of concentration when the isotherm is nonlinear. We shall postpone the
treatment of concentration-dependent Ds, and assume its constancy for the study of
the effects of isotherm nonlinearity on the system dynamic behaviour.

Example 9.^?5: Non-dimensionalisation of the mass balance equations

The model equations are eqs. (9.2-45). Because of the nonlinearity of
the equations, they must be solved numerically and before this is done it is
convenient to cast them into a nondimensional form. Let Co be some
reference concentration. We define the following non-dimensional
variables and parameters:

(9.2-46a)

bJ^p^o
= f(C0) (9.2-46b)

i = 7FT; y > = F - ; * = F - (92 '46c)
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The resulting non-dimensional equations are:

G(y)— = — — \ r|sH(y) — I (9.2-47a)

where

G(y) = e+( l -e ) f (C o y) (9.2-47b)

Co f'(Coy)
H(y) = 1 + 5P ° V 0 J ; (9.2-47c)

The function G(y) reflects the system capacity, while the function H(y)
reflects the mobility. Eqs. (9.2-47) are subject to the following boundary
conditions:

TI = 0; — = 0 (9.2-47(1)

( y b - y ) (9.2-47e)^ B i ( y b y )
dr\

and the following initial condition

T = 0; y = Yi (9.2-47f)

The parameter 5P in eq. (9.2-46b) measures the strength of mobility of the
adsorbed species to that of the free species. If 8P = 0, surface diffusion is
absent. If it is of order of unity, both diffusion fluxes are comparable in
magnitude, and if it is much greater than unity surface diffusion is more
important than pore diffusion.

Solving eqs.(9.2-47) we will obtain the non-dimensional concentration
y as a function of r| and x, from which we can calculate the dimensional
concentrations of the free and adsorbed species:

C = Coy (9.2-48a)

C^ = f(C) = f(Coy) (9.2-48b)

Then the fractional uptake can be calculated from:
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where C b̂ is the adsorbed concentration in equilibrium with Cb, and < >
denotes the volumetric average defined as:

Eqs.(9.2-47) are in the form of nonlinear partial differential equation and are
solved by a combination of the orthogonal collocation method and the Runge-Kutta
method. Appendix 9.2 shows the details of the collocation analysis, and a computer
code ADSORB 1A.M is provided to solve the cases of Langmuir and Toth
isotherms.

For Toth isotherm, the relevant functions for this model are:

hC
c

[ f ) 1 ]
f (C) =

(bc)t

+ (bCoy) t

-(bC0)1
l/t

For Langmuir isotherm, simply replace t in the above equations by unity.

9.2.2.1 General Behaviour

Nonlinear isotherm model equations (9.2-47) are solved numerically, and a
number of features from such numerical study are:

1. The fractional uptake is proportional to the square of the particle radius
2. The fractional uptake is faster with an increase in the bulk concentration
3. The fractional uptake is faster with an increase in temperature.

The points 1 and 3 are also observed for the case of linear isotherm. The second
point, however, was not observed in the case of linear isotherm where the fractional
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uptake curve is independent of bulk concentration. This is because when the bulk
concentration is double, the capacity in the solid is also doubled by the virtue of
linear isotherm; thus, the times taken to reach equilibrium are the same. On the
other hand, in the case of nonlinear isotherm, assuming the isotherm is convex
(Langmuir isotherm is convex), a double in the bulk concentration is associated with
a less than double in the adsorption capacity and as a result the time taken to reach
equilibrium is shorter for the system having higher bulk concentration.

[Example 9.2-6 \ Dual diffusion in a particle with a Langmuir isotherm

We illustrate this bulk concentration dependence with this example.
The particle is spherical and the adsorption isotherm follows a Langmuir
equation. The relevant parameters for this system are tabulated in the
following table.

Particle radius, R = 0.1 cm
Particle porosity, e = 0.33
Bulk concentration, Cb = 1 x 10~6 mole/cc
Affinity constant, b = 1 x 106 cc/mole
Saturation adsorption capacity, C ŝ =5x10 3 mole/cc
Pore diffusivity, Dp = 0.02 cm2/sec
Surface diffusivity, Ds = 1 x 106 cm2/sec

With this bulk concentration, the equilibrium adsorbed concentration is:

C - C b C b 2 5::1Q-3 m O l C

^b " s l + bCb cc

Using the program code ADSORB 1 A, we generate the concentration
distribution as a function of time, and Figures 9.2-9a and b shows plots of
the fractional uptake as well as the amount adsorbed per unit particle
volume versus time (sec). Taking another case having a bulk concentration
of 5 x 10~6 mole/cc, which is 5 times larger than that used in the last
example. The equilibrium adsorbed concentration is:

3 mole
= 4.17x10"

cc

which is only 1.6 times higher than the equilibrium adsorbed concentration
in the last example. Thus we see that a five fold increase in the bulk
concentration results in only a 1.6-fold increase in the adsorbed
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concentration, suggesting that the system will approach equilibrium faster
in the case of higher bulk concentration (Figure 9.2-9a). We also show on
the same figure the fractional uptake versus time for another bulk
concentration of 1 x 10~5 mole/cc. This illustrates the point that the
fractional uptake is faster with an increase in bulk concentration.

Fractional 0.6
uptake

0.4

0 100 200 300 400 500

Time (sec)

Figure 9.2-9a: Plots of the fractional uptake versus time (sec)
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Figure 9.2-9b: Plots of the amount adsorbed per unit particle volume versus time

Another useful exercise of the computer simulation is that the internal
concentration profile versus time can be studied. Figure 9.2-9c shows the
time evolution of intraparticle concentrations at five specific points within
the particle. The sigmoidal shape of the curve is simply due to the fact that
it takes time for adsorbate molecules to reach the interior points.
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Figure 9.2-9c: Plots of the concentration at various points within the particle versus time

The effect of particle size can also be investigated numerically. Figure 9.2-
9d shows plots of the amount adsorbed per unit particle volume versus time
for three different particle sizes. It takes longer to reach equilibrium for
larger particle size, but the equilibrium capacity is unaffected by the
particle size. Note the dependence of the time scale of adsorption on the
square of radius.
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Figure 9.2-9d: Plots of the amount adsorbed per unit particle volume versus time for
different particle size (R = 0.075, 0.1, 0.15 cm)

9.2.2.2 Irreversible Isotherm and Pore Diffusion

The effect of bulk concentration can be further illustrated when we consider the
extreme of the Langmuir isotherm
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that is when the affinity constant b is very large such that bC » 1. In this case the
isotherm becomes a rectangular isotherm, C^ « C^, or sometimes called an
irreversible isotherm. When the adsorption isotherm is so strong, adsorbate
molecules once penetrate into the particle will adsorb very quickly on the surface
until that position is saturated with adsorbed species and only then adsorbate
molecules will penetrate to the next position towards the particle interior. The
behaviour inside the particle is such that the particle can be effectively split into two
regions. The region close to the particle exterior surface is saturated with adsorbed
species, and through this region adsorbate molecules diffuse with no adsorption as
there are no available free sites to adsorb, and adsorption only occurs in the very
small neighborhood around the point separating the two regions. The inner core
region is, therefore, free of any adsorbate whether it is in the free form or in the
adsorbed form. Figure 9.2-10 shows schematically the two regions as well as the
concentration profiles of free and adsorbed species.

Empty core I Saturated shell
concentration profile of the
adsorbed species

concentration profile of the free species

* x
0 X

Figure 9.2-10: Concentration profiles of free and adsorbed species in the case of irreversible isotherm

By splitting the particle domain into two, for which the domain close to the
particle exterior surface is saturated with the adsorbed species while the inner
domain is free from any sorbates, the problem can be solved to yield analytical
solution (Suzuki and Kawazoe, 1974). Using a rigorous perturbation method, Do
(1986) has proved that the penetration of the adsorption front in the case of
rectangular isotherm can be derived from the full pore diffusion and adsorption
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equations under the conditions of strong adsorption kinetics relative to diffusion,
high sorption affinity and low capacity in the fluid phase compared to that in the
adsorbed phase. Under these conditions, the mass balance equations are:

„_ Rf < r < R (9.2-49a)

d R f - - ^ "~' (9.2-49b)
r=Rf

where C ŝ is the saturation capacity. The first equation is simply the pure diffusion
equation describing transport in the saturated outer layer, while the second equation
states that the rate of adsorption is balanced by the molar rate of supply at the front
separating the two regions. Here Rf is the time-dependent position of the front
demarcating the two regions.

The fractional uptake for this problem is simply the amount in the saturated
region to the saturation amount of the whole particle. Written in terms of the
demarcation position Rf, it is:

(4TCR3 / 3 - 4nR3
f / 3) (l - e) Cus

F = i 7 r '- —— (9.2-50a)
(47iR 3 /3) ( l -e )C, s

that is

(9.2-50b)

The initial condition is that the particle is initially free of any adsorbate, that is:

t = 0; C = 0 (9.2-51)

The boundary conditions are given as in eqs. (9.2-24). Solving this set of mass
balance equations, we obtain the solutions for the fractional uptake for three particle
shapes, tabulated in the second column of Table 9.2-4.
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Table 9.2-4: Fractional uptake for the case of irreversible isotherm

Fractional uptake Half time Eg. No.

Slab

Bi
05 ~

R 2 ( l - i
eDpC0 U + 2Bi

(9.2-52a)

1 1
- + —
4 2B

eD_Cot
p h4BiJ

(9.2-52b)

Sphere

eD Co V3 25/3 6Bi
(9.2-52c)

From the solutions for the fractional uptake in Table 9.2-4, the half time can be
obtained by setting the fractional uptake F to one half, and they are tabulated in the
third column of Table 9.2-4. For this case of rectangular isotherm, the half time is
proportional to the square of particle radius, the maximum adsorptive capacity, and
inversely proportional to the bulk concentration. The time it takes to reach
equilibrium is half when the bulk concentration is doubled. This is because when
the bulk concentration is doubled the driving force for mass transfer is doubled
while the adsorptive capacity is remained constant (that is saturation concentration);
hence the time to reach saturation will be half. Recall that when the isotherm is
linear, the time scale for adsorption is independent of bulk concentration. Hence,
for moderately nonlinear isotherm, the time scale would take the following form:

^0.5 " ' (9.2-53)

where a = 0 for linear isotherm, and a = - 1 for irreversible isotherm and a is
between -1 and 0 for moderately nonlinear isotherm. We will show later in eq. (9.2-
63) an approximate but explicit half time for the case of Langmuir isotherm.

Another feature of the irreversible isotherm case is the time taken for the
particle to be completely saturated with adsorbate. This is obtained by setting F to
unity in eqs. (9.2-52) and the results are tabulated in Table 9.2-5. This finite
saturation time is only possible with the case of irreversible isotherm. For the cases
of linear isotherm and nonlinear isotherm, the time it takes to equilibrate the particle
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is infinity. In such cases to obtain the magnitude of the adsorption time scale, we
need to determine the time taken for the particle to reach, say 99% of the
equilibrium capacity. For example, take the case of a spherical particle with linear
isotherm, the fractional uptake is given in eq. (9.2-35c). By setting F = 0.99 into
that equation, we obtain the following time

T0.99 = "

which could serve as a measure of equilibration time for linear isotherm.

Table 9.2-5: Time to reach saturation

Shape Time to reach saturation Eq. No.

S l a b
 t ^R2(l-s)C^i [

+
eDpC0 \2 Bi

Cylinder _ R 2 ( 1 _ 8 ) C ^

l l ~ eDpC0 W 2Bi

Sphere R2(l-e)C (\ 1 ̂  (9.2-54c)
t, = — [ - + —

eD C o V6 3Bi

Observing eqs. (9.2-54) we see that the time to reach 100% uptake in the case
of cylindrical adsorbent is half of that for the case of slab adsorbent, and that in the
case of spherical particle as one third of that for slab. This interesting result is
explained from the ratio of particle volume to external surface area

IR / 3 sphere

R / 2 cylinder (9.2-54d)

R slab
For thlTcase of no mass transfer resistance in the film surrounding the particle,

we simply set Bi to infinity in eqs. (9.2-52). For such a case, the solutions are
simpler and explicit for slab and sphere and they are given in Table 9.2-6. What we
note from the solution for slab is that the fractional uptake is proportional to the
square root of time throughout the course of adsorption. Recall the short time
solution for the case of linear isotherm (eq. 9.2-38) that the fractional uptake is also
proportional to the square root of time but that is only valid for short times.
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Table 9.2-6: Fractional uptake for the case of irreversible isotherm with no film resistance

Shape Fractional uptake Expression Eg. No.

Slab
F = J—;t 2eDpC0

Cylinder t
F + (1 -F) ln ( l -F ) = —; t* =

t

Sphere r r . .

R 2 ( l - f

4eDp

*

0C(

Co

R

is

6eD

^)C,S

pC0

(9.2-55a)

(9.2-55b)

(9.2-55c)

What has been presented so far is the analysis of the irreversible case with pore
diffusion mechanism only. The concept of travelling concentration front is valid as
long as there is no surface diffusion because if surface diffusion is present, which is
unlikely for very strong adsorption, it will distort the sharp concentration wave front
and hence the concept of two distinct regions will no longer be applicable.

9.2.2.3 Approximate Solution for Dual Diffusion Model and Langmuir Isotherm

We have discussed briefly in Chapter 7 about the complexity of the surface
diffusion. It has been observed in many systems, particularly systems with large
internal surface area such as activated carbon. What makes surface diffusion more
difficult is that this process is highly dependent on the solid structure. It has been
experimentally observed that the surface diffusivity is a strong function of loading.
However, what we will do in this section is to assume that surface diffusion is
described by a Fickian equation with a constant diffusion coefficient, as we did in
eq. (9.2-lb), and then obtain an approximate solution to see the influence of various
parameters including surface diffusion coefficient on the dynamic behaviour of a
nonlinear adsorption system. Many work have assumed constant surface diffusivity,
such as those of Damkohler (1935), Testin and Stuart (1966), Brecher et al.
(1967a,b), Dedrick and Breckmann (1967), Nemeth and Stuart (1970), Furusawa
and Smith (1973), Komiyama and Smith (1974), Neretnieks (1976), Costa et al.
(1985) and Costa and Rodrigues (1985).

The surface diffusivity is usually obtained by first isolating the pore diffusion
rate from the total observed rate, and then from the definition of surface flux the
diffusivity can be obtained. If the surface flux is based on the concentration
gradient, the surface diffusivity is called the transport surface diffusivity. The
isolation of the pore diffusion can be achieved by increasing temperature to the
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extent that the contribution of surface diffusion is negligible (see Section 9.2.1.1).
The reason why the surface diffusion becomes negligible at high temperature is that
the surface diffusion flux is a product between the surface diffusivity and the surface
loading. As temperature increases, the surface diffusivity increases but not as fast as
the decrease of the surface loading; therefore, the surface flux decreases (Schneider
and Smith, 1968; Mayfield and Do, 1991). This methodology of removing the
contribution of surface diffusion at high temperature has two disadvantages. One is
that the temperature beyond which the surface diffusion becomes negligible may be
too high to achieve practically, and the second reason is that the surface diffusion
rate is negligible compared to the pore diffusion rate as the temperature increases
only when the adsorption isotherm is linear. Another possible way to overcome this
problem is to use a half-time method first proposed by Do (1990) and Do and Rice
(1991) to extract the surface diffusivity from a simple analysis. This is done as
follows.

We demonstrate this with a spherical particle with no film resistance (that is Bi
-> oo), and then present the results for slab and cylindrical particles. If the pore
diffusion is the only diffusion mechanism and the adsorption isotherm is linear, the
half time of adsorption is (from eq. 9.2-36b)

P_a5 0.03055 (9.2-57)
R2[e + ( l - e

When the adsorption isotherm is irreversible and the pore diffusion mechanism
is the controlling factor, the half time of adsorption is (from eq. 9.2-52c):

6D_C0t05
p =0.01835 (9.2-58)

Solving eq. (9.2-45) numerically for the case of Langmuir isotherm using the
programming code ADSORB 1 A, we obtain the following approximate correlation
for the half time in terms of the parameter X = bC 0 , which is a measure of the

degree of nonlinearity of the isotherm

where C^o is the adsorbed amount in equilibrium with the bulk concentration Co:

bC X.c - c £ - c 9M
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When X = 0, eq. (9.2-59) reduces to the half time for the linear isotherm (eq. 9.2-57)
since K = C^sb, and when ^-»oo we recover the half time for the irreversible

isotherm (eq. 9.2-58).
Now allowing for the pore and surface diffusion in parallel and the isotherm is

linear, the half time of adsorption is then (eq. 9.2-36):

[ eD p +( l -e )KD s l t 0 5
i p , r -\^ = 0.03055 (9.2-61)

R2[e + ( l - e )K]

Finally, when the surface diffusion is the controlling mechanism, the half time
will be:

= 0.03055 (9.2-62)
R2

no matter what the isotherm nonlinearity is.
Thus, by combining the behaviour of the half time at various limits (eqs. 9.2-57

to 9.2-62), the following general equation for the half time for parallel pore and
surface diffusion and any nonlinearity of the isotherm (Do, 1990) is obtained

PbC0

Co

s D p + ( l - e ) D s 1 -
+ y b C o A C o

where

C^o _ bC^s _ K

Co l + bC0 l + bC0

(9.2-63b)

Here Co is the external bulk concentration and C ô is the adsorbed concentration
which is in equilibrium with Co and a, P, y are given in the following table (Table
9.2-7). Eq. (9.2-63a) is valid for three shapes of the particle. The only difference
between the three particle shapes is the values of the parameters a, P, and y.

Table 9.2-7: Parameter values for eq. (9.2-63a,)

Shape of particle a [3 i
Slab 0.19674 0.25 0.686
Cylinder 0.06310 0.26 0.663
Sphere 0.03055 O30 0.750
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The explicit form of eq. (9.2-63) is very useful for the determination of surface
diffusivity. To do so we must rely on experiments conducted over the nonlinear
region of the isotherm. Otherwise, the contribution of the surface diffusion can not
be distinguished over the linear region. Half time is measured for each bulk
concentration used. By rearranging the analytical half time equation (9.2-63a), we
have

. = eDp+(l-e)D. 1 — J l ^ p i (9.2-64)
to.5 P A l + y b C 0 J l c 0 J

This equation suggests that if one plots the LHS of the above equation versus

x.r,..
1 + y b C o A C o

we would obtain a straight line with the slope (l-e)Ds and the intercept £Dp. If

experiments were to be carried out over the Henry's law range (i.e. bC0 « 1 and
CM0/C0 = K, which is the slope of the isotherm), eq. (9.2-64) would become:

aR2[e + ( l -e )Kl
*- = eDn + (1 - s)D^YL (9.2-65)

tO.5 '

Inspecting this equation, we see that the separate contribution of pore and surface
diffusions can not be delineated. Instead one can only obtain the apparent
diffusivity from the linear region experiments

6D D +( l -e )KD s
^ - p - (9.2-66)

To illustrate the half time dependence on bulk concentration (eq. 9.2-63), we take
the following example of a spherical adsorbent particle

8

R
b

D,

0.31
0.2, 0.3 cm
8.4 x 105cc/mole
5 x 10-3mole/cc
0.02 cm2/sec
1.5 x 10-5cm2/sec

Figure 9.2-11 shows plots of the half time (using eq. 9.2-63) versus the bulk
concentration for two particle sizes (R = 0.2 and 0.3 cm). We note that the half-time
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decreases with the bulk concentration, that is the time to approach equilibrium is
shorter in systems having higher bulk concentration.

Half-
Time
(sec)

0 2e-5 4e-5 6e-5 8e-5 le-4

Co (mole/cc)

Figure 9.2-11: Plot of the half-time versus the bulk concentration Co (mole/cc)

Example 9.2-5: Determination of pore and surface diffusivities

We now illustrate the utility of eq.(9.2-64) in the determination of
diffusivities in a system of n-butane adsorption on activated carbon. The
adsorption isotherm can be described by a Langmuir equation:

bC
C - C

with
=4.9x10 3 mole/cc

b = 8.36xl05 cc/mole

The particle has a slab geometry, and its half thickness and porosity are:

R = 0.1 cm,

E = 0 3 1

The following table lists the experimental half-times measured at three bulk
concentrations.
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C h (mole/cc) to.« (sec)
5.188 x 10-6

8.285 x 10-6

1.272 x 10 5

60
44.8
36.2

Figure 9.2-12 shows a plot of the LHS of eq. (9.2-64) versus

x = | 1 PbC0 VC.,

for this example of n-butane/activated carbon. A straight line can be
plotted through the data points, and we get:

slope = (l - e)Ds = 1.116 x 10~5 cm2 / sec

Intercept = eD = 6.55 x 10 3 cm2 / sec

from which we can calculate the pore and surface diffusivities:

6.55x10 -3
= 0.021 cm2 /sec

_ 1.116x10
s ~ 1-0.31

-5
= 1.62xlO"5 cm2 /sec

0.012

LHS of
eq.(9.2-64)

o.oio

0.008

0.006

0 100 200 300 400 500 600

Figure 9.2-12: Plot of the LHS of eq. (9.2-64) versus X
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9.3 Adsorption Models for Nonisothermal Single Component Systems

In the last section we have illustrated the essential behaviors of isothermal
single component systems. In this section we will address the effect of heat release
during the adsorption step or heat absorption during the desorption step on the
adsorption kinetics. What we need is simply an extra equation to account for the
heat balance around the particle. To make the analysis more general, we shall take
adsorption isotherm being arbitrary.

Adsorption process is known to release heat upon adsorption or absorb energy
upon desorption. Typical heat of adsorption of many hydrocarbons on activated
carbon, alumina or silica gels ranges from 10 to 60 kJoule/mole. Such a magnitude
can cause a significant change in the particle temperature if the dissipation of energy
to the surrounding is not fast enough. Thus, the particle temperature increase (in
adsorption) or decrease (in desorption) depends on the interplay between the rate of
heat release due to adsorption and the dissipation rate of energy to the surrounding.
Since the solid thermal conductivity is much larger than that of the surrounding gas,
we shall assume that there is no temperature gradient within the particle. All the
heat transfer resistance is in the gas film surrounding the particle.

9.3.1 Problem Formulation

The mass balance equation over a thin shell of a particle in which the dual
diffusion mechanisms are operative is:

where C is the concentration in the void space (mole/m3 of void space), C^ is the
adsorbed phase concentration (mole/m3 of the adsorbed phase), 6 is the porosity of
the through-pores, Np is flux of adsorbate through the void volume and N^ is the
flux of adsorbate in the adsorbed phase. To proceed further with the mass balance
equation, we need to provide the temperature-dependent form of the constitutive
flux equations for the pore and surface diffusions. This is done next.

9.3.1.1 The Flux in the Pore Volume

The flux of adsorbate in the void volume is given by the following equation:

N p = - D p ( T ) | ^ (9.3-2)

where the pore diffusivity has the following temperature dependent form:
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(9.3-3a)

Here, Dp0 is the pore diffusivity at some reference temperature To. The exponent a
is 0.5 if Knudsen diffusion is the controlling mechanism within the void space.
However, if the molecular diffusion is the controlling mechanism, this exponent
takes a value of about 1.75. In the intermediate region where the Knudsen and
molecular diffusions are both controlling, the pore diffusivity can be calculated from
the Bosanquet relation (eq. 8.8-29b). Written explicitly in terms of temperature, the
pore diffusivity is:

1 1 1

DP(T) DK 0(T/T0)°5 Dm 0(T/T0)
(9.3-3b)

9.3.1.2 The Flux in the Adsorbed Phase

The fundamental driving force for the movement of adsorbed molecules is the
gradient of chemical potential. The flux of adsorbate in the adsorbed phase is given
by:

N,=-LC,|i (9.3-4)

where L is the mobility constant, which is assumed to be independent of
concentration and is dependent on temperature only, and \x is the chemical potential
of the adsorbed phase. We assume that at any point within the particle local
equilibrium between the gas and adsorbed phases exists, that is the chemical
potential of the adsorbed phase is the same as that of the gas phase:

u = M G = u ° + R g T l n C (9.3-5)

With this equality in chemical potential, the diffusion flux in the adsorbed phase (eq.
9.3-4) now can be written as:

in which we have assumed that there is no variation of temperature with respect to

distance. In the above equation, the diffusivity D° is called the corrected

diffusivity and is given by:
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D° =LR g T (9.3-7)

We see the flux in the adsorbed phase is governed by the gradient of the
concentration in the gas phase. To write its form in terms of the gradient of the
concentration of the adsorbed phase, we resort to the equilibrium relationship
between the two phases:

CM = f(C,T) (9.3-8)

Applying the chain rule of differentiation in eq. (9.3-6), we get:

C ac 0 dlnC dC^
N = - D — = - D ~ (9 3-9)

> " C dr » d lnC, dr K }

This is the flux expression for surface diffusion written in terms of the gradient of
adsorbed concentration. Eq. (9.3-6) gives the same diffusion flux of the adsorbed
species, but written in terms of the gradient of the fluid species concentration.
Although these two equations are mathematically equivalent, eq. (9.3-6) is more
efficient from the computational point of view.

The diffusion of the adsorbed species is usually activated, and hence the
corrected diffusivity takes the following Arrhenius form:

D^(T) = D ^ exp| — ^ | (9.3-10a)

or

D°(T) = D°oexp—-M 1-^-1 (9.3-10b)

where D ^ is the corrected diffusivity at infinite temperature, and D°o is that at

some reference temperature To, and E^ is the activation energy for surface diffusion.
This activation energy is found experimentally to fall in the range of

Q

3

where Q is the heat of adsorption.

9.3.1.3 The Mass and Heat Balance Equations:

Having had the necessary flux equations for the free species as well as the
adsorbed species, we substitute them (eqs. 9.3-2 and 9.3-6) into the mass balance
equation (9.3-1) to get:
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Since the two phases are in local equilibrium with each other, the adsorption
isotherm equation (9.3-8) can be used to eliminate C^ from the above equation to
finally obtain the equation in terms of only concentration of the free species:

(9.3-1lb)
The second term in the LHS accounts for the variation of the adsorbed concentration
with respect to temperature. The above mass balance can, in principle, be solved for
the concentration distribution if we know the temperature variation as a function of
time. However, this temperature variation is governed by the interplay between the
rate of mass transfer and the rate of energy dissipation. This means that mass and
heat balances are coupled and their equations must be solved simultaneously.

Carrying out the heat balance around the particle, we obtain the following
equation describing the variation of particle temperature with time:

(9.3-12a)

In obtaining the heat balance equation, we have assumed that the heat resistance by
conduction inside the particle is insignificant compared to the heat resistance of the
fluid film surrounding the particle, which is described by the second term in the
RHS of eq.(9.3-12a). Because of such assumption, the temperature inside the
particle is uniform. The first term in the RHS of eq.(9.3-12a) is the amount of heat
released per unit volume per unit time as a result of the adsorption rate per unit
volume d<C^>/dt. The parameter hf is the heat transfer coefficient per unit surface
area, aH is the heat transfer surface area per unit volume, Q is the molar heat of
adsorption, Tb is the surrounding temperature, <pCp> is the mean heat capacity per
unit particle volume and <CM> is the volumetric average concentration of the
adsorbed species, defined as

• s )^ijVcVir (9.3.12b)

The heat transfer surface area per unit volume aH is written in terms of the particle
size as follows:



566 Kinetics

a H = •
1 + s
R

(9.3-12c)

where s is the shape factor of the particle, and it takes a value of 1, 2 or 3 for slab,
cylinder and sphere, respectively.

The heat balance equation (9.3-12a) in its form is not convenient for numerical
computation because of the time derivative of the average adsorbed concentration.
To alleviate this problem, we proceed as follows. Taking the volume average of the
mass balance equation (9.3-1 la), we obtain:

(9.3-13a)
r=R

which states that the rate of mass hold up in the particle is equal to the diffusion rate
into the particle. Since the mass hold-up in the void volume is usually much smaller
than that in the adsorbed phase

d(c) .
dt K dt

eq.(9.3-13a) is then approximated by

(l-s) 1 + s
R L

eDp(T)+(l-e)D°(T)- dC
Dr

(9.3-13b)
r=R

Substitution of the above equation into the heat balance equation (9.3-12a), we
obtain an alternative form for the heat balance equation around the particle

- a H h f ( T - T b ) (9.3-14)
r=R

Eqs. (9.3-1 lb) and (9.3-14) are the required mass and heat balance equations. All
we need to proceed with the solution of these equations is to provide the pertinent
boundary and initial conditions.

9.3.1.4 The Boundary Conditions

The boundary conditions of the mass balance equation (9.3-11) are:

dC

dr
= 0 (9.3-15a)
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= km(c|R-Cb)(9.3-15b)
r=R

The first boundary condition is the symmetry at the center of the particle, while the
second boundary condition simply states that the flux at the exterior surface of the
particle is equal to the flux through the stagnant film surrounding the particle. Here
Cb is the bulk concentration.

9.3.1.5 The Initial Condition

The particle is assumed to be initially equilibrated with a concentration of Q
and a temperature of T{, that is:

t = 0; C = CJ; CMi =f(P i,T i); T = T{ (9.3-16)

The initial temperature T{ may not be the same as the surrounding temperature Tb.

9.3.1.6 Non-Dimensional Equations

The set of governing equations (9.3-1 lb and 9.3-14) subject to the boundary
and initial conditions (9.3-15) and (9.3-16) is nonlinear and must be solved
numerically. We solve it by using a combination of the orthogonal collocation
method and the Runge-Kurta method. Before carrying out the numerical analysis, it
is convenient to cast the governing equations into non-dimensional form. The basic
thing we need to achieve in this non-dimensionalisation process is to normalize the
spatial variable as the orthogonal collocation method is set up for a variable having
a domain of (0, 1). We need not to non-dimensionalize other variables, and this is
what we shall do when we deal with complex multicomponent systems later, but for
this simple single component system it is convenient to nondimensionalize all
variables as we will show next.

Let Co be some reference concentration for the free species, and To be some
reference temperature. The reference concentration for the adsorbed species is
taken as the adsorbed concentration which is equilibrium with the concentration Co

and temperature To, that is:

<^o=f(Co ,To) (9.3-17)

where f is the functional form of the adsorption isotherm.
We define the following non-dimensional variables and parameters
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Non-dimensional time and
distance

Non-dimensional
concentrations and temperature

T =
FT") t

R2

C

Co ' "

r
R

e -
To

(9.3-18a)

- (9.3-18b)

Non-dimensional bulk
concentration and initial
concentration
Non-dimensional bulk
temperature and initial
temperature

C ' C

b
Tb - T o T{ - T o ^

T

Surface to pore diffusion
number and Biot number

Activation energy for surface
diffusion number, heat capacity
group
Heat transfer number

(l-e)D£oc^o kmR
IBi = ™ (9.3-18e)8 J J p0

^ p '

a uLeBi = —^
a u h f R

 2

4̂ (9.3-18g)

With the above definitions of non-dimensional variables and parameters, the
resulting non-dimensional governing equations take the following form:

dx
-LeBi(e-9b)

The relevant functions G,, G2 and H are defined below:

(9.3-19b)

(9.3.20a)

H(y,e) = (i+e)"+8o(p(e)f(C°y'To(1
(9.3-20c)
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where

^(^]J (9.3-21)

The boundary and initial conditions in non-dimensional form are:

- H ( y , 9 ) | q =Bi(y| - y b ) (9.3-22)

T = 0; y = Y i; 0 = 6 i (9.3-23)

Solving numerically eqs.(9.3-19) subject to the boundary condition (9.3-22) and
the initial condition (9.3-23), we obtain the non-dimensional concentration y as a
function of distance r| and time T, and the non-dimensional temperature 0 as a
function of T, that is:

e(t)

From this, we can calculate the dimensional concentrations and temperature

y(T1,T) (9.3-24a)

9(T)] (9.3-24b)

(9.3-24C)

and then obtain the amount adsorbed per unit volume of particle

(9.3-25)

The fractional uptake defined as the amount adsorbed from t = 0 up to time t
divided by the amount taken from t = 0 to infinite time, that is:

r

[ECb+(l-6)CMb]-[sCi+(1-8)0^]

where < > denotes the volumetric average defined as follows:

(9.3-27a)
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and

C,b=f(Cb,Tb); C^ffCi .Ti) (9.3-27b)

9.3.1.7 The Heat Transfer Number LeBi

One of the important parameters that describe the influence of energy on the
mass transfer is the heat transfer number, LeBi. This parameter is a measure of the
heat transfer to the surrounding. Its physical meaning can be recognized by
rearranging eq. (9.3-18g) as follows:

R2

LeBi = f p°v (9.3-28)

aHh f

The numerator is the diffusion time, which is the time taken for the mass transfer to
approach equilibrium. The denominator is the time which the sensible heat of the
particle can be dissipated to the surrounding. Thus we expect that the larger is this
parameter the closer is the system behavior towards isothermal conditions. The
particle radius and the rate of stirring all affect the magnitude of this LeBi number.
The dependence of the heat transfer area on the particle size is given in eq.(9.3-12c).
The dependence of the heat transfer coefficient on the particle size can be shown by
taking the following correlation (Wakao and Kaguei, 1982):

, 9 , - 2 9 , ,

from which the heat transfer coefficient is

L 1 / 3 "

(9.3-29b)
2R kf

where kf is the thermal conductivity of the fluid surrounding the particle, u is the
fluid velocity, Cp is the fluid specific heat capacity, and pf and |if are density and
viscosity of the fluid, respectively.

If the surrounding is stagnant, we have:

h f « ^ - (9.3-30)
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that is the heat transfer coefficient is inversely proportional to the particle radius R.
However, if the surrounding is highly stirred, the heat transfer coefficient will
become:

that is, the heat transfer coefficient is inversely proportional to R°4. Thus, in general

hf ocR-m

where 0.4 < m < 1.
Substituting the dependence of the heat transfer area (aH) (eq. 9.3-12c) and the

heat transfer coefficient on particle size into the LeBi number, we find

LeBi oc Rn (9.3-32)

where 0 < n < 0.6, with n = 0 for stagnant fluid surrounding the particle and n = 0.6
for turbulent conditions around the particle.

1 Exattiple 9 r3-l | Magnitude of the heat transfer coefficient

The heat transfer coefficient can be calculated from a correlation given
in eq. (9.3-29). In this example, we calculate the heat transfer coefficient
for a spherical activated carbon particle having a diameter of 0.2cm. The
gas mixture surrounding the particle contains nitrogen and ethane. The
mole fractions of nitrogen and ethane are 0.8 and 0.2, respectively. The
temperature of the system is 303K and the total pressure is 1 arm. We
denote 1 for nitrogen and 2 for ethane.

The relevant properties of nitrogen and ethane are listed in the
following table:

MW u(g/cm/s) k(W/m/K) Cp (J/g/K)
nitrogen 28 1.8 xlO"4 0.0265 1.05
ethane 30 0.925 x \0A 0.0219 L80

where k is the fluid thermal conductivity and Cp is the specific hear
capacity. The specific heat of carbon is 0.803 J/g/k, and the particle
density is 0.733 g/cc. Thus the volumetric heat capacity is:

< pC > P « 0.733 x 0.703 = 0.515 J / cc / K
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in which we have ignored the heat capacity contribution of the gas within
the void of the particle, which is usually about 1000 times lower than the
contribution of the solid carbon.

Density of gaseous mixture:
The mixture density is the sum of component densities

P = P i+P 2

where the component densities are:

^ 2 8 9 l O ~ 4 ^p, =

p =
2

2 8 x 9 x l O
R g T (82.057)(303) cc

^ 3 0 2 4 l O " 4

RgT (82.057)(303) cc

Thus the total density is

p = 11.4xlO"4 g/cc

Viscosity of mixture:
The viscosity of mixture can be calculated from (Bird et al., 1960)

where

.-UuJil '
1 1

We calculate from the above equation for the viscosity of the mixture:

^ = 1.55xlO"4 g / c m / s

Thermal conductivity of mixture
The thermal conductivity of the mixture is calculated from (Bird et al.,

1960):
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1 IJ

We calculate from the above equation for the thermal conductivity of
mixture:

k = 0.0250 W/m-K

Specific heat capacity of mixture
We calculate mass fraction:

Pi 9xlO"4

w, = — - — = = 0.79
P ,+p 2 (9 + 2.4)xlO"4

w2 = — ^ — = 0.21
P1+P2

The specific heat capacity of the gaseous mixture is

Cp =w 1 (C p ) 1 +w 2 (C p ) 2

Cp = 1.2075 J /g-K.

Heat transfer coefficient under stagnant condition
If the gas is stagnant, the heat transfer coefficient is calculated from eq.

(9.3-30).

kf 00250 W
h f = T = 0.001 = 2 5

m
2 - K

The heat transfer area per unit volume is

a H 4 4
-71R3 R ° 0 0 1 m

If the pore diffusivity is eDpo = 0.1 cm2 / sec , the LeBi number is:

L e B i = ^ " ^
< pCp > eDp0
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L e B i = (0.001)2(3000)(25)

(515000) (0.1 x 10-4) =

Under the stagnant condition this value of Le Bi is independent of the
particle size as

1
a u oc —

H R
and

hf oc —
f R

Heat transfer coefficient under flowing condition
For flowing gas, we calculate the heat transfer coefficient from eq.

(9.3-29b). We calculate

- ^ = °- 9 0 8

v kf ;
and hence:

v 0.6

f =f 2R
2 + (l.l)(0.908)|

2Rup>[[
)

The following table shows the calculation of the heat transfer coefficient
and the non-dimensional group Le Bi. The velocity of u = 10 m/sec
corresponding to the case of very high velocity around the particle.

u (m/sec)
0
0.02
0.05
0.1
0.15
0.20
1
10

h (W/m2/K)
25
49
66
88
105
120
274
1018

LeBi
0.0146
0.0285
0.038
0.05
0.06
0.07
0.16
0.59

9.3.1.8 Range of Relevant Parameters

The parameter ŷ  (eq. 9.3-18f) is the activation energy number, and for many
adsorption systems it has the following range

2 < y ^ < 1 6 (9.3-33)
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The heat parameter P (eq. 9.3-18f) is a measure of the amount of heat released by
adsorption process relative to the heat capacity of the solid. This parameter is called
the heat capacity number. Typically it has the following range

0.01 < p < 2 (9.3-34)

9.3.1.9 Numerical Examples

The set of model equations (9.3-19 to 9.3-23) is solved by applying the
orthogonal collocation method. The resulting equations after such application are
coupled ODEs with respect to time, which can be readily integrated by any standard
integration routines, such as the Runge-Kutta method. Appendix 9.4 details the
orthogonal collocation analysis. A computer code ADSORB IB.M is provided to
solve this set of equations.

We will illustrate this programming code with the following Langmuir
adsorption isotherm:

C = f(C,T) = Cus
 b

n v ; ^ s i +
b ( T ) C (9.3-35)

where the adsorption affinity takes the following temperature dependent form:

(9.3-36)

with Q being the heat of adsorption. This is the molar adsorption heat used in the
heat balance equation (9.3-12a).

With the Langmuir isotherm taking the form of eq.(9.3-35), the functions
G,(y,9), G2y,0) and H(y,9) defined in eq. (9.3-20) now take the following explicit
form:

G,(y,6) =
[i+boco<t>(e)y]

d+e)2

H(y,e) = ( i + e ) a
 + § 0 <p(e) <t>(e)

boCo<t.(0)y]

(9.3-37a)

(9.3-37b)

(9.3.37c)
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where b0 is the adsorption affinity at the reference temperature To, and <j)(6) is

defined as:

4>(0) = exp " Y H
e

with

7H =

(9.3-38a)

(9.3-38b)

To illustrate the heat effects on the adsorption kinetics, we take the following
example typifying adsorption of light hydrocarbons onto activated carbon.

Table 9.3-1: Parameters of the base case used in the simulations

Particle radius
Particle porosity
Bulk concentration
Initial concentration
Bulk temperature
Initial temperature
Reference temperature
Adsorption affinity at To

Saturation capacity
Pore diffusivity at To

Corrected diffusivity at To

Heat of adsorption
Activation energy for surface diffusion
Volumetric heat capacity
Biot number for mass transfer
Heat transfer number

R
6

Cb

Q
Tb

T,
To

b0

CM.
D PO

Q

pcP
Bi
LeBi

= 0.1 cm
= 0.33
= 1 x 10"6mole/cc
= 0
= 300K
= 300K
= 300K
= 1 x 106cc/mole
= 5x 10'3mole/cc
= 0.02 cm2/sec
= 1 x 106cm2/sec

= 30,000 Joule/mole
= 15,000 Joule/mole
= 1 Joule/cc/K
= oo

= 0.05

9.3.1.9.1 Effect of LeBi number

With the parameters listed in the above table, we study the effect of heat
transfer on the mass transfer behavior as well as the particle temperature rise as a
function of time. Figure 9.3-la shows the amount adsorbed per unit particle volume
(mole/cc) versus time with the LeBi as the varying parameter (LeBi = 0.01, 0.05 and
0.5). As we would expect the larger is the value of LeBi number, the faster is the
adsorption kinetics due to the faster dissipation of heat from the particle. The mass
transfer curve corresponding to low LeBi number of 0.01 exhibits a two-stage
uptake. The first stage is due to the faster diffusion kinetics as a result of the



Analysis of Adsorption Kinetics in a Single Homogeneous Particle 577

temperature rise, and the second stage is due to the mass uptake as a result of
cooling of the particle. This is substantiated by plots of the particle temperature
versus time shown in Figure 9.3-lb. We see that the kink in the mass transfer curve
is corresponding to the time when the particle temperature is maximum.
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Figure 9.3-1 a: Effect of the LeBi number on the amount adsorbed versus time
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Figure 9.3-1 b: Effect of LeBi number on the particle temperature evolution

The evolution of the intra-particle concentration versus time is shown in Figure 9.3-
2 in which concentrations at five specific points within the particle are plotted
versus time. The concentrations exhibit a sigmoidal behavior, suggesting the
penetration behavior of mass into the particle.
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Figure 9.3-2: Plots of the infra-particle concentration versus time

9.3.1.9.2 Effect of bulk concentration

Using the same set of parameters listed in Table 9.3-1, we study the effect of
bulk concentration on the system behavior under the condition of heat transfer of
LeBi = 0.05. Figure 9.3-3 shows plots of the particle temperature as a function of
time for two values of bulk concentrations (Cb = 1 x 10"6 and 5 x 10'6 mole/cc). The
particle temperature in the case of higher bulk concentration rises faster and reaches
higher maximum temperature (0max = 0.08 or 24 °C) compared to 6max = 0.03 (or 9
°C) for the case of lower bulk concentration. This is simply due to the higher
amount adsorbed and hence higher heat released from the adsorption process.
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Figure 9.3-3: Plots of the particle temperature versus time
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After the particle temperature has reached its maximum, the curve corresponding to
higher bulk concentration decays faster, hence reaching the equilibrium faster. This
is due to the effect which we have explained earlier in the isothermal analysis, i.e.
due to the nonlinear convexity of the isotherm the rate of increase in the amount
adsorbed due to an increase in the bulk concentration is not as fast as that in the bulk
concentration, resulting in faster kinetics for the case of higher bulk concentration.

9.3.1.9.3 Effect of Particle Size

The effect of particle size on the amount adsorbed and the particle temperature
is shown in Figures 9.3-4a and 9.3-4b, respectively. Three particle sizes are used in
the simulations (R = 0.075, 0.1, and 0.15 cm). The value of the LeBi varies with
particle size as we have discussed in Section 9.3.1.7. Assuming a turbulent
environment surrounding the particle, the LeBi number is proportional to R06.
Taking a LeBi of 0.05 for the particle size of 0.1 cm, we calculate LeBi as 0.0421
and 0.0638 for the particle sizes of 0.075 and 0.15 cm, respectively. From Figure
9.3-4a, we see that the larger is the particle size, the slower is the mass transfer as
we would expect. About the particle temperature, the rate of particle cooling is
slower in the case of larger particle size because the heat transfer is limited by the
smaller heat transfer area per unit volume.
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Figure 9.3-4a: Effect of particle size on the
amount adsorbed versus time

Figure 9.3-4b: Effect of particle size on the
particle temperature evolution

9.3rl. 9.4 Effect of the Operating Temperature

We finally study how the operating temperature affects the temperature rise.
We take two cases of operating temperature (Tb = 300 and 400 K). Figure 9.3-5a
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shows the temperature rise versus time, and we see that the rise in temperature is
higher for the case of lower operating temperature. This is due to the higher amount
adsorbed for the case of lower adsorption temperature Tb as shown in Figure 9.3-5b.
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Figure 9.3-5a: Plots of the temperature change versus time
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Figure 9.3-5b: Plots of the amount adsorbed per unit particle volume versus time

9.4 Finite Kinetic Adsorption Model for Single Component Systems

We have considered the analysis of single component systems under isothermal
conditions as well as non-isothermal conditions. In these analyses, the local
equilibrium between the fluid and adsorbed phases (eqs. 9.2-44 and 9.3-8) was
invoked. This is valid when the rates of adsorption and desorption of adsorbate
molecules at sorption sites are much faster than the rates of diffusion in the fluid and
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adsorbed phases. For well developed activated carbon where the micropore mouths
are not restricted, the rate of adsorption from the fluid phase to the micropore mouth
and the rate of desorption from it are expected to be faster than the diffusion rates,
and hence the local equilibrium is acceptable for this situation. For solids such as
carbon molecular sieve, the pore mouth is very restricted (Figure 9.4-1), and
therefore the rates of adsorption and desorption at the micropore mouth are expected
to be comparable to the diffusion rates, and under severe constriction conditions the
rates of adsorption and desorption at the micropore mouth are in fact the rate-
limiting step.

bulk fluid

micropore

mesopore

plane of exterior surface

Figure 9.4-1: Finite mass exchange kinetics at the micropore mouth

To account for the finite mass exchange kinetics between the fluid and adsorbed
phases, we let the number of micropore mouth (acting as sorption site) per unit area
be n^ and assume that the net rate of adsorption per pore mouth is governed by the
following Langmuir kinetic equation:

Rads ~ - k . (9.4-1)
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where ka and kd are rate constants for adsorption and desorption, respectively. This
kinetics equation implies that the equilibrium adsorption isotherm is the Langmuir
equation:

c -c (9.4-2)

Appendix 9.5 lists a number of kinetic rate expressions which at equilibrium will
give rise to Sips and Toth equations.

With the finite mass exchange between the two phases, we now do the mass
balance of the fluid phase and the adsorbed phase separately. A mass balance in the
fluid phase of thickness dr gives the following equation:

- k . (9.4-3a)

where pp is the particle density, and Sg is the specific interior surface area.
Similarly carrying out a mass balance in the adsorbed phase, we derive the

following mass balance equation:

JIS

- k (9.4-3b)

Adding the above two equations, we obtain the total mass balance equation
(9.2-lb), which basically states that the total hold-up in both phases is governed by
the net total flux contributed by the two phases. This is true irrespective of the rate
of mass exchange between the two phases whether they are finite or infinite. Now
back to our finite mass exchange conditions where the governing equations are (9.4-
3a) and (9.4-3b). To solve these equations, we need to impose boundary conditions
as well as define an initial state for the system. One boundary is at the center of the
particle where we have the usual symmetry:

£•£•• (9.4-4)

The other boundary is at the plane of the exterior surface of the particle (Figure 9.4-
1). The mass flux through the stagnant fluid film per unit total exterior surface area

is:
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Rm=km (cb -C|R ) (9.4-5)

This flux must be the same as the total flux into the particle contributed by the fluid
species and the adsorbed species, that is the pertinent boundary condition is:

ac,
r=R dr

(9.4-6)
r=R

Another boundary condition at the exterior surface area is simply that the finite
mass exchange between the two phases at the plane of the exterior surface is equal
to the diffusion flux of the adsorbed phase, that is:

ac,,
dr

(9.4-7)

The initial state of the system is:

t = 0; C = Ci r -r -r
b C J (9.4-8)

Eqs. (9.4-3), (9.4-4), (9.4-6) and (9.4-7) completely define the behavior of the
system. Solving these equations will yield concentration distributions in the fluid
phase and the adsorbed phase. This set of equations is a superset of local
equilibrium model described in Sections 9.2 and 9.3. When the rate constants ka and
kd are very large, eqs. (9.4-3) and (9.4-7) simply lead to:

bC(r,t)
C,(r,t) = i

bC(r,T)
for 0 < r < R (9.4-9)

which is simply the local equilibrium condition we invoked in Sections 9.2 and 9.3.
The mass balance for this condition of ka and kd —> oo is simply equation (9.2-lb)
with the adsorbed concentration relating to the fluid phase concentration according
to eq. (9.4-9).
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9.5 Multicomponent Adsorption Models for Porous Solids: Isothermal

You have learnt about the behaviour of adsorption kinetics of a single
component in a single particle. Pore, surface diffusions and their combined
diffusion have been studied in some details for linear as well as nonlinear isotherm
and under isothermal as well as nonisothermal conditions. Here we will study a
situation where there are more than one adsorbate present in the system and the
interaction between different species will occur during diffusion as well as
adsorption. Analysis of multicomponent system will require the application of the
Maxwell-Stefan approach learnt in Chapter 8. To demonstrate the methodology as
well as to show the essential features of how multiple species interact during the
course of diffusion as well as adsorption onto adsorption sites, we will first consider
a multicomponent adsorption system under isothermal conditions and dual diffusion
mechanism is operating in the particle.

Carrying out mass balance over a thin shell within the particle, we obtain the
following mass balance equation:

RgT at v ' dt rs c

where r is the radial co-ordinate of the particle, p is the partial pressure vector of n

components in the void space (mole/m3 of the void space) and C^ is the

concentration vector of the adsorbed phase (mole/m3 of the adsorbed phase). They
are giver by:

P =

Pi(r,t)

P2(r,t)
(9.5-2a)

The vectors N and N are fluxes in the void space and in the adsorbed phase,

respectively:

Np,2(r,t)

Np,n(r,t)

N n

N ,

,.(r>

2(r,

n(r,

0"
t)

t)

(9.5-2b)
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Before further addressing the mass balance equation, we need to consider the fluxes
in the void space and in the adsorbed phase.

9.5.1 Pore Volume Flux Vector Np

The flux of adsorbate in the void space is controlled by three mechanisms:

(a) Molecular diffusion
(b) Knudsen diffusion
(c) Viscous flow

Using the Maxwell-Stefan approach, Chapter 8 has addressed systematically the
simultaneous contribution of those three mechanisms on the flux. The necessary
equation relating the flux to the relevant driving forces is (eq. 8.8-13a):

where ^m is the viscosity of the mixture and can be calculated using a semi-
empirical formula of Wilke (eq. 8.8-2), and pT is the total pressure given by:

P T = E P J (9.5-4)
j=i

The parameter Bo is the viscous flow parameter and is a function of solid structure
only. Since a porous solid usually exhibits a pore size distribution, this parameter
must be determined experimentally.

The matrices B and A of (n, n) dimension are function of binary diffusivities,

Knudsen diffusivities and mole fractions as follows:

B(y,PT) =

Yk

: ( P T ) / T )

(9.5-5)

for i * i

and
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where T is the solid tortuosity factor allowing for the tortuous nature of the pore
(usually 2 < T < 6), Dy is the binary diffusivity which is inversely proportional to the
total pressure:

(9.5-7a)
PT

and DK j is the Knudsen diffusivity defined as:

4K0 |8RgT
DK,i = " — — (9.5-7b)

Here Dij>0 is the binary diffusivity evaluated at some reference total pressure pT0.
The parameter KQ is the Knudsen flow parameter and like Bo for viscous flow it is
also a function of solid structure only.

The mole fraction y in the matrix B is defined as:

y = — (9.5-8)
" PT

The tortuosity factor is best determined experimentally. However, in the
absence of this information, Abbasi et al. (1983) and Akanni et al. (1987) used the
Monte Carlo simulation to obtain analytical expression for the tortuosity factor.

9.5.2 Flux Vector in the Adsorbed Phase

The surface diffusion flux is assumed to be driven by the chemical potential
gradient in the adsorbed phase. The flux of a component "i" is driven by the
chemical potential gradient of that species, that is:

N w = - L i C w % - <9-5"9)

where L is the mobility coefficient which is temperature dependent and is assumed
to be concentration independent, CMi is the concentration of the species i in the
adsorbed phase and is defined as moles per unit volume of the adsorbed phase, and
Uj is the chemical potential in the adsorbed phase.

If we make the assumption of local equilibrium between the free and adsorbed
phases, the chemical potential of the adsorbed phase is the same as that of the gas
phase, that is:
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Hi=HG,i=H° +R g Tln P i (9.5-10)

where p{ is the partial pressure of the component i in the gas phase.
For a given set of partial pressures, p = {pl5 p2, ..., pn}, there will be a set of

adsorbed concentration which is in equilibrium with the gas phase, that is through
the isotherm expression:

CM,i=fi(p) (9.5-1 la)

for i = 1, 2, 3,..., n, or written in a more compact vector form, we have:

C, =f(p) (9.5-1 lb)

Inversely, for a given set of adsorbed phase concentrations, C^ = {Cul, C^2, ....,

C M N } , there exists a set of partial pressures such that the two phases are in
equilibrium with each other, that is:

P i = g i ( c , ) (9.5-12a)

or written in a vector form:

() (9.5-12b)

Substituting eq. (9.5-10) into eq.(9.5-9), we get the following expression for the
flux of the species "i" written in terms of the gradient of the partial pressure p<:

XT _ T̂ O „ dlnpj _ 0 CM>i dp{

H,l H,i \IA fa \IA p_ fa

where D° { is the corrected diffusivity of the species "i" at zero loading

D^ j = LjRgT (9.5-13b)

As seen in eq.(9.5-13a) that the surface flux is driven by the gradient of the gas
phase partial pressure. This is so because the two phases are in equilibrium with
each other. However, if one wishes to express the surface flux in terms of the
gradients of adsorbed concentration, we could make use of eq. (9.5-12), and by
applying the chain rule of differentiation we get
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a in Pi
(9.5-14)

where dC^ j / dp{ is simply the slope of the equilibrium isotherm of species j with

respect to the partial pressure of species i.
Substituting eq.(9.5-14) into eq.(9.5-13a), we get:

N • =-D°fc •
ac1( dr

(9.5-15)

for i = 1, 2, 3,..., n. The above equation is the flux equation for the adsorbed phase
relating the surface flux to the gradients of adsorbed concentration of all species.
Note that eq.(9.5-15) is mathematically equivalent to eq.(9.5-13a).

Thus, if we define the following vectors and the diffusivity matrix

N^

N M

N M

D - D - C

then eq.(9.5-15) can be put in a compact vector format:

(9.5-16a)

(9.5-16b)

(9.5-17)

The elements of the matrix D have units of mVsec. This matrix is called the
=n

transport diffusivity matrix and it contains the thermodynamic correction factor (eq.
9.5-16c). Although the diffusivity matrix is seen to be a function of adsorbed
concentrations as well as partial pressures, it is in fact a function of either adsorbed
concentrations or gas phase pressures as they are related to each other through the
local equilibrium equation (9.5-11).

Eq. (9.5-17) is identical to eq. (9.5-13a), which can be written in vector form is
as follows:

(9.5-18)
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where

(9.5-19)

Either one of these two forms (eq. 9.5-17 or 9.5-18) can be used in the analysis.
Computation wise, eq.(9.5-18) is a better choice as it requires shorter computation
time.

We have defined the flux equations for the free species as well as the adsorbed
species. Now we substitute them into the mass balance equation to obtain the
necessary mass balance equation for computational analysis. This is done next.

9.5.3 The Working Mass Balance Equation

The adsorbed concentration C^ is assumed to be in equilibrium with the gas
phase concentration, that is:

(9.5-20)

With this functional form relating the concentrations of the two phases, the flux of
the adsorbing species (eq. 9.5-18) can be written as:

where

G =

(9.5-21)

(9.5-22)

Substitution of eqs. (9.5-3), (9.5-20) and (9.5-21) into the mass balance equation
(9.5-1) gives:

8 ) ( \
Rgl -

dp i

at z-

+ ( i -
C ) z s

S[B

d

dz

(,,P,,T,

Z S S ( P ) -

r1

!
g

1 dp Bo

RgT dz ' U m ( y j p

dp

r dz

1 An

(9.5-23a)
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where 1̂  is an identity matrix, and Jlp) is the Jacobian of the equilibrium vector f

in terms of the partial pressure vector p :

(9.5-23b)

The boundary conditions of the mass balance equation (9.5-23) are:

dp
r = 0; - = = 0

and

(9.5-24a)

(9.5-24b)

where p is the constant bulk partial pressure vector and R is the radius of the

particle (or half length if the particle is of slab geometry).
Initially the particle is assumed to be equilibrated with a set of partial pressures

p . , that is:

t = 0; p = p. (9.5-24c)

9.5.4 Nondimensionalization

The mass balance equation (eqs. 9.5-23) and its boundary and initial conditions
(eqs. 9.5-24) are cast into the non-dimensional form for the subsequent collocation
analysis. We define the following non-dimensional variables:

IV
R2

(9.5-25)

where DT is some reference diffusivity. With these definitions of non-dimensional
variables, the mass balance equation (9.5-23) becomes:
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dt̂
s^d^h^px.T)]-1

an jim(y) P

where |LIO is some reference viscosity and Po is some reference pressure and

- l
H(p) = |eI + (l-e)RgTJ(p,T)

_ Bopo
"HODT

(9.5-26)

(9.5-27)

(9.5-28)

The parameter <D describes the relative strength between the viscous flow and the
diffusive flow. Its significance has been discussed in Section 8.9.1.

The pertinent boundary conditions in non-dimensional form are:

= o;

dp

and

The initial condition is:

E = Eb

E = Pi

(9.5-29a)

(9.5-29b)

(9.5-29c)

The set of equations (eqs. 9.5-26 to 9.5-30) is solved numerically by the
orthogonal collocation method, and the details are given in Appendix 9.6. Solution
of this set will yield the partial pressures of all species as a function of time and
distance within the particle. Knowing the partial pressures p , the adsorbed

concentrations are calculated from eq. (9.5-20). The volumetric mean partial
pressures and adsorbed concentration are then calculated from the following
equations:

(9.5-30a)

(9.5-30b)
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P. 5.4.1 Fractional Uptake

The quantity of interest for the design calculation is the fractional uptake. It is
defined as the ratio of the amount taken by the sample up to time t to the final
amount taken at infinite time, that is:

V
M:

W
• + ( l - i

t=oj

(p.)

(9.5-31)

for i = 1, 2, , n.

P. 5.4.2 Special Case: Langmuir Isotherm

In the case of extended Langmuir isotherm, which is the simplest case of
dealing with multicomponent mixtures, the isotherm expression of the component i

is:

(9.5-32)

k=l

With this form of the isotherm, the Jacobian matrix (eq. 9.5-23b) is then given by:

bj(T) IX(T) p k
k=l

-c

n

k=l
bk

r)t

(T)

-

Pk

2

IP*

k=l

for i = j

for i

(9.5-33)

A computer code ADSORB5B is provided with this book to solve this problem.
Readers can use and modify the code to explore interactively how the various
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parameters can affect the system behaviour. We shall illustrate in an example below
the application of this code.

Adsorption of ethane/propane/nitrogen in an activated
carbon

We consider a system of adsorption of ethane, propane and nitrogen
onto activated carbon at 303 K and a total pressure of 1 arm. At this
temperature, ethane and propane adsorb onto activated carbon, and their
adsorption isotherm can be adequately described by a Langmuir equation.
The isotherm parameters for nitrogen, ethane and propane are:

Nitrogen:

C ŝ = 0 mole/cc

b = 0 amr1

Ethane:

C =5.5

b = 3.23

!5x IO3

atm1

mole/cc

Pro

b =

pane:
= 5.214 x

21.9 atm1

io-3 mole/cc

For the computer simulation, we denote nitrogen, ethane and propane as
species 1, 2 and 3, respectively.

The viscosities at 303 K and molecular weights of these three species
are given in the following table.

u (g/cm/sec) MW (g/mole)
Nitrogen (1) 1.8 x 10"4 28
Ethane (2) 0.925 x 10"4 30
Propane (3) 0.8 x IP"* 44

The binary diffusivities are calculated from the Chapman-Enskog
equation (7.7-9) are given below:

D12 = 0.1483 cm2/sec, D13 = 0.1151 cmVsec, D23 = 0.0798 cm2/sec

The particle is of slab geometry and its half-length is 2.2 mm. The
average mesopore radius is 8 x IO"5 cm, and the tortuosity factor for this
sample of activated carbon is 4.7. The surface diffusivities of ethane and
propane at 303 K are 5 x 10'5 and 1 x IO"5, respectively.

For the simulation, we take the base case that the particle is initially
equilibrated with pure nitrogen, and at time t = 0+ the particle is exposed to
a constant environment containing 80 % of nitrogen, 10% of ethane and
10% of propane.

The above values are inputted into the ADSORB5B programming
code, and the execution takes about 2 minutes on a Pentium 166 MHz to
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generate the concentration distributions of all three species, the total
pressure as well as the fractional uptakes.

Fractional uptake: Figure 9.5-1 shows the fractional uptake of ethane and
propane, and we observe the overshoot of ethane. Ethane, being a weaker
adsorbing species, will penetrate the particle faster and hence adsorb more
than its share of equilibrium capacity under the condition of ethane and
propane presence in the system. Propane, on the other hand, is a stronger
adsorbing species than ethane, and therefore it penetrates slower into the
particle. When it moves into the particle interior, it displaces some of the
previously adsorbed ethane molecules from the surface, resulting an
overshoot in the fractional uptake of ethane. Experimental data are also
shown in the same figure, and we see that the mathematical model predicts
very well the fractional uptakes of all species. The model also predicts the
correct time when the maximum overshoot occurs.

Fractional
uptake 1 0

0.0
500 1000 1500 2000

Time (sec)

Figure 9.5-1: Fractional uptake of ethane and propane versus time

Concentration distribution: Figures 9.5-2 show the concentration profiles
of ethane and propane at various times. The distribution of propane
behaves in a normal fashion, and the distribution of ethane exhibits
interesting behaviour which is a characteristics of a species penetrating
very quickly but then being displaced by a stronger species in a later stage
of the course of adsorption.
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Figure 9.5-2a: Adsorbed concentration profiles of ethane at various times
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Figure 9.5-2a: Adsorbed concentration profiles of ethane at various times
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9.6 Nonisothermal Model for Multicomponent Systems

We have considered the case of multicomponent adsorption under isothermal
conditions in the last section. Such an isothermal condition occurs when the particle
is very small or when the environment is well stirred or when the heat of adsorption
is low. If these criteria are not met, the particle temperature will vary. Heat is
released during adsorption while it is absorbed by the particle when desorption
occurs, leading to particle temperature rise in adsorption and temperature drop in
desorption. The particle temperature variation depends on the rate of heat released
and the dissipation rate of energy to the surrounding. In the displacement situation,
that is one or more adsorbates are displacing the others, the particle temperature
variation depends also on the relative heats of adsorption of displacing adsorbates
and displaced adsorbates. Details of this can only be seen from the solution of
coupled mass and heat balance equations.

The mass balance equation is similar to that in the last section, but this time it
must be borne in mind that the particle temperature is no longer a constant. We
write the relevant mass balance equation in vector form as follows:

£ ~
9 t l R o

or

1 dp 1 9T
RgT dt RgT2 at -

+ 11-1

(9.6-2)
The constitutive flux equations for pore and surface diffusions are:

N =

- p
m\L g

where um(y) is the mixture viscosity and is calculated from eq. (8.8-2), the

matrices B(y,pT,T), A(T), and Gfp,TJ written explicitly in terms of total pressure,

temperature and mole fractions are given by:
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B(y,pT,T) =
( D K J J ( T ) / T ) k-!(D i )k(pT ,T)/T)

(D i J (p T ,T) /x)

for i = j

for i * j

(9.6-5a)

A(T)=
111 (DK>i(T)/T)

G(p,T)=
Pi

where fjf p,TJ is the adsorption isotherm

(9.6-5b)

(9.6-6)

(9.6-7)

The expressions for these matrices are the same as those in the previous section
when we dealt with the isothermal case, but this time all the relevant parameters are
a function of temperature. The temperature dependence of the various diffusivities
are given below:

D K , i = -
8R.T ff~
-—D^CTo) —

exp| -
E,, ;

R gT0

(9.6-8)

(9.6-9)

(9.6-10)

where DK j(T0) is the Knudsen diffusivity of the component i at some reference
temperature To, D^pjo, To) is the binary diffusivity at some reference total pressure
pT0 and temperature To, and D°^j(T0) is the corrected surface diffusivity at
temperature To.
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Assuming the lumped thermal model for the particle temperature, that is
uniform particle temperature and the heat transfer resistance is in the thin gas film
surrounding the particle, the heat balance equation is:

dt - dt
— - a H h f ( T - T b ) (9.6-11)

where pCp is the volumetric heat capacity of the particle, aH is the heat transfer area
per unit volume, hf is the heat transfer coefficient, Tb is the bulk temperature, and Q

is the molar heat of adsorption vector

"Qi

Q =

Qn

and

(9.6-12)

(9.6-13)

Eq. (9.6-11) involves the time derivative of the average adsorbed concentration.
Its form is not convenient for numerical computation, and what we will show is an
alternative expression for the heat balance equation. We take the volumetric
average of the mass balance equation (9.6-1):

s)

5t \R o Ty dt R L -
(9.6-14)

Since the capacity in the pore volume is much less than that in the adsorbed phase,
the above equation can be approximated as follows:

(1-8)- (9.6-15)

Substitution of the above equation into the heat balance equation (9.6-11) gives an
alternative form for the heat balance equation:

r=R
- a H h f ( T - T b ) (9.6-16)
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9.6.1 The Working Mass and Heat Balance Equations

We substitute
(i) the local isotherm equation (eq. 9.6-7)
(ii) the pore volume flux (eq. 9.6-3)
(iii) the surface flux (eq. 9.6-4)

into the mass balance equation (9.6-2) to finally obtain:

e

RgT

RgT2

rs c

(1 ct

(I ) ( '

ffT

dt- ^ '

is dx y =\->

X

m

dp

dt

5T

1-1

R

a

ap
ar

r ^r M

B° 5 i > T \ m D

(9.6-18)

where J is the Jacobian matrix 3f /dp

(9.6-19)

Similarly we substitute
(i) the pore volume flux (eq. 9.6-3)
(ii) the surface flux (eq. 9.6-4)
into the heat balance equation (9.6-16) to get

r-m , ' - l - ; R g T dr

- a H h f ( T - T b )

(9.6-20)
The pertinent boundary and initial conditions of eqs. (9.6-18) and (9.6-20) are:

(9.6-2 la)r = 0; dp/dr =0 ,

r = R; p = p b ,

t = 0; T = T i ; p = p. ; C,, =f(p.,Ti)

(9.6-21b)

(9.6-22)
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9.6.2 The Working Nondimensional Mass and Heat Balance Equations

We define the following non-dimensional variables and parameters

r (9.6-23)

where To is some reference temperature and DT is some reference diffusion
coefficient. With these definitions, the non-dimensional mass and heat balance
equations are:

3p d9 / x
5r dTS(H'T)

! 5 f

and
de „ x p ( Q "I

(1 + 9 ) E

r , ]

1 i Q\D 2 5 4 H ' T )
(1 c)(. ._g .o 5 T

(9.6-24I

-LeBi(0-0b) (9.6-24b)

where PT0 is some reference pressure, Qo is some reference heat of adsorption and

(9.6-25a)

(9.6-25b)

(9.6-25c)

(9.6-25d)

H(p,e) = [eI + (l-e)RgTj(p,T)]'

G*(P,G) = G(P,T)/DT

_ P T 0 B 0

TopCp
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LeBi =
aHhHh f

DTpCp

= T b - T 0

" To

The boundary and initial conditions are:

TI = 1; p = pb

T —

Al

(9.6-25e)

(9.6-25f)

(9.6-26a)

(9.6-26b)

9.6.3 Extended Langmuir Isotherm:

We shall illustrate the utility of the theory by applying to a multicomponent
system in which the adsorption isotherm is described by the following extended
Langmuir isotherm equation:

b i ( T ) P i(p,T) = fi(p,T) = C ^ (9.6-27a)

where the adsorption affinity takes the following temperature dependence form:

Qi
>i = b « , i ex]

ROT
e xP R g T 0 V T

(9.6-27b)

The Jacobian J with respect to the partial pressures p is given by:

k=l

"CHS,ibibjPi

>kPk

k=l

n

k=l

1 - 2

>kPk

-2

for i = j

(9.6-28)

>kPk for i * j

The change of the amount adsorbed with respect to T is:
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1+Ibjpj
j=l H

dT ROT2 -|2
(9.6-29)

fori= 1,2,3, ...,n.
Substituting eqs. (9.6-28) and (9.6-29) into (the heat and mass balance

equations (eqs. 9.6-24), we can solve them numerically using the combination of the
orthogonal collocation method and the Runge-Kutta method. Solving these
equations we obtain the partial pressures of all components at N interior collocation
points and temperature as a function of time. The adsorbed concentrations at these
N collocation points are then calculated from eq. (9.6-27a). Hence the volumetric
average partial pressures and adsorbed concentrations are obtained from the
following quadrature formula:

(9.6-30a)

(9.6-30b)
j=i

We define the fractional uptake of the component "k" as:

Kg 1

RgT

>

00

Kglj

P T \ '̂*Kglj

t=0

) "
t=0

(9.6-31)

Eqs. (9.6-24) are solved numerically by the collocation method. Appendix 9.7
describes the method, and a computer code ADSORB5C is available for the
simulation.

9.7 Conclusion

This chapter has presented a number of adsorption models for homogeneous
particles where parallel diffusion mechanism is operating. This type of mechanism
is applicable to solids such as activated carbon. We will present in the next chapter
a number of models for zeolite type solids where a bimodal diffusion mechanism is
operating.



10
Analysis of Adsorption Kinetics in a

Zeolite Particle

10.1 Introduction

The last chapter discusses the behaviour of adsorption kinetics of a
homogeneous particle, where the transport mechanism into the particle is controlled
by the pore diffusion as well as the surface diffusion of adsorbed molecules along
the particle length scale. Viscous flux is also allowed for in the multicomponent
analysis. The pore and surface diffusion processes occur in parallel, and the
assumption of local equilibrium between the two phases is generally invoked. In
this chapter, we will discuss another class of solid: the zeolite-type solid. Basically
the particle of this type is composed of distinct microparticles (for example zeolite
crystals). Most of the adsorption capacity is accommodated in these microparticles.
The void between these microparticles forms a network of large pores whose sizes
are of the order of 0.1 to 1 micron. These large pores basically act as passage way
for molecules to diffuse from the surrounding environment into the interior of the
particle. Once they are inside the particle, these molecules adsorb at the pore mouth
of the microparticles and thence these adsorbed molecules will diffuse into the
interior of the microparticle. Generally, the pore size of the microparticle is of the
order of molecular dimension, and therefore, molecules inside the micropores never
escape the attraction potential of the pore walls. This means that molecules in the
free form do not exist and only adsorbed molecules exist in the micropore.

Since there are two diffusion processes in the particle, it is possible that either
of them or both of them controls the uptake, depending on the system parameters
and operating conditions. We have the following three cases:
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1. Micropore diffusion: This is the case when the diffusion into the particle
interior through the large void between the microparticles is very fast. The
uptake is then controlled by the diffusion of adsorbed molecules into the
interior of the microparticle. This is expected for small particles or molecules
having molecular dimensions close to the size of the micropore.

2. Macropore diffusion: This is the case when the diffusion into the microparticle
is fast, and hence the uptake is controlled by the ability of the molecules to get
through the macropores and mesopores. This is expected for large particles and
molecules having size much smaller than the pore size of the micropore.

3. Macropore-Micropore diffusion: This is the case often called the bimodal
diffusion model in the literature. In this case the two diffusion processes both
control the uptake. This is expected when the particle size is intermediate.

The macropore diffusion case is basically dealt with in Chapter 9 where we dealt
with parallel diffusion in homogeneous solids. Since surface diffusion on the
exterior surface of the zeolite microparticle is almost negligible due to the very low
capacity on those surfaces, we can ignore the surface diffusion contribution in the
analysis of the last chapter when we apply such analysis to a zeolite-type particle.

In this chapter we will consider the micropore diffusion case and the bimodal
diffusion. First, we consider the single component micropore diffusion in a single
crystal under isothermal conditions, and then consider how nonisothermal
conditions would affect the overall adsorption kinetics. Next, we consider the
bimodal diffusion case, and study two situations. In one situation, the linear
isotherm is considered, while in the other we investigate the nonlinear isotherm.
Finally we consider multicomponent case where we will show how non-linear
isotherm and non-isothermal conditions are incorporated into the heat and mass
balance equations.

10.2 Single Component Micropore Diffusion (Isothermal)

Diffusion in micropore is assumed to be driven by the chemical potential
gradient of the adsorbed species, instead of the concentration gradient. This is not a
general rule, but it has been shown in many systems (Ruthven, 1984) that the
chemical potential gradient is the proper description for the driving force of
diffusion in zeolite, especially zeolites A, X, Y. Diffusion in other zeolites, and
molecular sieve particles, there are still some discrepancies in the description of the
diffusion. Solid structure and properties of the diffusing molecule may all
contribute to these discrepancies.
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10.2.1 The Necessary Flux Equation

The important relation used in the mass balance equation is the constitutive flux
equation, which relates the flux and the concentration gradient of the adsorbed
species. For the diffusion of the adsorbed species inside a micro-particle, the flux
can be written in terms of the chemical potential gradient as follows:

J ^ = - L C ^ ^ (10.2-1)

where L is the mobility coefficient which is temperature dependent, C^ is the
concentration of the species in the crystal and is defined as moles per unit volume of
the crystal, and u is the chemical potential of the adsorbed phase. Here we shall
assume that the mobility coefficient is independent of concentration. It is reminded
that we have used the subscript JLI to denote the adsorbed phase, and this has been
used throughout the book.

Let us assume that there exists a hypothetical gas phase such that this gas phase
is in equilibrium with the adsorbed phase, that is the adsorbed phase chemical
potential is the same as the chemical potential of that hypothetical gas phase. We
write the following equality of chemical potentials of the two phases:

U = ^G = u ° + R g T l n p (10.2-2)

where p is the hypothetical partial pressure, which is in equilibrium with the
adsorbed concentration C ,̂ that is the following isotherm equation holds:

C , = f(p) (10.2-3)

where f is the functional form of the adsorption isotherm. The term hypothetical is
because there is no gas phase within the crystal.

We assume here that there is one-to-one correspondence between the adsorbed
concentration and the partial pressure; thus, we can write the following inverse
equation relating the hypothetical pressure to the adsorbed concentration:

(10.2-4)

Substituting eq. (10.2-2) into eq.( 10.2-1), we get the following expression for the
flux written in terms of the gradient of the hypothetical pressure p:

(10.2-5)
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It is desirable, however, that we express the flux equation in terms of the
adsorbed concentration instead of the gradient of the unknown partial pressure of a
hypothetical gas phase. To do this, we simply apply the chain rule of differentiation
to eq.( 10.2-5) and obtain:

where d In p / d In C^ is obtained from the adsorption isotherm (10.2-3).

If we define the corrected diffusivity as (with the super-script 0 to denote the
corrected diffusivity):

D° = LRgT (10.2-7)

which is temperature dependent, the constitutive flux equation (10.2-6) becomes:

where DM is called the transport diffusivity. This transport diffusivity is equal to the

corrected diffusivity D^ multiplied by the term known as the thermodynamic

correction factor. This factor describes the thermodynamic equilibrium between the
two phases, and it is given by

^ In f\

(10.2-9)

When the isotherm is linear, the thermodynamic correction factor is unity, meaning
that the corrected diffusivity is the transport diffusivity at zero loading conditions.

I Example 10-2-1 j Thermodynamic correction factor for Langmuir isotherm
case

If the isotherm takes the form of Langmuir equation

the thermodynamic correction factor is:

dlnP 1 1

i - e
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Thus, for Langmuir isotherm the transport diffusivity increases as the
loading inside the zeolite crystal increases. Stronger dependence with
concentration can be observed if the isotherm takes the form of Volmer
equation (Table 10.2-1). This stronger concentration dependence of the
transport diffusivity in the case of Volmer isotherm equation is attributed to
the mobility term in the Volmer equation.

Table 10.2-1; The thermodynamics correction factor for some isotherm equations

Isotherm d lnp / d lnC p

Linear 1
Langmuir 1/(1-0)
Volmer l/(l-6)2

Example 10,2-2: Steady state diffusion through a zeolite membrane

Steady state flow of molecule through a zeolite membrane is a
constant. It can be obtained by integrating eq. (10.2-8) subject to constant
boundary conditions at two ends of the membrane:

where C M and C^L are adsorbed concentrations which are in equilibrium
with pressures p0 and pL at the two ends, respectively.

If the adsorption isotherm takes the form of Langmuir equation as
given in example 10.2-1, the steady state flux equation will become:

M- T i r* / /"*

L ( 1 - CM n / ^,,

where

^ ^ l + bpL

Rewriting the above flux equation in terms of pressures, we get:

J J ^
" U + bpJ
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10.2.1.1 Temperature Dependence of the Corrected Diffusivity D °

The diffusion process in the microparticle is assumed to be the hopping process
of molecules from one low energy position to the next low energy position within
the microparticle. If the energy barrier of the hopping process is E p the corrected
diffusivity takes the following Arrhenius relation:

= D (10.2-10)

where D ^ is the corrected diffusivity at infinite temperature, and D°o is the

corrected diffusivity at some reference temperature To. This energy barrier E^ is
usually less than the heat of adsorption. The following table lists some systems of
which the heat of adsorption is greater than the activation energy E .̂

Table 10.2-2: Adsorption heat & activation energy for micropore diffusion for some systems

Reference

Haq & Ruthven
(1986a)
Haq & Ruthven
(1986b)
Chiang et al.
(1984)
Ma & Mancel
(1973)

Solid

4A

5A

5A

H-Mordenite

Na-Mordenite

Adsorbate

CO2

cyclo-C3H6

cis-C4H8

n-butane

CH4

C2H6

C2H6

C3H8

n-butane

Heat of
adsorption
(kcal/mole)

11

10.7
11.4
10.2

4.4
5.8
5.5
8.8
10.9

Activation energy for
micropore diffusion
(kcal/mole)

4.9

4.57
6.4
4.8

1.8
3.8
4.5
5.2
8.7

10.2.2 The Mass Balance Equation

The mass balance equation describing the concentration distribution of the
adsorbed species in a microparticle of either slab, cylinder and spherical geometry
takes the following form:

dCtl^ W 1 3 / S T \ (10.2-1 la)



Analysis of Adsorption Kinetics in a Zeolite Particle 609

Substitution of the constitutive flux equation (10.2-8) into the above equation yields:

dz

This equation is subject to the following boundary conditions:

dCu
z = 0; — ^ = 0 (10.2-12a)

<3z
z = L ; C ^ = C ^ = f ( P b ) (10.2-12b)

The first condition is simply the symmetry condition at the center of the micro-
particle, and the second condition is the equilibrium condition at the exterior surface
of the microparticle, where the gas phase pressure is maintained at Pb. Here L is the
half length of the slab crystal or radius of the cylindrical and spherical crystals.

The crystal is initially assumed to be loaded with an amount which is in
equilibrium with a gas phase of pressure Pj, that is:

t = 0; C^C^fft) (10.2-13)

Solving eq.( 10.2-11) subject to the boundary conditions (10.2-12) and the initial
condition (10.2-13) will give us an information on how adsorbed molecules are
distributed inside the micro-particle as a function of time and the time taken for the
system to relax to the new equilibrium condition. The volumetric average
concentration is given by:

) ^ f Z , t ) d 2 (10.2-14a)

The quantity of interest in the analysis of adsorption kinetics is the fractional
uptake, defined as the amount taken by the solid from t = 0 up to time t divided by
the amount taken at infinite time. Mathematically, it is:

(10.2-14b)

The behaviour of the fractional uptake with respect to time gives an indication of
how fast a system approaches equilibrium with respect to a jump from the initial
pressure P{ to some final pressure Pb.

What we will show next is to investigate the behaviour of the fractional uptake
versus time to determine how the relaxation time will vary with the system
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parameters and operating conditions. We first illustrate this with a linear isotherm,
and then study a case of nonlinear isotherm. Langmuir isotherm equation is used as
the model case as it is sufficient to study the effects of the isotherm nonlinearity on
the adsorption kinetics behaviour.

/ 0.2.2.1 Linear Isotherm

When the adsorption isotherm is linear (that is when the pressure is very low
usually of the order of 1 Torr at ambient temperature for many low molecular
weight hydrocarbons), we have the following relevant initial and boundary
conditions:

t = 0; C u = C M i = K P i

and
z = L; C^ = C^b = K Pb

The thermodynamic correction factor for the case of linear isotherm is unity (Table
10.2-1), rendering the governing equation (10.2-1 lb) linear. The analytical solution
for the concentration distribution is:

(10.2-15a)
^ ( i b ^\ii n=l

where

D° t
x = —; T = — ^ - (10.2-15b)

I-' L
The coefficient an, the eigenfunction K^x) and the eigenvalue £n are tabulated in the
following table (Table 10.2-3) for the three micro-particle geometries. With the
exception of the cylindrical geometry, the eigenvalues are in explicit form,
facilitating the numerical evaluation of the concentration distribution.

Table 10.2-3: The coefficient an, the eigenfunction Kn(x) and the eigenvalue £n for the three micro-
particle geometries

Shape

Slab

Cylinder

Sphere

a,,

2sin^n/

2/[Ui(
-2cos£n

in)]

K.(x)

cos(^

x)/x

^ n

(n-1/2)71

x\n

Eq. no.

(10.2-16a)

(10.2-16b)

(10.2-16c)

Jo and J, are zero-order and first-order Bessel functions.
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Knowing the concentration distribution for the case of linear isotherm as given
in eq. (10.2-15a), the fractional uptake is then given in eq.(10.2-14b) and is
tabulated in the following table (Table 10.2-4):

Table 10.2-4: Fractional uptake for the three microparticle geometries

Shape Fractional uptake Eq.no.

Slab

Cylinder

Sphere

= l — ^ Y r exp- n-1/2 V T
7i 2 ^(n- l /2 ) 2 I v ; J

n=l Sn

6 A 1 / 2 2 \
= l - — X —exP(-n27i2T)

(10.2-17a)

(10.2-17b)

(10.2-17c)

71 n=ln

A programming code UPTAKEP is provided with this book, and it allows the
calculation of the fractional uptake versus time for three different shapes of the
micro-particle. The following figure (Figure 10.2-1) shows the fractional uptake of
a spherical crystal with a corrected diffusivity of 1 x 10"10 cm2/sec for various values
of microparticle sizes (1,2 and 3 micron in radius).

1.0

0.8

Fractional 0 6

uptake

0.4

0.2

o.o
100 150

Time (sec)
200 250

Figure 10.2-1: Plots of the fractional uptake versus time

It is seen that the larger is the micro-particle, the longer is the time required for the
system to approach equilibrium. This time is in fact proportional to the square of
the micro-particle radius by the virtue of the definition of the non-dimensional time
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in eq. (10.2-15b). This is proved as follows. For any arbitrary fractional uptake
(say F = 0.9), eq.(10.2-17) states that T is a constant. Thus from the definition of the
non-dimensional time T in eq. (10.2-15b) the adsorption time scale is then
proportional to the square of the micro-particle radius and inversely proportional to
the corrected diffusivity.

Figure 10.2-2 shows plots of the fractional uptake for various temperatures for a
spherical zeolite having a radius of 1 micron. The activation energy for micropore
diffusion is 20 kJoule/mole, and the micropore diffusivity at 298 K is 1 x 10"10

cm2/sec. Here we see that the higher is the temperature the faster is the uptake due
to the increase in the diffusivity. What this means is that the higher temperature
system will reach equilibrium faster than the lower temperature system. This,
however, does not mean that the adsorption rate is higher for the higher temperature
system. We shall discuss this in Section 10.2.2.1.3.

Fractional
uptake

10 40 5020 30
Time (sec)

Figure 10.2-2: Plots of the fractional uptake versus time at three different temperatures

10.2.2.1.1 Half time

Half time is normally used to describe the time scale of the adsorption kinetics,
and it is defined as the time to reach 50% of the equilibrium uptake. Thus, by
setting F = 0.5 into eqs.(10.2-17), we get the necessary expressions for the half time
written in terms of the size of the particle and the diffusivity. The following table
shows the results of the half times for three shapes of the microparticle for the linear
adsorption isotherm case.
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Table 10.2-5: Half times of microparticles with linear isotherm

Shape
Slab

Cylinder

Sphere

Half-time, to_s

0.1967 L 2 /D°

0.0631 L 2 / D °

0.03055 L2 / D°

Eq. no.
(10.2-18a)

(10.2-18b)

(10.2-18c)

The half time is proportional to the square of the crystal size and inversely
proportional to the diffusivity. We see that the half time is largest for the case of
slab, and smallest for the spherical case. This is not surprising as the exterior
surface area per unit volume is largest for the sphere and smallest for the slab; hence
mass transfer per unit volume of crystal is fastest in the case of spherical crystals.

What we also see in Table 10.2-5 is that the half time is independent of C^ (the
initial concentration) and C b̂ (the final concentration). The system is undergoing
adsorption when C b̂ > C^ and desorption when C b̂ < C^. Thus, what this means is
that the time scale for adsorption (half time) is the same for both adsorption and
desorption modes. This characteristics is applicable only to linear isotherm.

10.2.2.1.2 First Statistical Moment

Half time is a convenient measure of the time scale of adsorption. Another
measure of the time scale for the sorbate molecule to diffuse from the exterior
surface to the interior of the micro-particle is the first statistical moment (Koricik
and Zikanova, 1972), defined as the statistical mean of the adsorption rate:

|i, = Jt^dt= J(l-F)dt (10.2-19)
o o

Take the case of spherical microparticle as an example, we substitute the
fractional uptake of eq.( 10.2-17c) into the above equation and carry out the
integration to obtain:

(10.2-20a)

00

in which we have used the relation ]T (l / n4) = TT4 / 90 (Jolley, 1961). This first
n=l

statistical moment is compared to the half-time
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L2

t0 5 =0.03055-— (10.2-20b)

K
The fractional uptake at the first statistical moment u} is

f\ °° 1
F = 1 - — X — e x P ( ~ n V /15) * 0.674 (10.2-21)

ft n=l n

For other shapes of the particles, the first statistical moments are listed in the
following table (Table 10.2-6). For comparison, the half times are also included in
the table. Note that the first statistical moment is about twice as large as the half
time. Readers can use either one of them as the measure for the time scale of
adsorption.

Table 10.2-6: First statistical moments and half-times

Shape First statistical moment, a. Half time, tn $ Eq. no.

L2 (10.2-22a)
0 .19674-^-

D°
L2 (10.2-22b)

U.Uo.51 ~
D°

L2 (10.2-22c)
0 .03055-^ -

10.2.2.1.3 The Temperature Dependence of the Adsorption Rate

We have seen the dependence of the adsorption kinetics on the micro-particle
size, that is the time scale is proportional to the square of the particle radius. Since
particle size does not affect the equilibrium capacity, the adsorption rate is lower in
the case of larger particle size as the time taken to reach equilibrium is longer.

To investigate the temperature dependence, we can not use the behaviour of the
fractional uptake versus temperature as shown in Figure 10.2-2 because the
equilibrium amount C b̂ is a function of temperature, and so is the diffusivity. To do
this we have to investigate the amount adsorbed up to time t per unit volume of the
microparticle, that is:

( C C ) F ( ) (10.2-22)

Slab

Cylinder

Sphere

1

1]
1

1

15

L2

\}_

K
L2

K
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where V is the volume of the micro-particle, and M is the amount adsorbed up to
time t. The temperature dependence of the various variables in the above equation
is:

= KPb = KM ex

ex

R r T
P b = K o e x p

P( = Ko exp

RgT0

Kgl0

l - | Pb (10.2-23a)

P, (10.2.23b)

< 1 < u ~ 2 3 c )

where Q is the heat of adsorption, KM is the Henry constant at infinite temperature,
and KQ is the Henry constant at some reference temperature To. Expressing the
adsorption rate per unit volume explicitly in terms of temperature, we have:

V
Koexp

RgT0

(10.2-24)

Eq.( 10.2-24) contains two factors. The first factor (the square bracket term in the
RHS) is the capacity factor and it decreases with temperature, while the second
factor is the fractional uptake and it increases with temperature due to the increase in
the diffusivity. The net result of these two factors is that the rate of adsorption
decreases with temperature as the decrease in the capacity with respect to
temperature overcompensates the increase in the fractional uptake. This is due to
the higher heat of adsorption (Q) than the activation energy for diffusion (E^).
Figure 10.2-3 shows typical plots of the adsorbed amount per unit volume as a
function of time for three values of temperatures, 273, 298 and 333 K. The
parameters used in generating these plots are:

L
En
Q
D° @29

K
P{

PK

= 1 micron
= 20 kJoule/mole
= 40 kJoule/mole

8K = 1 x 1010cm2/sec

= 7.5x lO^mole/cc/kPa
= 0kPa
= 2kPa



616 Kinetics
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M/V 0.003
(mmole/cc)

0.002

0.001

0000

1 : 298K

i...̂ ^^ ;
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Figure 10.2-3: Plot of the amount adsorbed per unit volume versus time at T = 273, 298 and 333 K

10.2.2.1.4 Short Time Solution:

The solution for the fractional uptake given in eqs.(10.2-17) is valid for all
times. However, when time is short, that is when the uptake is only a few percent of
the equilibrium amount, the following solution for the fractional uptake into an
initially clean microparticle can be useful

(10.2-25)

The fractional uptake at short time is proportional to the square root of time, a well
known characteristics of a diffusion type process. The above equation is obtained
by taking the Laplace transform of the linear governing equation and finding the
limit of the solution in the Laplace domain when the Laplace variable s approaches
infinity.

To calculate the amount taken up by the micro-particle we multiply the
fractional uptake by the amount taken up at infinite time, which is:

M b = V C ^ b (10.2-26)

where V is the volume of the micro-particle and CMb is the adsorbed concentration
which is in equilibrium with Pb. Thus, the amount taken by the micro-particle at
short time is given by:
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M t =

slab

cylinder

sphere

(10.2-27)

where A is the area of one side of the slab crystal, and D is the length of the
cylinder. We see that (2A) is the external area for mass transfer for slab, (2TILD) is
that for cylinder and (4TCL2) is that for sphere. Thus, we could generalise the amount
uptake for short time for any micro-particle shape as:

M t = - 7 = A e x t
y/n

(10.2-28)

This equation is independent of the particle shape, as one would expect for short
time the mass penetration is still very close to the exterior surface and the particle
curvature is irrelevant. The mass transfer is only controlled by the available external
surface area.

Eq.( 10.2-28) is a very useful equation to measure the corrected diffusivity. One
simply measures the amount uptake versus time, and then a simple plot of the initial
data of Mt versus the square root of time, a straight line is resulted with a slope of

slope = -7=AextCMb^/DJl = — D (10.2-29)

from which the corrected diffusivity can be obtained. The range of validity of the
short time solution is that the amount adsorbed Mt is less than the equilibrium
amount, that is:

M t « M b (10.2-30)

Substitution of eq.( 10.2-28) and (10.2-26) into the above equation gives the
following range of validity of the short time solution:

(10.2-31)

Using the temperature dependence form for the Henry constant and the
corrected diffusivity
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K^K^expl Q

R..T

A Rg

the slope of the initial data of M, versus time has the following temperature
dependence form:

slope = - ?=A e x tK0 0Pb l /D^0 xexp| ^ — | (10.2-32)
RgT

which decreases as the temperature increases since the heat of adsorption (Q) is
usually greater than the activation energy for diffusion (E^).

/ 0.2.2.2 Langmuir Isotherm

Having understood how a linear adsorption isotherm affects the adsorption
kinetics in a micro-particle, let us now turn to the case where the adsorption
isotherm is nonlinear. The nonlinearity of the isotherm affects the kinetics through
the thermodynamics correction factor (eq. 10.2-9). Let us start with the mass
balance equation and obtain its solution by a numerical method. We shall take the
case of Langmuir isotherm to illustrate the effect of the isotherm nonlinearity.

/ 0.2.2.2.1 Mass Balance Equation

When the adsorption equilibrium between the fluid phase and the micro-particle
takes the form of Langmuir equation

C M = C H S — — (10.2-33)

the thermodynamic correction factor is (dmP/d lnC^j = ( l - C ^ / C ^ s ) , hence

the mass balance equation (10.2-1 lb) will become:

at {

subject to the following boundary condition:

(,0.2-34,
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z = L; C , = C , b = C , s T ^ - (10.2-35)

where Pb is the pressure of the gas surrounding the micro-particle and b is the
adsorption affinity.

Assuming the micro-particle is initially equilibrated with a gas phase of
pressure Pj. The initial condition is:

t = 0; C , = C , i = C , s - ^ - (10.2-36)

The above equations (10.2-34 to 10.2-36) are non-linear due to the
thermodynamic correction factor in the transport diffusivity term. The method we
have been using in solving nonlinear partial differential equations is the orthogonal
collocation method. We again apply it here, and to do so we define the following
non-dimensional variables and parameters:

(10.2-37.)

The above choice of the non-dimensional dependent variable x is to normalise the
adsorbed concentration. Note that the function H(x) is equal to (1 + X{) at time t = 0,
and will take the value of (1 + ^b) at t = oo.

With these new variables and parameters, the non-dimensional mass balance
equation is:

f ± A ^ ^ l (10.2.38)

The boundary conditions and initial condition are:

TI = 1; x = l (10.2-39)

T = 0; x = 0 (10.2-40)

Solving this set of equations numerically will give the non-dimensional
adsorbed concentration as a function of time as well as distance. Appendix 10.1
shows the application of the collocation method to discretise eq. (10.2-38) into a set
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of coupled ordinary differential equations, which are then integrated with respect to
time by the Runge-Kutta method.

10.2.2.2.2 Fractional Uptake

The fractional uptake is the ratio of the amount adsorbed from t = 0 to a time
"t" divided by the amount adsorbed up to t = oo. Mathematically, it is calculated
from:

(10.2-41)

or written in terms of nondimensional variable

F = (x) (10.2-42)

where <x> is the volumetric average defined as follows:

(x) = (l + s) £r|s xdr| (10.2-43)

The average amount uptake per unit volume of the crystal at any time t is then
calculated from:

() ( ) (10.2-44)

10.2.2.2.3 Size Dependence and Temperature Dependence

To investigate the dependence of the adsorption kinetics on the micro-particle
size, we simply define the non-dimensional time scaled against some reference
length, Lref, that is:

D° t
i = (10.2-45)

T 2

^re f

With this time scale the mass balance equation (10.2-34) becomes:

' ref I * " i - » u ^ - " i (10.2-46)

subject to the boundary condition (10.2-39) and initial condition (10.2-40). This
equation shows that the adsorption kinetics is proportional to the inverse of the
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square of the micro-particle size, similar to the linear isotherm case. This means
that the isotherm nonlinearity does not change the dependence of the system
behaviour on the micro-particle size.

To study the temperature dependence, we need to investigate the adsorbed
amount (eq. 10.2-44) as a function of time. Without loss of generality, we can
assume that the initial gas phase pressure is zero (Pj = 0, that is C^ = 0) and hence
the adsorbed amount per unit volume of the microparticle is:

:) (10.2-47)

where the temperature dependence of C b̂ is:

R T) Ph

-r (10.2-48a)
r)pb

The temperature dependence of <x> comes indirectly from the temperature
dependence of Xw and D,,0:dependence of ^b and D^°:

( o ^
b (10.2-48b)

D ^ D ^ e x p l - — K - l (10.2-48C)

Numerical computation shows that as temperature increases the non-
dimensional average concentration <x> increases for a given time, that is the system
approaches equilibrium faster at higher temperature but the equilibrium amount C b̂

decreases with temperature and this decrease overcompensates the increase in <x>;
hence the net result is the decrease of <C^> with temperature. In other words, the
rate of adsorption per unit volume of micro-particle decreases with temperature.

/ 0.2.2.2.4 Numerical Analysis

We see that in the non-dimensional form of equations, the initial and boundary
conditions assume constant values (eqs. 10.2-39 and 10.2-40), irrespective of the
system undergoing adsorption and desorption. Whether the system is going through
adsorption or desorption depends on the relative magnitude of X{ and Xb, that is:

1. If X{ < Xb, the system is undergoing adsorption mode
2. If Xi > Xb, the system is undergoing desorption mode
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The model equation (10.2-38) is solved numerically by a combination of the
orthogonal collocation method and the Runge-Kutta method. Details of the
collocation analysis is given in Appendix 10.1. The code ADSORB 1 CM written in
MatLab version 4.0 is provided with this book to simulate the above problem. The
important parameter is the bP parameter. As this parameter is much smaller than
unity, we have the case of linear isotherm; which is known to give the adsorption
and desorption curves as mirror images to each other. However, when this
parameter is greater than unity (non-linear range of the isotherm), we see that the
time it takes to desorb molecules from the micro-particle is much longer than that
taken for adsorption due to the stronger affinity of molecules towards the surface.

Figure 10.2-4 shows plots of fractional uptake versus time for adsorption of gas
into an initially clean crystal of slab geometry. The gas pressures are bP = 0, 1 and
2. The curve for bP = 0 corresponds to the linear isotherm case, while the other two
curves (bP = 1 and 2) correspond to the nonlinear situation. We see that as the
nonlinearity of the isotherm increases, the adsorption dynamics is faster, and this is
due to the higher value of the transport diffusivity under the nonlinear isotherm
condition (see eq. 10.2-34).

Fractional
uptake

Figure 10.2-4: Fractional uptake versus i for the case of adsorption with >i0 = 0 and Xx = (0,1,2)

The same behaviour when we consider the desorption mode. First the crystal is
equilibrated with a gas at various pressures (bP = 0, 1 and 2) and these loaded
crystals are then desorbed into a vacuum environment. We see in Figure 10.2-5 that
the nonlinearity of the adsorption isotherm also makes the desorption rate faster, but
the rate is not as fast as that in the case of adsorption mode.
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Figure 10.2-4: Fractional uptake versus T for the case of desorption with Xx = 0 and Xo = (0,1,2)

10.3 Nonisothermal Single Component Adsorption in a Crystal

In the last section we have shown the kinetics behaviour of a microparticle
when isothermal conditions prevail. A number of features have been observed for
such conditions:

1. For linear isotherm, the adsorption time is the same as the desorption time; the
time scale is proportional to the square of the radius of the microparticle, and
the time scale is independent of the bulk concentration. With respect to
temperature, the approach to equilibrium is faster when the system temperature
is higher but the rate of adsorption is lower.

2. For nonlinear isotherm, the adsorption process is faster than the desorption; the
time scale is still proportional to the square of microparticle radius, and the time
scale is lower when the bulk concentration increases. With respect to
temperature, the behaviour is the same as that for the case of linear isotherm.

Adsorption process is known to release heat upon adsorption or absorb energy
upon desorption. Typical heat of adsorption of many hydrocarbons on zeolite
ranges from 10 to 60 kJoule/mole, and such a magnitude can cause a significant
change in the temperature of the crystal if the dissipation of energy to the
surrounding is not fast enough. Thus, the crystal temperature increase (adsorption)
or decrease (desorption) depends on the interplay between the rate of heat release
due to adsorption or heat absorption due to desorption and the dissipation rate of
energy to the surrounding. In this section we will address this interplay and
investigate what way the heat transfer affects the kinetics of mass transfer. Since the
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thermal conductivity of the micro-particle is greater than that of the gas surrounding
the particle, the temperature within the particle can be assumed uniform and all the
heat transfer resistance is in the gas film surrounding the micro-particle. This is
called the lumped thermal model.

10.3.1 Governing Equations

When the heat released by the adsorption process can not be dissipated fast
enough into the surrounding, the temperature of the micro-particle will change. To
study the effects of heat transfer on the uptake behaviour, we need to solve the mass
balance equation

where the corrected diffusivity has the following Arrhenius temperature dependence

R«T
.0=D>xp . 1 - —

RgT0 V T
(10.3-lb)

together with the following lumped thermal model for heat balance around the
micro-particle:

(10.3-2)

In obtaining the heat balance equation, we have assumed that the heat resistance
by conduction inside the micro-particle is insignificant compared to the heat
resistance outside the micro-particle, which is described by the second term in the
RHS of eq.( 10.3-2). Because of such assumption, the temperature inside the micro-
particle is uniform, and the first term in the RHS of eq.( 10.3-2) is the amount of heat
released per unit volume per unit time as a result of the adsorption rate per unit
volume d<C^>/dt. In eq.( 10.3-2), hf is the heat transfer coefficient per unit surface
area, aH is the heat transfer surface area per unit volume, Q is the molar heat of
adsorption, Tb is the surrounding temperature, <pCp> is the mean heat capacity per
unit volume of the micro-particle, and <C^> is the volumetric average concentration,
defined as

W^jt^dz (10.3-3)
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The heat transfer surface area per unit volume, aH, needs some elaboration. It is
not necessarily the exterior surface area of the crystal per unit volume. If the
crystals agglomerates into an agglomerate and if the heat resistance within this
agglomerate is negligible, then the heat transfer area per unit volume aH is the
exterior surface area of the agglomerate rather than the exterior surface area of a
crystal. This means that mass transfer occurs over the crystal length scale, while the
heat transfer occurs over the agglomerate length scale. If we denote the size of the
agglomerate as La, then the exterior surface area per unit volume of this agglomerate
is:

aH=-~ (10.3-4)

where sa is the shape factor of the agglomerate, and it takes a value of 1, 2 or 3 for
slab, cylinder and sphere, respectively.

The boundary conditions of eq.( 10.3-1) are:

z = 0; —^- = 0 (10.3-5a)
dz

z = L; C ,=f (P b ,T ) (10.3-5b)

Note that at any time t the concentration at the pore mouth of the micropore is in
equilibrium with the gas phase pressure Pb, and the instant temperature of the
agglomerate, T. Since this temperature is time variant and is governed by the heat
balance equation (10.3-2), the adsorbed concentration at the solid-fluid interface (z
= L) is also time variant.

The initial conditions of the mass and heat balance equations are:

t = 0; C^C^fft.Ti); T = T, (10.3-6)

The initial temperature T{ may not be the same as the surrounding temperature Tb.

10.3.2 Non-Dimensional Equations

The set of governing equations (10.3-1 to 10.3-6) is nonlinear, and must be
solved numerically. We solve it by using a combination of the orthogonal
collocation method and the Runge-Kutta method. Before carrying out the numerical
analysis, we cast the governing equations into non-dimensional form by defining the
following non-dimensional variables
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Non-dimensional time

Non-dimensional distance

Non-dimensional concentration

Non-dimensional temperature

T -

n =

X -

e

T2

Z

r
c b -

T-Tc

To

C ^ i

C j

T - T T —T
> . Q b A0 . n x i x 0

' D > i

(10.3-7a)

(10.3-7b)

(10.3-7c)

. (10.3-7d)

where D^o is the crystal corrected diffusivity evaluated at some reference

temperature To

(10.3-7C)

C b̂ is the adsorbed concentration in equilibrium with Pb and Tb:

C^b=f(Pb ,Tb) (10.3-7f)

and Ĉ j is the adsorbed concentration which is in equilibrium with Pj and T{:

C^ffc.Ti) (10.3-7g)

The non-dimensional parameters of the system are:

RgT0

(10.3-7h)

dO.3,0

(pCp>T0

LeBi= *»)<L\ (10.3-Tk)
D ° ( C )
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Some physical explanation of these parameters is necessary. The parameter ŷ
is the activation energy number, and for many zeolitic systems it has the following
range

The heat parameter (3 is a measure of the amount of heat released by adsorption
process relative to the heat capacity of the solid. This parameter is called the heat
capacity number. Typically it has the following range

0.02 < p < 0.2

The parameter LeBi is a measure of the heat transfer to the surrounding. Its
physical meaning can be better seen by rearranging eq. (10.3-7k) as follows:

L2

aHh f

The numerator is the diffusion time, which is the time it takes for the mass transfer
to approach equilibrium. The denominator is the time which the sensible heat of the
micro-particle can be dissipated to the surrounding. Thus we expect that the larger
is this parameter the closer is the system behaviour towards the isothermal
condition.

With these definitions of non-dimensional variables and parameters, the mass
and heat balance equations will become:

dt r dx

The boundary conditions are:

^ ^ ^ (10.3-8.)

d0 d(x) , x

— = P ^ L e B i ( e e ) (10.3-8b)

— = 0 (10.3-9a)

(10.3.9b)
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The initial condition is:

(10.3-10)

The fractional uptake defined as the additional amount adsorbed up to time t
divided by the amount uptaken from t = 0 to infinite time, that is:

= = (10.3-1 la)

where the volumetric average concentration is defined as follows:

(x) = (l + s) £r|s xdr| (10.3-1 lb)

This set of non-dimensional equations can be solved numerically to yield
solutions for x and 9. The non-dimensional concentration x is a function of r] and T,
and the non-dimensional temperature 6 is a function of time. The fractional uptake
is obtained from eq.( 10.3-11), and then the amount adsorbed per unit volume of the
micro-particle is:

The micro-particle size dependence and the temperature dependence of the
kinetics behaviour is not apparent in this case due to a number of factors. First the
equations are coupled and nonlinear, and the dependence of some parameters such
as the heat transfer coefficient hF is subject to the conditions of the environment
outside the micro-particle, and it might depend on the micro-particle size. For
example, the heat transfer coefficient around the agglomerate can be described by
the following correlation (Wakao and Kaguei, 1982)

that is

2L. V Hf

0.6 1/3

(10.3-12a)

(10.3-12b)

If the surrounding is stagnant, we have:



Analysis of Adsorption Kinetics in a Zeolite Particle 629

that is the heat transfer coefficient is inversely proportional to the agglomerate
radius La.

However, if the surrounding is highly stirred, the heat transfer coefficient will
become:

that is, the heat transfer coefficient is inversely proportional to La°
4.

Knowing the size dependence of the heat transfer coefficient and the size
dependence of the exterior surface area per unit volume (eq. 10.3-4), the LeBi
parameter has the following dependence on the agglomerate size (La) and the crystal
size (L).

hf aj, LeBi

Stagnant L"1 L"1 L2L"2

a a a

Turbulent L~a
04 L;1 L2L~a

14

Thus we see that the detailed kinetics behaviour must be investigated numerically.
However, as a first approximation, we would expect the time scale of adsorption is
proportional to the square of the micro-particle radius.

10.3.3 Langmuir Isotherm

We shall study this non-isothermal case with Langmuir isotherm of the form

(10.3-13a)
11 v ' * 1 + b(T)P

where the adsorption affinity takes the following temperature dependent form:

= b00exp| ~ | = b o e x p Q
RgT0 ^ T

(10.3-13b)

where Q is the heat of adsorption, used in the heat balance equation (10.3-2), b^ is
the adsorption affinity at infinite temperature and b0 is that at the reference
temperature To.
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With this form of adsorption isotherm, the thermodynamic correction factor can
now take the following explicit form:

H(x)= 1 - (10.3-14a)

where the parameters X{ and Xb are defined as

^ i = b P i ; ^ b = b P b ; (10.3-14b)

They are function of temperature due to the temperature dependence of the affinity
constant b.

The boundary condition (10.3-9b) takes the following explicit form for this case
of Langmuir isotherm:

. i + bopb(|)(e)
x | ,= r° V } (10.3-15)

^ b ^

where

<|)(0) = exp (10.3-16)

The model equations (10.3-8) are solved numerically by the method of orthogonal
collocation (Appendix 10.2). The simulations are obtained from the code
ADSORB ID.M, provided with this book to help readers with means to understand
the adsorption problem better. The parameters supplied to this code are grouped as
follows:

Description
Micro-particle & agglomerate
Operating conditions
Adsorption characteristics
Diffusion characteristics

Heat parameters

Parameters
U La, aH

Ti? Tb, Pb Pb

C,s, b0, Q

<pCn>, hf

The order of magnitude of some heat parameters is given in Appendix 10.3. The
following parameters are used in the simulations as the base case
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Micro-particle shape, s

Micro-particle size, L

Initial adsorbate pressure, P;

Bulk adsorbate pressure, Pb

Initial temperature, T{

Bulk temperature, Tb

Reference temperature, To

Adsorption affinity at To, b0

Saturation capacity, C^

Corrected diffusivity at To, D ° o

Activation for micropore diffusion, EK

Heat of adsorption, Q

Volumetric heat capacity, pCp

Heat transfer number, LeBi

= 2

= 1 micron

= 0kPa

= lkPa

= 300K

= 300K

= 300K

= 1 kPa1

= 5 x 10'3mole/cc

= 1 x 1010cm2/sec

= 15,000 Joule/mole

= 30,000 Joule/mole

= 1 Joule/cc/K

= 5

Figure 10.3-1 shows the concentration evolution of six discrete points along the
micro-particle co-ordinate. We note that the non-dimensional concentration at the
surface decreases from unity because of the micro-particle temperature increase,
resulting in a drop in the adsorbed concentration at the surface (see eq. 10.3-15).

1.0

0.8
Nondimesnional
concentration 0.6

0.4

0.2

0.0
0.2 1.00.4 0.6 0.8

Nondimensional time, T

Figure 10.3-1: Concentration evolution at various points within the zeolite crystal

The temperature increase versus time is shown in Figure 10.3-2, and the time at
which the temperature reaches its maximum is corresponding to the time at which
the surface concentration reaches its minimum (cf. Figures 10.3-1 and 10.3-2).
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Figure 10.3-2: Plots of the non-dimensional temperature and fractional uptake versus T

Effects of the heat transfer number, LeBi, are shown in Figure 10.3-3 and 10.3-
4. The same set of parameters in the above table is used in the simulation with the
following values of LeBi number {1, 5, 10}.
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Figure 10.3-3: Effect of LeBi number on the
fractional uptake versus time

Figure 10.3-4: Effect of LeBi number on the
temperature versus time

As expected a reduction in the heat transfer number would cause an increase in the
micro-particle temperature and as a result the fractional uptake exhibits a distinct
two stage uptake when the LeBi is low. The slow second stage of the uptake is
dictated by the cooling rate of the micro-particle.

Effects of the bulk pressure are shown in Figure 10.3-5. Increase in the bulk
pressure causes an increase in the particle temperature because of the larger amount
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adsorbed by the micro-particle. Also increase in the bulk pressure results in a faster
approach to equilibrium.

0 20 40 60 80 100
Time (sec)

Figure 10.3-5a: Plots of the fractional uptake versus time
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Figure 10.3-5b: Effect of the bulk pressure on the temperature response
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10.4 Bimodal Diffusion Models

We have shown the analysis of a single zeolite crystal under isothermal
conditions and non-isothermal conditions in Sections 10.2 and 10.3, respectively.
These analyses are important to understand the rate of adsorption at the crystal level.
In practice zeolite solids are available in pellet form, and these pellets are made by
compressing zeolite crystals together, usually with a small percentage of binder to
join the crystals together. Figure 10.4-1 shows schematically a typical zeolite pellet
composed of many small zeolite crystals. These crystals are of the order of 0.1 to 1
micron, and the zeolite pellets are of the order of one millimeter. The void between
the microparticles contributes to the mesopores and macropores of the particle.
These pores act as conduit to transport molecules from the surrounding into the
interior of the particle. Once inside the particle, molecules adsorb at the pore mouth
of the micropores and thence the adsorbed species diffuse into the interior of the
crystal. Micropores within the crystal provide the adsorption space to accommodate
adsorbate molecules.

Zeolite particle

Macropore space

Zeolite crystal

Intra-crystalline void
Figure 10.4-1: Zeolite pellet composed of small zeolite crystals

In this section we will consider zeolite particle having an intermediate size, in
such a way that the diffusion inside the macropore has comparable time scale to the
time scale of diffusion in the micropore. The dynamics into this particle is affected
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by the interplay between the two diffusion processes as well as the capacity
accommodated by the micropores.

10.4.1 The Length Scale and The Time Scale of Diffusion

The diffusion process in the macropore and mesopore follows the combination
of the molecular and Knudsen mechanisms while the diffusion process inside the
zeolite crystal follows an intracrystalline diffusion mechanism, which we have
discussed in Section 10.2. The length scale of diffusion in the macropore is the
dimension of the particle, while the length scale of diffusion in the micropore is the
dimension of the zeolite crystal; thus, although the magnitude of the intracrystalline
diffusivity (in the order of 10~n to 10~6 cmVsec) is very small compared to the
diffusivity in the macropore the time scales of diffusion of these two pore systems
could be comparable.

If the time scale of diffusion in the micropore is very short compared to that in
the macropore, we will have a macropore diffusion model with the characteristic
length being the particle dimension. This case is called the macropore diffusion
control. The model equations of this macropore diffusion case are similar to those
obtained in Chapter 9 for homogeneous-type solids. The only difference is that in
the case of macropore diffusion control for zeolite particles, there is no contribution
of the surface diffusion.

On the other hand, if the time scale of diffusion in the crystal is very long
compared to that in the particle the system dynamics will be controlled by the
intracrystalline diffusion with the characteristic length being the crystal dimension.
The initial stage of the dynamics is the filling of pore space of macropore with
adsorbate, which is very fast and usually of the order of one second. Furthermore,
this capacity is usually very small compared to the capacity of the micropore; hence
the initial stage is usually not measurable.

The two time scales of diffusion can be comparable. The relative measure
between these two time scales for the case of linear isotherm is the following
parameter (Do, 1983, 1990) (which will be apparent later in the formulation of mass
balance equation):

_ [£ + (1 ~ 8)K]D^R _ Time scale for macropore diffusion

eDpR 2 Time scale for micropore diffusion

where e is the particle porosity (macropore and mesopore), K is the slope of the
isotherm if the isotherm is linear or the ratio of the adsorbed concentration to the
bulk concentration at equilibrium for nonlinear isotherm, D^ is the diffusivity in the
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micropore, Dp is the pore diffusivity, R is the particle radius and R^ is the radius of
the microparticle. This parameter is the ratio of the time scale for macropore
diffusion to the time scale for micropore diffusion.

The macropore diffusion time scale R2[e + ( l - e ) K | (10.4-2a)

The micropore diffusion time scale R2 (10.4-2b)

Thus, if y is less than unity, meaning the time scale of diffusion in the crystal is
greater than that in the macropore, we then talk about intracrystalline diffusion
control. On the other hand, if y is greater than unity, we talk about macropore
diffusion control. We illustrate this criterion with the following example:

Example 10.4-1} Controlling mechanism for a linear isotherm case

We take the following values typical for sorption of light hydrocarbons

in zeolite.

R
R,
Dp
D ,
K
8

= 0.1 cm
= 2x lO^cm
= 0.01 cmVsec
= 1 x 10"9cm2/sec
= 1000
= 0.33

Substituting these values into eq. (10.4-1), we get

2031 sec CA

y = = 50 » 1
40 sec

The value in the numerator is the time scale of diffusion in macropore
while that in the denominator is the time scale of diffusion in micropore. A
value of 50 for y suggests that the system overall kinetics is controlled by
the macropore diffusion as the time scale it takes to diffuse along the
macropore is 50 times longer than that in the micropore.

If we take the case where the intracrystalline diffusion is more
restricted (10 time more restricted than the last case)
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D^ =lxl0"1 0cm2 /sec

compared to 1 x 10'9 cmVsec in the last example, the value of y is
calculated as

2031sec =

400 sec

An order of unity of this parameter suggests that the system is controlled
by the diffusion in the macropore as well as the diffusion in the micropore.

10.4.2 The Mass Balance Equations

The mass balance of the bimodal particle is composed of two equations. One
describes the mass balance inside the crystal, while the other describes the mass
balance in the pellet, and the two are coupled through the boundary of the zeolite
crystal. The coordinate framework for the zeolite pellet is shown as in Figure 10.4-
2, with r being the radial distance for the pellet and r̂  being the radial distance for
the crystal. We have used the notation convention that the subscript u is for the
adsorbed phase. Here the crystal is acting as the adsorbed phase.

Microparticle

Pellet

Figure 10.4-2: Frame of coordinates for zeolite pellet

Before writing down the mass balance equations, we need to define the
constitutive flux equations for the macropore and the micropore. These flux
equations are assumed to follow the following Fickian law equations:

J p = - s D p ^ (10.4-3a)

and
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T - _ n (10.4-3b)

where C is the adsorbate concentration in the macropore and CM is the concentration
in the microparticle. These fluxes are based on the total cross-sectional areas of
their respective domains.

The intracrystalline diffusivity, D p is a function of concentration in the crystal.
It is a constant only when the adsorption isotherm is linear, and unlike the diffusion
process in the macropore the intracrystalline diffusion is activated. Intracrystalline
diffusion has been dealt with in Section 10.2, where we have shown that the
transport diffusivity D^ is related to the corrected diffusivity D° as follows:

D^Dul^H 00.4-4)

When the adsorption isotherm takes the form of a Langmuir equation, eq. (10.4-4) is
reduced to:

D , =
D K

1 -

(10.4-5)

A similar equation is obtained by Higashi et al. (1963) using the concept of the
hopping model, discussed in Chapter 7. It is interesting that the expression for the
transport diffusivity obtained by the chemical potential gradient is the same as that
obtained by the hopping model of Higashi et al. (1963), although the latter does not
involve any interaction between the adsorbed phase and the gas phase.

With the definition of the flux equations in eqs. (10.4-3), the mass balance
equations for the pellet and the crystal are:

at
and

3C,

at <*»

= rseDD —
r

s di\ p dr

D

(10.4-6a)

(10.4-6b)

where is the volumetric mean concentration, defined as follows:
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Note that there is no surface diffusion in the macropore as it is assumed that the
adsorption on the exterior surface of the zeolite crystal is negligible compared to the
adsorptive capacity within the zeolite crystal.

Having the two mass balance equations written for the two sub systems (the
pellet and the crystal), we need to provide the connection (that is, boundary
conditions) between these two sub-systems and the connection between them and
the surrounding. The boundary condition at the surface of the microparticle is:

r ^ R ^ ; CM=f(C) (isotherm equation) (10.4-7)

in which we have assumed that the local adsorption kinetics at the pore mouth of the
crystal is much faster than the diffusion in the macropore as well as the diffusion in
the micropore. For zeolite crystals subjected to severe hydrothermal treatment, skin
barrier could be resulted and it could contribute to the mass transfer resistance at the
pore mouth. However, we shall not deal with that situation here.

The connection between the pellet and the surrounding is that the mass transfer
from the pellet equals to the mass transfer through the fluid film surrounding the
particle, that is:

= k m ( c | r = R - C b ) (10.4-8)
r=R

where k^ is the mass transfer coefficient, and Cb is the bulk concentration.
The initial condition is:

t = 0; C = Ci; C ^ C ^ f ^ ) (10.4-9)

in which we have assumed that the pellet is initially equilibrated with a surrounding
having a concentration of Q.

10.4.3 Linear Isotherm

To investigate the behaviour of the bimodal diffusion mechanism, we consider
the linear isotherm first. In this case the mass balance equations become linear and
hence they are amenable to linear analysis. With linear isotherm, the boundary
condition at the zeolite pore mouth (eq. 10.4-7) becomes:

*n=Rn ; C ^ = K C (10.4-10)
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The first work in the Western literature dealing with this bimodal diffusion
mechanism is that of Ruckenstein et al. (1971). The model was justified as a point
sink approximation of a more exact analysis (Neogi and Ruckenstein, 1980). Since
then a number of papers have appeared to investigate the various aspects of
adsorption using this model, for example in fixed bed chromatography (Haynes and
Sharma, 1973; Kawazoe and Takeuchi, 1974; Raghavan and Ruthven, 1985), in
fixed bed breakthrough curve (Rasmusen, 1982; Cen and Yang, 1986) in adsorbent
particle (Dubinin et al. 1975; Lee, 1978; Ugruzov and Zolotarev, 1982; Zolotarev et
al., 1982, 1984; Polte and Mersmann, 1986), and in nonisothermal adsorbent
particle (Sun and Meunier, 1987).

With the linear isotherm the intracrystalline diffusivity is constant

= D° , and the mass balance can be solved by the method of Laplace

transform or the method of generalised integral transform (Do, 1983). The solution
for the fractional uptake for spherical microparticle and spherical pellet is in the
form of a double series:

where the coefficient anm is given by

with ^n being the primary eigenvalue and rjnm being the secondary eigenvalue,
determined from:

5 n=njt ; T!nm 0 0 1 ^ - 1 = - i = - (10.4-1 lc)

that is for a given value of n, we have one value of the eigenvalue £ and for each
value of £ we have a spectrum of the eigenvalue TJ; hence a double index is
associated with the eigenvalue r\.

The parameter y in eq.( 10.4-lla) is the ratio of the two time scales, namely the
time scale for macropore diffusion to the time scale for micropore diffusion, defined
as

R2 [e + (l - e)Kj / (eDp J ^ Time scale of macropore diffusion

R2 / D° Time scale of micropore diffusion
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The half time can be calculated from eq.( 10.4-lla) by setting the fractional
uptake to one half. Unlike the parallel pore and surface diffusion model discussed
in Chapter 9 where the half time is proportional to the square of the particle radius,
the half time of the bimodal diffusion model is proportional to Ra, where a is equal
to 2 when macropore diffusion dominates the transport and a is equal to zero when
micropore diffusion controls the uptake. An approximate expression for the half
time for a bimodal diffusion model is given by Do (1990):

*05 = ' = 0.03055

0.9exp -0.2| l n ^

(10.4-12)

The solution given in eq. (10.4-1 la) reduces to simple solutions when either the
macropore or micropore diffusion is the controlling mechanism, that is when y is
less than unity, that is the time scale for the diffusion in the macropore is much
smaller than that in the micropore, we would then expect the micropore diffusion
would control the overall adsorption kinetics. In this case, we have the following
half time

'p l0.5 0.03055

or

R2[e

to.5 = 0.03055-f
D

(10.4-13a)

(10.4-13b)

We see that the half time involves only the microparticle characteristics, which is
what one would expect when micropore diffusion is the controlling mechanism.

On the other hand, when y is greater than unity (macropore diffusion control
regime), we obtain the following limit for the half time

^0.5 = R2[e
= 0.03055 (10.4-14)

It is clear that the half-time in this case involves only characteristics of the
macropore.

For a bimodal solid with pellet having a cylindrical shape and the microparticle
having a spherical shape, the solution was obtained by Smith (1984).
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/ 0.4.3.1 Temperature Dependence of the Parameter y

As we have mentioned above that the parameter which demarcates the
micropore diffusion and the macropore diffusion is the parameter y. Let us now
investigate its dependence on temperature to see how temperature would influence
the controlling mechanism. The temperature dependence of relevant parameters in
the parameter y is given below:

K = 'expu = Ko exp
RgT0

T

T

, exp - RgT
= D°o exp

RgT0

T

(10.4-15a)

(10.4-15b)

(10.4-15c)

where Dpo is the pore diffusivity at some reference temperature To, and a is between
0.5 to 1.75. It is equal to 0.5 when Knudsen diffusion controls the pore diffusion,
and it is about 1.75 when molecular diffusion mechanism controls the pore
diffusion. The parameter KQ is the Henry constant at To, and D°o is the corrected

diffusivity at To.
Substitute these equations into eq.( 10.4-1), we get:

E,,

Y =•

8 + (l-e)K00 exp
RgT

R2
M(8Dp0)(T/T0)a

(10.4-16)

The capacity in the pore space is usually much smaller than the capacity in the
adsorbed phase (that is 8 « (l-e)K ); thus the above equation is simplified to:

' Q - E ,

y = •

RgT

R^(eDp0)(T/T0)a
(10.4-17a)

or

Y =
R2(l-e)K0D°0

exp

(T/To)°
(10.4-17b)
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Since the heat of adsorption is usually larger than the activation energy of
intracrystalline diffusion, the parameter y decreases with an increase in temperature.
This means that the micropore diffusion is more important at higher temperatures
and the macropore diffusion is more significant at lower temperatures. This is only
true for linear isotherm. We will discuss this effect on nonlinear isotherm in the
next section. To illustrate the temperature effect on the parameter y for the linear
isotherm case, we take the following example:

Effect of temperature on the controlling mechanism

We take the following values typical for sorption of light hydrocarbons
into zeolite:

R

K
To

Dpoo

a

Q
Efl

= 0.02 cm
= 2x lO^cm
= 298K
= 1000 @ 298 K
= 0.02cm2/sec @ 298K and 1 atm
= 1 x 10"9cm2/sec@298K

= 1.5
= 40000 Joule/mole
= 20000 Joule/mole

Figure 10.4-3 shows the plot of y versus T and we see that the demarcation
temperature is about 300K. For temperature greater than 400K, micropore
diffusions controls the uptake; while for temperature less than 200K,
macropore diffusion controls. For temperatures between 200 and 400 K,
both diffusion mechanisms control the uptake.

100

0.01
200 250 300 350 400

Temperature (K)

Figure 10.4-3: Plot of y versus temperature
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10.4.3.2 Pressure Dependence of the Parameter y

The only parameter that could be affected by the total pressure is the pore
diffusivity Dp. If the macropore diffusion is controlled purely by the Knudsen
diffusion mechanism, the pore diffusivity is DK and hence it is independent of total
pressure, implying that the parameter y is independent of pressure. However, if the
macropore diffusion is governed by molecular-molecular collision, then the pore
diffusivity is inversely proportional to the total pressure, meaning that the parameter
y increases linearly with the total pressure. This means that the system is moving
toward macropore diffusion control as the total pressure increases.

10.4.4 Irreversible Isotherm

We have discussed the behaviour of the bimodal solid with a linear isotherm.
Now we discuss the other extreme of the isotherm, the irreversible isotherm. What
we would expect in this case is that the concentration in the macropore behaves like
a wave front, that is the adsorbed concentration in the region close to the pellet
exterior is very close to the maximum concentration, while the region near the core
is void of adsorbate in any form, either in free or adsorbed form. The position
demarcating these two regions is the adsorption (wave) front position. How this
wave front penetrates into the particle depends on the rate of macropore diffusion as
well as the rate of diffusion into the micropore.

What we will present below is the analysis of a zeolite pellet composed of small
spherical crystals. The mass balance for the description of concentration
distribution inside a zeolite crystal is:

^^u ~ 1 d

To render the equation amenable to analytical analysis, we have assumed constant
intra-crystalline diffusivity in the above equation.

The boundary condition of the above mass balance equation is:

Cus i f O O

o ifoo (104-19)

where C is the adsorbate concentration in the macropore. Eq. (10.4-19) is simply
the statement of the irreversible isotherm, that is if the gas phase concentration
outside the zeolite crystal is nonzero, the adsorbed concentration at the micropore
mouth is equal to the maximum concentration. On the other hand, it will be zero if
the gas phase concentration is zero.
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Next, we obtain the mass balance in the macropore, given below

+ ( 1 e ) e D

5t 3t p r s 9 r
(10.4-20a)

where 8 is the porosity of the macropore, s is the pellet shape factor and C^ is the

volumetric average concentration of the microparticle, defined as

Cn = \ Ul C dr (10.4-20b)
Rn o

The boundary condition of the macropore mass balance equation (10.4-20a) is:

r = R; - e D p ^ = k m ( c | R - C b ) (10.4-21)

Before proceeding with the solution procedure, we define the following
nondimensional variables and parameters:

Ti = -^-; z = - ^ - ; x= —^-; x = —^-; y = — (10.4-22a)

R 2 ( l - s ) (C u s /C b )D u k R
v ^/ h) " • Bi = ^ ^ (10.4-22b)

(6Dp)R^ eDp

and obtain the following nondimensional governing equations:

Equation Boundary conditions Eq. #
Micropore dx 1 d( 2 ^A fl if y > 0 (10.4-23)

" T " ~ ^ " ^ ~ z "̂ ~ z = l; x = <
ox z ^z V OT/ I o if y = 0

Macropore dx 1 d ( d\\ ^ ^Y D./ i ,\ (10.4-24a)
Y — = Ml - ^ r | = ' " ^ J = I3llylTi=i "" /

dx ns dr\ \ dr\J ™\r\=\

where
i

x
0

1

= 3jz2xdz (10.4-24b)

In obtaining eq. (10.4-24a) we have ignored the hold up of the adsorbate in the
macropore space compared to the hold up in the micropore. This is reasonable as
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the density of adsorbate in the micropore is usually about 100 to 1000 times higher
than that in the macropore.

Note the definition of the parameter y for this case of irreversible isotherm
given in eq. (10.4-22b) compared to that for the case of linear isotherm in eq. (10.4-
1).

R 2 ( l - s ) K D u

y = i
(eDp)R2

for linear isotherm

for irreversible isotherm

The Henry constant K in the linear isotherm case is replaced by the ratio C ŝ/Cb in
the irreversible isotherm case. The Henry constant is a constant and therefore the
parameter y in the linear isotherm case is independent of the bulk concentration
used. On the other hand, the parameter y for the irreversible isotherm case depends
on the bulk concentration in a way that an increase in the bulk concentration will
result in a decrease in the parameter y. This means that the system is moving toward
the micropore diffusion control when the bulk concentration increases. This can be
physically explained that as the bulk concentration increases, the mass transfer
through the macropore space is faster and this renders more uniformity in the
concentration distribution in the macropore; hence overall uptake is due to the other
resistance, namely the micropore diffusion resistance.

10.4.4.1 Temperature Dependence of y for the case of irreversible isotherm

The dependence of y on temperature in the case of irreversible isotherm is
opposite to what was observed for the case of linear isotherm. We have the
following temperature dependence of the parameter y:

y =

R2(eDp 0)(T/T0)a

R^(sDp 0)(T/T0)a

for linear isotherm

for irreversible isotherm
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In the case of irreversible isotherm, the higher is the temperature, the larger is
the value of y; while for the case of linear isotherm as discussed earlier, the higher is
the temperature the smaller is the value of y. Thus, macropore diffusion controls at
high temperature for irreversible isotherm, while the micropore diffusion will
control the uptake at high temperature in the case of linear isotherm.

Assuming the zeolite pellet is initially free of adsorbate, eqs. (10.4-23) and
(10.4-24) have been solved by Do (1989). The solutions are summarized below for
three sub-cases:

(a) Comparable macropore and micropore diffusion rates
(b) Micropore diffusion
(c) Macropore diffusion

10.4.4.2 Comparable Macropore and Micropore Diffusion Rates

For the case of comparable rates between macropore diffusion and micropore
diffusion (y = 0(1)), the solution for the fractional uptake is:

(1 + s) JV x dr]
X(T)

I

(l + s)jV|s xdri

forO<T<xr

for T > Tr

(10.4-25a)

(10.4-25b)

where X(x) is the nondimensional position of the adsorption front separating the two
regions: the saturated region close to the particle exterior surface and the core void
of any adsorbate. It is a function of time and is obtained from the following
equation:

x 2 - :
2(1 - s )

X2lnX

1-s.

1

(s + 1)

2 V4 2.

where <̂n are roots of the following transcendental equation

£cotan<; - 1 = 0

for s *

fors=l

(10.4-26)

(10.4-27)

The time T0 in eq. (10.4-25) is the time at which the adsorption front reaches the
center of the particle, that is X(x0) = 0. Setting X = 0 into eq. (10.4-26), we get the
following implicit equation for T0
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00-4-28)

The mean concentration in the micro-particle appearing in the integrand of eq.
(10.4-25) is given by:

X(TI,T) = 1 — F X " 6 * ? ! " ^ 2 ^ " 1 * ^ ) ] } (10.4-29)
71 n=l n

where i*(r\) is the time when the adsorption front reaches the position rj and is given
in eq. (10.4-26).

The half time for this case must be solved implicitly from eq. (10.4-25) after
setting F to 0.5.

10.4.4.3 Micropore Diffusion Control (y« 1)

When micropore diffusion controls the overall uptake, that is when

(b) the pellet size is small
(c) the temperature is low
(d) the bulk concentration is high

we expect that the macropore is filled very quickly with adsorbate and the overall
kinetics is dictated solely by the diffusion of adsorbate into the micropore. The
fractional uptake is then simply

F = l r ] T — e x p f - T i V t ) (10.4-30)

The half time for this micropore diffusion control is

x a 5 = 0.03055 (10.4-3 la)

that is

R2

tO 5= 0.03055—^ (10.4-3 lb)

Thus the time scale for the case of irreversible isotherm is the same as that for the
case of linear isotherm when micropore diffusion is the controlling mechanism and
the intracrystalline diffusivity is a constant.
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10.4.4.4 Macropore Diffusion Control (/» 1)

When
(a) the pellet size is large
(b) the temperature is high
(c) the bulk concentration is low

the parameter y will be greater than unity and hence the system kinetics is controlled
by macropore diffusion. The analysis of this macropore diffusion was described in
details in Section 9.2.2.2. The fractional uptake is given by

F = l -X s + 1 (10.4-32)

where X is the position of the adsorption front and is determined from the following
implicit equations:

eDpC0

R 2 (1- E )C,
-t = H(X) (10.4-33)

The functional form H depends on the shape of the zeolite pellet and it takes the
following form for three shapes of the pellet

H(X) =

fors = 0 (10.4-34a)

1 1
+ - ( l - X 2 ) + - X 2 l n X fors = l (10.4-34b)

2Bi A)K ' 2

( —
3 V Bi

fors = 2 (10.4-34c)

The half time for this macropore diffusion control is obtained by simply setting F =
0.5 in eq. (10.4-32) to obtain X05 and then substituting it into eq. (10.4-33), we get:

_ R 2 ( l - e ) C ^
to.5 - ^TT; X H0.5 (10.4-35a)

where

8 2
for s = 0

0.03836 + - B i fors =
4

(10.4-35b)

0.01835+ - B i
6

for s = 2
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We see that the half-time is proportional to the square of the pellet radius for
this case of macropore diffusion control while it is independent of the pellet radius
in the case of micropore diffusion control (eq. 10.4-31).

10.4.5 Nonlinear Isotherm and Nonisothermal Conditions

We have dealt with the analysis of a zeolite pellet for the case of linear isotherm
and the case of irreversible isotherm. These two isotherms represent the two
extremes of the nonlinearity of the adsorption isotherm. In this section we will deal
with the case of nonlinear isotherm and to make the formulation general we also add
to it the heat balance equation to study the coupled effect of the nonlinear isotherm
and the nonisothermality on the overall adsorption uptake in a zeolite pellet. Similar
to the Section 10.3, we shall assume that the thermal conductivity of the zeolite
pellet is high and the heat transfer resistance is due to that of the stagnant film
surrounding the pellet. This means that the temperature of the pellet is uniform, and
the model corresponding to this circumstance is called the lumped thermal model.

The mass balance equation in the microparticle is:

where the corrected diffusivity takes the Arrhenius form

(10.4-36b)

The boundary condition is that at the exterior surface of the microparticle the
adsorption equilibrium is established between the macropore concentration and the
adsorbed concentration at the micropore mouth, that is

) (10.4-37)

where f is the adsorption equilibrium functional form.
The mass balance equation in the macropore is simply

e 5C + (1 _ e ) dC^ = £ D ( T ) l A f r s 9C] (10.4-38a)
dt dt rs dv \ di)

where the temperature dependence of the pore diffusivity is
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(10.4-38b)

Here To is some reference temperature and Dpo is the pore diffusivity evaluated at

that temperature. The parameter a is equal to 0.5 when Knudsen controls the pore

diffusion and to 1.75 where molecular-molecular collision mechanism controls the

transport. The volumetric average concentration of the adsorbed species in eq.

(10.4-38a)is

1 CM drM (10.4-39)
0

The boundary condition of eq. (10.4-3 8a) is

r = R; - e D p ^ l = k m ( c | R - C b ) (10.4-40)

The heat balance equation on the whole pellet is:

h f ( T - T b ) (10.4-41)
i , ^ V / •*. r l I V D /

where (pCpy is the volumetric heat capacity of the zeolite pellet, Q is the heat of

adsorption, aH is the exterior surface area per unit volume of the pellet, hf is the heat
transfer coefficient, and Tb is the bulk temperature.

The initial condition of the problem is that the zeolite pellet is initially
equilibriated with a concentration of Q and a temperature T{, that is

x - Q- p_p.. p - r . -f/r. T.V T-T HO 4-42^

To solve the set of governing equations (10.4-36) to (10.4-42), we transform
them into a set of nondimensional governing equations. First we choose some
reference concentration Co and temperature To. The reference for the concentration
in the microparticle is

p _ f/p T \ /If) A AW

By defining the following nondimensional variables

C = — ; r|=— ; T = — L - ^ l M°J t (10.4-44a)

R, R eDp0C0
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T ~ T Q (io.4-44b)

LeBi= ,
(PCp)sDp0C0

(10.4-44g)

e C 0 + ( l - s ) C
. 6 =

b
, 0

the governing equations in nondimensional form are:

(io.4-44h)

Equation Boundary condition Eq. #
= 1 ! X = F(y,9)

fZ = Bi(y-yb)

(10.4-45a)

where

X(TI,T) = (10.4-46a)

_
x(x) = (s + l) Jr]s X(T|,T) drj

o

(10.4-46b)

Analysis of eqs. (10.4-45) is carried out with the collocation method. Readers
interested in this method should refer to Appendix 10.4 for further detail, and a
computer code of ADSORB IE is provided with this book for the simulation
purpose.
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/ 0.4.5.1 Numerical Example of Langmuir Isotherm

We shall study this non-isothermal case with Langmuir isotherm of the form

(10.4-47a)

where the adsorption affinity takes the following temperature dependent form:

b = b^ exp
RgT

= b0 exp
T
T

(10.4-47b)

where Q is the heat of adsorption, used in the heat balance equation (10.4-41), b^ is
the adsorption affinity at infinite temperature and b0 is that at the reference
temperature To.

With this form of adsorption isotherm, the thermodynamic correction factor can
now take the following explicit form:

H(x,9)= 1 -

- l

where the parameters X{ and Xh are defined as

=bC b

(10.4-48a)

(10.4-48b)

They are function of temperature due to the temperature dependence of the affinity
constant b.

The boundary condition (10.4-45b) takes the following explicit form for this
case of Langmuir isotherm:

"J!S

where

<K8) = exp

boCoy<t>(9)

+ boCoy<t>(9)

Q V e

b o coco
0C0

(10.4-49)

(10.4-50)

(10.4-51)
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The following parameters are used as the base case in the numerical simulation.

Pellet radius, R
Zeolite radius, R̂
Porosity, 8
Bulk concentration, Q,
Initial concentration, Q
Reference concentration, Co

Bulk temperature, Tb

Initial temperature, Tj
Reference temperature, To

Affinity at To, b0

Saturation capacity, C^
Pore diffusivity at To, Dp0

Intracrystalline diffusivity at To, D ^ o

Heat of adsorption, Q
Activation energy for intracrystalline diffusion,
Biot number for mass transfer, Bi
Volumetric heat capacity, <pCp>
Exponent a for pore diffusion
Heat transfer number, LeBi

= 0.1 cm
= 0.0001 cm
= 0.33
: 1 x 10"6mole/cc
= 0
= 1 x 10-6mole/cc
= 300K
= 300K
= 300 K
= 1 x 106cc/mole
= 5 x 103mole/cc
= 0.02 cm2/sec
= 1 x 10-10cm2/sec

= 30,000 Joule/mole
= 15,000 Joule/mole
: 00
: 1 Joule/cc/K

The effect of the heat transfer number, LeBi, is shown in Figure 10.4-4. The

fractional uptake exhibits a two stage uptake and the kink in the fractional uptake

occurs at the time at which the particle temperature is maximum.

500

Time (sec)

Figure 10.4-4a: Plot of the fractional uptake
versus time
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Figure 10.4-4b: Plot of the non-dimensional
temperature versus time
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The effect of crystal radius is shown in Figure 10.4-5 with the crystal radii
being 1, 5 and 20 micron. The values of the parameter y corresponding to these
radii are 25, 1.02 and 0.0635. These values indicate that macropore diffusion
control in zeolite pellet with crystal size of 1 micron, micropore diffusion control in
zeolite pellet with crystal size of 20 micron, and both diffusions control in zeolite
pellet with crystal size of 5 micron.

Mem)
0.000 "i
0.0005
0,002:

0 500 1000 1500 2000 2500

Time (sec)

Figure 10.4-5a: Plot of the fractional uptake versus time
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Figure 10.4-5b: Plot of the non-dimensional temperature versus time
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10.5 Multicomponent Adsorption in an Isothermal Crystal

In the last sections we have addressed single component system for zeolite
particle. Various aspects affecting the overall uptake have been dealt with such as

(a) isothermal and nonisothermal conditions
(b) micropore diffusion control, macropore diffusion control and a combination

of them.
(c) linear, nonlinear isotherm and irreversible isotherm.

In this section we will deal with the analysis of adsorption kinetics of a
multicomponent system. First we will deal with the case of a single zeolite crystal
to investigate the effect of the interaction of diffusion of all species inside a zeolite
crystal. This interaction of diffusion is characterized by a diffusivitv matrix, which
is in general a function of the concentrations of all species involved. This
concentration dependence will take a special functional form if we assume that the
driving force for the diffusion inside the zeolite crystal is the chemical potential
gradient and that the mobility coefficients of all species are constant. Only in the
limit of low concentration such that the partition between the fluid phase and the
adsorbed phase is linear, the diffusivity matrix will become a constant matrix.

Isothermal conditions will be dealt with in this section to study the diffusion
effect and will consider the nonisothermal conditions in the next section to
investigate the coupled effect of diffusion interaction among species and the heat
release.

10.5.1 Diffusion Flux Expression in a Crystal

There is sufficient evidence in the literature (Ruthven, 1984) to suggest that the
proper driving force for diffusion inside a zeolite crystal is the chemical potential
gradient. Thus, the flux of a component i is given by the chemical potential gradient
of that species, that is:

J^-L^-^- (10.5-1)

where L is the mobility coefficient which is temperature dependent, C^ is the
concentration of the species i in the crystal and is defined as moles per unit volume
of the crystal, and Uj is the chemical potential. Since the intracrystalline diffusion is
activated, the mobility constant has the Arrhenius temperature dependent form.

Let us assume that there exists a hypothetical gas phase such that this gas phase
is in equilibrium with the adsorbed phase within the crystal, that is the adsorbed
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phase chemical potential is the same as the chemical potential of that hypothetical
gas phase. We have:

m = ^G,i = ^ + RgTlnpj (10.5-2)

where pj is the hypothetical partial pressure of the species i.
We know that for a given set of partial pressures (g ={pu p2, ..., pn}) where "n"

is the number of component in the mixture, there will be a set of adsorbed
concentrations which is equilibrium with the gas phase (Chapter 5), that is:

CMii=fi(p) (10.5-3a)

for i = 1, 2, 3,..., n, or written in a more compact vector form, we have:

(10.5-3b)

Inversely, for a given set of the adsorbed phase concentrations (C^ = {CMb C^2,
...., C^n}), there will also exist a set of partial pressures such that the two phases are
in equilibrium with each other, that is:

(10.5-4a)

for i = 1, 2, 3, ..., n, or in a compact vector form, it is

(10.5-4b)

Substituting eq. (10.5-2) into eq.( 10.5-1), we get the following expression for
the flux of the species "i" written in terms of the gradient of the hypothetical
pressure p^

^ ^ (10.5-5)

Written in terms of this hypothetical pressure, eq. (10.5-5) does not have direct
application as we do not know the hypothetical pressure directly but rather we have
to solve for them from eq. (10.5-4). It is desirable, however, that we express the
flux equation in terms of the adsorbed concentration as this is known from the
solution of mass balance equations in a crystal. Now that the partial pressure p{ is a
function of the adsorbed concentrations of all species (eq. 10.5-4), we apply the
chain rule of differentiation to get:
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= _ ^ c ^ _ = 1 A dpi (10.5-6)

where

dz Pi dz Pi ~ SC^j dz

is simply the slope of the equilibrium isotherm of the species j

with respect to the partial pressure of the species i.
Substituting eq.( 10.5-6) into the flux equation (10.5-5), we get:

(10.5-7a)

for i = 1, 2, 3, ..., n, where D^ j is the corrected diffusivity of the component i,

defined as:

(10.5-7b)

Thus, if we define the following vectors and the diffusivity matrix

J.. =
h,2

c =

where

H i j

then eq.( 10.5-7) can be put in a simple vector-matrix format as follows:

dC,

(10.5-8b)

(10.5-9)

The diffusivity matrix is a function of the concentrations of all species. Eq. (10.5-9)
is the constitutive flux equation. The explicit functional form of the diffusivity
matrix in terms of concentration depends on the choice of the adsorption isotherm.
What we shall do in the next section is to show this form for the case of the
extended Langmuir isotherm.

10.5. J.I Extended Langmuir Isotherm

To see the explicit form of the diffusion matrix in terms of concentration, we
take an example of the extended Langmuir equation:
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C = C
^ J i , ! fiS,l

(10.5-10)

Eq.(10.5-10) relates the concentration of the adsorbed species "i" in terms of the set
of partial pressure (]3 ={p,, p2, ..., pn})- Inversely, for a given set of the
concentrations of the adsorbed species (C^ = {C^, C 2̂, ...., C^n}), the partial
pressure of the species "i" can be written in terms of this set as:

n,i / Cns,i)
(10.5-11)

C

Knowing this relationship between the partial pressure p; and the set of adsorbed
concentrations, we can evaluate the elements of the diffusivity matrix (eq. 10.5-8)
and the final result is the following equation:

D =

D

'-S?=

1 +

k=l

C • IC •

for i ^ j

k=l ^\i

(10.5-12)

for i = j

We now illustrate below an example about the relative magnitude between the
elements of the above diffusion matrix.

Example 10.5-1: Diffusivity matrix for a binary system following extended

Langmuir equation

Let us consider a binary system (n = 2) and equal saturation capacities
of the two diffusing species (that is C^s, = C^s2), the binary diffusivity
matrix of eq.(10.5-12) will become:



660 Kinetics

D =

D

D
( C M/C^)

D

D

(10.5-13)

Let the species 1 be the stronger adsorbing species, which has the property
that it has higher capacity but possesses lower mobility. Let us use the
following values to demonstrate the magnitude of the diffusivity matrix

H,2 C
= 10, - ^ 1 = 0.5,

Substitute these values into eq. (10.5-13), we get the following diffusivity
matrix:

3 2

L0 20

compared to the diffusivity matrix at zero loading of

"1 0"
lim D = D"

0 10

We see that at finite loadings, the interaction between the diffusing species
can have a substantial influence on the diffusion rate. We will see later that
it is this interaction that causes some interesting behaviour in the adsorption
kinetics, such as the overshoot behaviour when two species are
simultaneously adsorbing into a zeolite crystal.

We have obtained the necessary flux equation in the crystal, and now turn to
deriving the mass balance equation.
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10.5.2 The Mass Balance Equation in a Zeolite Crystal

The mass balance equation for the species "i" inside the crystal is:

^ T L = - T ^ z$ I X u f e J ^ J 1 (10.5-14)
at z Oz . j x ' oz

for i = 1, 2, ..., n. We have assumed the one dimensional diffusion inside the crystal.
Here s is the shape factor with s = 0, 1, 2 for slab, cylinder and sphere, respectively.
Zeolites such as mordenite, ZSM-5 and silicalite have slab-like geometry with
respect to the diffusion direction, thus s = 0 is applicable in those cases, while
zeolites X, Y and A will have diffusion geometry similar to sphere, and hence s = 2
is applicable.

The boundary conditions for the mass balance equation (10.5-14) are:

z = 0; — ^ = 0 (10.5-15a)
dz

z = L; C u , =C u b := f i fp u ) T b ) (10.5-15b)

where fj is the multicomponent isotherm of the species i, £b is the partial pressure
vector of n components in the gas surrounding the crystal, L is the characteristic
length of the zeolite, and Tb is the bulk temperature.

The initial condition of this problem is:

t = 0; C M = 0 ^ = ^ ( 2 . , T . ) (10.5-16)

for i = 1, 2, 3, ..., n, where the initial pressures and temperature can be different
from the bulk pressures and temperature.

Eqs.(10.5-14) to (10.5-16) completely define the behaviour inside a crystal once
the temperature and the partial pressures in the gas phase are given. This set of
equations is nonlinear (due to the diffusivity matrix) and therefore the only tool to
solve it is the numerical method. Here we use the method of orthogonal collocation,
and to do so the spatial domain needs to be normalised because the orthogonal
collocation method is developed for a normalised domain (0, 1). We will present in
the next section the non-dimensionalisation process and the dimensionless
equations.
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/ 0.5.2.1 Non-dimensionalization

The choice of the characteristic length is L, and the choice of the characteristic
time is defined as the ratio of the square of a characteristic length to a characteristic
diffusivity D^T. This characteristic diffusivity could be chosen as the sum of all
corrected diffusivities.

(10.5-17)

Thus, by defining the following nondimensional variables and parameters

TI = T-; (10.5-18)
^ l 0 ^ \iY ^ ^ H , J

we obtain the following non-dimensional equation and boundary conditions:

Equation

s c M 5; a
dx r|s dr\ j=l ^

(10.5-19)

Boundary conditions

A ^C^,i A (10.5-20)
ri - 0; 0

an

and the initial condition:

T = 0; (10.5-21)

A species undergoing adsorption or desorption depends on the adsorbed amount
at time 0 and that at time infinity. This means that

1. If C^ j < C b̂ i5 then the species i is undergoing a net adsorption
2. If C^j > C^bi, then the species i is undergoing a net desorption

The above equation can be cast into a more elegant form of vector and matrix
format, as shown below:

Equation Boundary
conditions

Initial condition Eq.#

(105"22)

-n = i; c^ = c
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where

/ \ ( / \
(10.5-23)

Solving this set of equations will give the concentration C^ as a function of time
as well as distance inside the zeolite crystal. The quantity of interest is the fractional
uptake, which is defined as the amount uptaken by the zeolite crystal from time t = 0
up to time t divided by the maximum amount taken by the crystal, that is:

for i = 1, 2, 3,..., n, where < > is the volumetric average concentration, defined as:

sC(i(Ti,T)dT, (10.5-25)

The set of equations (10.5-22) is quite readily handled by the numerical method
of orthogonal collocation. Basically, the coupled partial differential equations (eq.
10.5-22) are discretized in the sense that the spatial domain r\ is discretized into N
collocation points, and the governing equation is valid at these points. In this way,
the coupled partial differential equations will become coupled ordinary differential
equations in terms of concentrations at those points. These resulting coupled ODEs
are function of time and are solved by any standard ODE solver. Details of the
orthogonal collocation analysis are given in Appendix 10.5, and a computer code
ADSORB3A is provided with this book for the readers to learn interactively and
explore the simulation of this model.

7 0.5.2.2 Extended Langmuir Isotherm

The computation of the non-dimensional governing equations is carried out
after we specify the functional form for the multicomponent isotherm. We shall do
it here with the extended Langmuir isotherm (eq. 10.5-10).

For the case where the extended Langmuir isotherm can describe the
multicomponent equilibria, the non-dimensional diffusivity matrix is given by:



664 Kinetics

' p i s ' p i s

<WC
piS

1-
"p is

1+

<wc
pis

CM,1 C ^

' p i s ' p i s

' p i s

' p i s

(10.5-26)

Example 10•5^2: Two component diffusion in a zeolite

To study the multicomponent effect in mass transfer, we take the
following base case of two components.

Micro-particle geometry, s
Micro-particle radius, L
Corrected diffusivity, D

Initial pressure, r̂
Bulk pressure, &
Adsorption affinity, b
Saturation capacity, C^

= 1 micron = 0.0001 cm
= [1 x 10"9 1 x 1010]cm2/sec

= [0 0] kPa
= [10 10]kPa
= [0.1 0.3] kPa1

= [5x IP'3 5x lQ-3lmole/cc

With the choice of the bulk pressure and the adsorption affinity, the
system is called a high-affinity system because bp » 1. The simulation is
carried out using the code ADSORB3A. Figure 10.5-1 shows the fractional
uptake of the two components. We note the overshoot of the component 1
because the component 1 is a weakly adsorbing species and has a higher
mobility. Its occupation of adsorption space is displaced by the slowly
moving component 2, resulting in the overshoot in the fractional uptake.

By using the affinity of [0.01 0.03] instead of [0.1 0.3] kPa1, we have
a low affinity system and Figure 10.5-1 also shows the fractional uptake of
this low affinity system. The overshoot phenomenon is again observed but
the degree of overshoot is not as significant as that in the high affinity
system.
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5 10 15 20 25

Time (sec)

Figure 10.5-1: Plots of the fractional uptake versus time

To study the effect of the particle size, we compare the base case with

a case of L = 2 micron. The results are shown in Figure 10.5-2 where we

see that the larger crystal size system has a slower time scale of adsorption

but the two cases have the same degree of overshoot.

F 1.0

0 20 40 60 80 100

Figure 10.5-2: Effect of size on the fractional uptake versus time
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Example 10<5-3: Three component diffusion in a zeolite

We finally illustrate the behaviour of a ternary system. The parameters
used in the simulation are:

Micro-particle geometry, s

Micro-particle radius, L

Corrected diffusivity, D

Initial pressure, &
Bulk pressure, &
Adsorption affinity, b
Saturation capacity, Ctls

r\

•• 1 micron = 0.0001 cm

• [ 1 x 10'9 5 x 101 0 1 x 1010] cnvVsec

[0 0 0] kPa

[10 10 10]kPa

[0.1 0.2 0.3] kPa1

\5x 10"3 5 x lO3 5 x 10-3]mole/cc

Figure 10.5-3 shows the fractional uptake of the three components. The
overshoot is observed for the two weaker-adsorbing species with the
weakest species showing the highest degree of overshoot and the overshoot
occurs earliest.

0 2 4 6 8 10 12 14

Figure 10.5-3: Plots of the fractional uptake versus time
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10.6 Multicomponent adsorption in a crystal: Nonisothermal

In the last section, we dealt with the case of isothermal diffusion in a zeolite
crystal. Isothermality in a zeolite crystal is usually almost assured because of the
small size of the crystal (that is large surface area for heat transfer per unit volume
of crystal). This isothermal condition holds as long as the crystals are separated
from each other, that is there is no agglomoration of zeolite crystals. If zeolite
crystals are bound in an agglomerate, the heat released by the adsorption process or
taken up by the desorption process will be accumulated by the interior of the zeolite
agglomorate. This agglomerate is normally of a size such that the heat transfer from
the interior to the bulk is limited by the film surrounding the agglomerate due to the
low ratio of the surface area for heat transfer to the agglomerate volume. This case
is usually occurred in practice, and therefore to correctly describe the mass transfer
kinetics, one must allow for the contribution of the heat transfer as it will affect
significantly the way how the mass transfer would occur. The extent of this heat
transfer contribution will depend on

1. The stirring of the surrounding environment
2. The size of the zeolite agglomerate
3. The heat of adsorption
4. The rate of diffusion into the zeolite interior which is affected by the

diffusivity and the size of the crystal

10.6.1 Flux Expression in a Crystal

In this section we will derive the general expression for the constitutive flux
equation written in terms of not just the concentration gradients of all species but
also on the temperature gradient in the zeolite crystal. We again assume that the
driving force for diffusion is the chemical potential gradient (Ruthven, 1984). Thus,
the flux of a component i is given by the chemical potential gradient of that species,
that is:

11,1 1 LU ~> y * v r . v *y

OZ

Like the last sections, let us assume that there exists a hypothetical gas phase such
that this gas phase is in equilibrium with the adsorbed phase at the point z, that is the
adsorbed phase chemical potential is the same as the chemical potential in the gas
phase. We have:

lfi = u ° + R Tlnpi (10.6-2)
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where pj is the hypothetical partial pressure of the species i, and T is the temperature
at the point z.

For a given set of partial pressures (j) ^{p!, p2, ..., pn}) and temperature, there
will be a set of adsorbed concentration which is equilibrium with the gas phase, that
is written in a compact vector form as:

C^=f(p,T) (10.6-3)

Inversely, for a given set of the adsorbed phase concentration (C^ = {C^,, C^2,
...., C^n}), there will also exist a set of partial pressure such that the two phases are
in equilibrium with each other, that is:

) (10.6-4)

Substituting eq. (10.6-2) into eq.( 10.6-1), we get the following expression for
the flux of the species "i" written in terms of the gradient of the hypothetical
pressure pf:

^ (10.6-5)

It is desirable, however, that we express the flux equation in terms of the adsorbed
concentration and temperature as p{ in the above equation is only the partial pressure
of the hypothetical gas phase. Noting that the partial pressure pf is a function of the
adsorbed concentration of all species as well as temperature, we apply the chain rule
of differentiation:

+ 3i-] dO.6-6)
^ d )

4£ +
9 2 Pi Sz Pi [ft ^ n J dz ^ dz)

Substituting eq.( 10.6-6) into eq.( 10.6-5), we get the following constitutive flux
equation:

°J = -D°
ainPi dC^ ainPi 8T

* dc dz ^ ST dz
(10.6-7)

"•' 5T dz

for i = 1, 2, 3,.. . , n, where the corrected diffusivity is:

^ = LfRgT (10.6-8a)

of which its temperature dependence takes the usual Arrhenius form:
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R gT0 T
(10.6-8b)

where D°oj is the corrected diffusivity of the component i at some reference

temperature To.
Thus, if we define the following vectors and the diffusivity matrix

in = ' M (10.6-9)

(10.6-10a)

then eq.( 10.6-7) can be put in a simple vector-matrix format:

D
=M dz

(10.6-10b)

(10.6-11)

The diffusivity matrix (eq. 10.6-10a) is a function of the adsorbed concentration as
well as temperature, and the above constitutive flux is written in terms of
concentration gradients as well as temperature gradient.

iO>6~l:| Temperature dependence form for the extended
Langmuir isotherm

For the multicomponent system satisfying the extended Langmuir
isotherm (eq. 10.5-10), the affinity b, has the following temperature
dependent form

RgT = Vi exP - RgT0

(10.6-12)
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where b^ ; is the affinity of the species i at infinite temperature, boi is that at
some reference temperature To, and Q{ is the heat of adsorption of species i.

The diffusivity matrix D is given as in eq. (10.5-12), and the vector

coefficient of the temperature gradient is

(10.6-13)

10.6.2 The Coupled Mass and Heat Balance Equations

We have obtained the necessary flux equation in the crystal, and now turn to
deriving the mass balance equation.

Since the zeolite crystal is now nomsothermal, we must set up the mass balance
as well as heat balance equations. First, the mass balance equation for the species

(10.6-14a)

for i = 1, 2, ..., n, where n is the number of component. Usually the temperature
gradient within the zeolite crystal can be neglected because the thermal conductivity
of the crystal is larger than that of the gas surrounding the crystal. In such cases all
the heat transfer resistances are located in the thin film surrounding the agglomerate,
and the mass balance equation is simply:

inside the

a Cn, i

at

crystal is:

1 dL
zs dzj

n

Vij(<^,T)
dz 1 az

9C,, ac,,
dz

(10.6-14b)

where D is the diffusivity matrix evaluated at the instant condition of the crystal,

that is the adsorbed concentration C ̂  and the temperature T.

The boundary conditions for the mass balance equation (10.6-14) are:

acI(

dz
^- = 0 (10.6-15a)

= L; (10.6-15b)
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where f{ is the multicomponent isotherm of the species i, r^ is the partial pressure
vector of the surrounding, and L is the radius of the zeolite crystal (or half length if
the crystal is a slab). The surface condition (eq. 10.6-15b) is no longer a constant as
is the case for the isothermal situation dealt with in Section 10.5 because in this case
the temperature varies with respect to time during the course of adsorption or
desorption.

The initial condition of this problem is:

t = 0; C^j = C ^ = ^ . , 1 ^ ) (10.6-16)

for i= 1, 2, 3, ..., n.
The heat balance equation is obtained by carrying out the energy balance

around the zeolite agglomerate, and we obtain the following equation:

a H h f ( T - T b ) (10.6-17)
i=l

where Q{ is the molar heat of adsorption of the species "i" (Joule/moles adsorbed), hf

is the heat transfer coefficient of a film surrounding the agglomerate, aH is the heat
transfer area per unit volume of the agglomerate, <pCp> is the mean heat capacity
per unit volume of the zeolite agglomorate and is defined as follows:

(PCp) = s ( p C p ) G + ( l - e ) ( p C p ) s (10.6-18)

with 8 being the porosity of the agglomerate.
The initial condition of the heat balance is:

t=0; T = T; (10.6-19)

Eqs.(10.6-14) to (10.6-19) completely define the behaviour inside a
nonisothermal zeolite agglomerate where the mass transfer is controlled by the
diffusion into the crystal while the heat transfer is controlled by the film surrounding
the agglomerate (Figure 10.6-1).

This set of equations is nonlinear and therefore must be solved numerically.
We will present in the next section the nondimensionalization and the dimensionless
equations.
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Zeolite agglomerate

Temperature profile across
the agglomerate

Zeolite crystal

Concentration profile
across a crystal

Figure 10.6-1: Temperature and concentration profiles

10.6.2.1 Nondimensionalization

The choice of the characteristic length is L, and the choice of the characteristic
time is defined as the ratio of the square of the characteristic length to the
characteristic diffusivity defined as follows:

t n = •
D,

(10.6-20)

The characteristic diffusivity is the sum of all diffusivities at zero loading evaluated
at the reference temperature To. Thus, by defining the following nondimensional
variables and parameters

(10.6-2 la)

(10.6-21b)

(10.6-2 Id)

5 0 > i = "
D(!

cPi(0) = e x p ^ , ( — J j ; y ^ = ^

6K =
Tu-T n

, 9 i = -
T T
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LeBi = a " h f L ; V>{ = o ; v ^ ^ , c o i = fs(p , To) (10.6-21f)
pCpD^T (pCp)T0 ' "°

we obtain the following non-dimensional equations:

— — = 0>1 ' j r i ^ H ^ C ^ j G ) — ^ - > (10.6-22a)

and

~ " ) - 9 b ) (10.6-22b)
t r C M 0 ; i dx

subject to the following boundary conditions:

T] = 0; — ^ - = 0 (10.6-23a)

71 = 1; ^ = ^ ( ^ , 9 ) (10.6-23b)

and the initial condition
T = 0; C ^ = C , i > i ; e = Q{ (10.6-24)

The boundary condition at the particle exterior surface (eq. 10.6-23b) is not constant
because of the variation of the temperature with respect to time.

The above equation can be cast into a more elegant form of vector and matrix
format, as shown below:

-"=r = ~W i « e)-=f- (10.6-25a)

dfl dfc )
_ = p-._LJLL_L e B i(e-eb) (10.6-25b)
dx - dx

TI = 0; - ^ ^ = 0 (10.6-25c)

(10.6-25d)

(10.6-25C)
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where • is the vector dot operation and

P'=j-!-i— (10.6-26)

and

X = {Soi <Pi(G) Hy (C^,6) (10.6-27)

Solving this set of equations (eqs. 10.6-25) will give the concentration C^ as a
function of time as well as distance inside the zeolite crystal, and temperature as a
function of time. The mean adsorbed concentration is then calculated from

C^(TI,T) drj (10.6-28)

and the fractional uptake of each component is calculated from:

F i =
 c . c * ' 1 (10.6-29)

where
C^j = $ ( £ . , Gj) (10.6-30a)

CMb,i=fi(Ph, 6b) (10.6-30b)

The set of equations (10.6-25) is quite readily handled by numerical method of
orthogonal collocation. Basically, the coupled partial differential equations (eq.
10.6-25a) are discretized in the sense that the spatial domain is discretized into N
collocation points, and the governing equation is valid at these points. In this way,
the coupled partial differential equations will become coupled ordinary differential
equations in terms of time, and together with the equation for temperature, they can
be readily solved by any standard ODE solver. Details of the orthogonal collocation
analysis are given in Appendix 10.6.

Example 10,6-2 Extended Langmuir isotherm

We consider the case where the extended Langmuir isotherm describes
the multicomponent equilibria:

(10.6-3 la)

with the adsorption affinity taking the form:
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>i = boo,i e x P h ^ = b o , i e x P
R g l RgT0 V T

(10.6-31b)

where b0>i is the affinity of the component i evaluated at some reference
temperature To.

The function Hjj(C^,0) takes the form:

v - n ' c

1-

n C*
V ^ f̂ ,k

k=l ^^is,k

k=l fis,k

The boundary condition becomes

n = 1- C - C

where
k=l

RgT0

for i ^ j

fori = j

(10.6-32)

(10.6-33)

(10.6-34a)

(10.6-34b)

10.7 Multicomponent Adsorption in a Zeolite Pellet. Nonisothermal

Before we close this chapter out, we would like to present a model of
multicomponent adsorption in a zeolite pellet under nonisothermal conditions.
Adsorption equilibrium is taken to be non-linear. The pellet is composed of many
zeolite crystals, and there are a number of processes occuring when this pellet is
exposed to an environment containing nc adsorbates. These processes are:

1. Diffusion in the macropore space (inter-crystalline space)
2. Diffusion in micropores (intra-crystalline space)
3. Adsorption at the pore mouth of the micropore
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The macropore diffusion of nc adsorbates is described by the Maxwell-Stefan
equation as learnt in Chapter 8 (Section 8.8). The micropore diffusion in crystal is
activated and is described by eq. (10.6-11), and the adsorption process at the
micropore mouth is assumed to be very fast compared to diffusion so that local
equilibrium is established at the mouth. Adsorption and desorption of adsorbates
are associated with heat release which in turn causes a rise or drop in temperature of
the pellet. We shall assume that the thermal conductivity of the pellet is large such
that the pellet temperature is uniform and all the heat transfer resistance is located at
the thin film surrounding the pellet. How large the pellet temperature will change
during the course of adsorption depends on the interplay between the rate of
adsorption, the heat of adsorption and the rate of heat dissipation to the surrounding.
But the rate of adsorption at any given time depends on the temperature. Thus the
mass and heat balances are coupled and therefore their balance equations must be
solved simultaneously for the proper description of concentration and temperature
evolution.

The mass balance equation in the pellet is:

(10.7-1)

where

(10.7-2)

Here jim is the mixture viscosity and is calculated from eq. (8.8-2). The variable

C ) is the crystal volumetric average concentration of the adsorbed species

The mass balance in the crystal is:

dC,, 1 ?) f . dC,
(10.7-3)

where D is given in eq. (10.6-10a).

Assuming the lumped thermal model, the heat balance equation is:
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(10.7-5)
— at

where <pCp >is the pellet volumetric heat capacity, aH is the heat transfer area per
unit volume, hf is the heat transfer coefficient, Q is the heat of adsorption and

(\C^ ) \ is the pellet volumetric average concentration of the adsorbed species

The pertinent boundary conditions are:

dCu
r = 0; ^ = ^ = 0 (10.7-7a)

dr
r = R ^ ; C^=f (p , T) (Adsorption isotherm) (10.7-7b)

dp
z = 0; - ^ = 0 (10.7-8a)

dz

z = R; p = pb (10.7-8b)

The initial condition can take the form, in which we assume that the pellet is initially
equilibrated with a set of partial pressure p and a temperature of T{:

T = Ti (10.7-9)

The set of equations (10-7-1) to (10-7-9) can be effectively solved by a
combination of the orthogonal collocation method and the Runge-Kutta method.
The procedure of which has been described in Appendices 8.9, 9.6 and 9.7.

10.8 Conclusion

This chapter describes adsorption models for bidispersed solids. These models
reflect a special structure of the particle, which is basically composed of many
smaller grains or crystals. Diffusion through the inter-grain and intra-grain is the
key in the models developed in this chapter. In the next chapter we will address
general models to deal with heterogeneous solids where the heterogeneity is
desribed by the distribution of interaction energy.





11
Analysis of Adsorption Kinetics in a

Heterogeneous Particle

11.1 Introduction

The last two chapters have addressed the adsorption kinetics in homogeneous
particle as well as zeolitic (bimodal diffusion) particle. The diffusion process is
described by a Fickian type equation or a Maxwell-Stefan type equation. Analysis
presented in those chapters have good utility in helping us to understand adsorption
kinetics. To better understand the kinetics of a practical solid, we need to address
the role of surface heterogeneity in mass transfer. The effect of heterogeneity in
equilibria has been discussed in Chapter 6, and in this chapter we will briefly discuss
its role in the mass transfer. More details can be found in a review by Do (1997).
This is started with a development of constitutive flux equation in the presence of
the distribution of energy of interaction, and then we apply it firstly to single
component systems and next to multicomponent systems.

11.2 Heterogeneous Diffusion & Sorption Models:

Practical adsorbents are inherently heterogeneous, and therefore to properly
account for kinetics in such adsorbents, we need to develop a mathematical model to
allow for the energetic heterogeneity. First we will address single component
systems to uncover the various features of the heterogeneous model.

11.2A Adsorption Isotherm

To deal with the heterogeneity, we assume that the surface has a patchwise
topography, that is sites of the same energy of interaction with the adsorbate are
grouped together in the same patch. The local isotherm on each patch is assumed to
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be described by the Langmuir equation. The use of such equation is valid due to the
assumption of the same energy in the patch. Let the energy of interaction be E, the
Langmuir equation is written as:

C ( E ) = C b ( E ) C ( H 2 1 )

where C ŝ is the maximum adsorbed concentration, C is the fluid phase
concentration and b(E) is the affinity between the sorbent and the adsorbate, which
is given by:

b(E) = booeE/RgT (11.2-2)

Other forms of the local isotherm can be used to allow for the adsorbate-adsorbate
interaction, such as the Fowler-Guggenheim equation:

MV ^ l + b[E;9(E)]C

where

b[E;0(E)] = booexp

with 0 being the local fractional loading of the patch having the interaction of
energy of E, w is the pairwise interaction energy and z is the number of neighboring
sites.

11.2.2 Constitutive Flux Equation:

To derive the constitutive flux equation for the heterogeneous adsorbed phase,
we proceed as follows. For any given point within the particle (point A in Figure
11.2-1), the chemical potential of the adsorbed phase is denoted as uA, which is
assumed to be in equilibrium with a hypothetical gas phase having a concentration
of CA. All the patches of the adsorbed phase at that point will have the same
chemical potential. At another point B, which is at a distance Ar from the point A,
the chemical potential is uB. The gas phase concentration which would have the
same chemical potential of the adsorbed phase at point B is CB. Due to a difference
in the chemical potential between the two points, the diffusion within the adsorbed
phase is possible for example adsorbed molecules in patch E, of point A will diffuse
to all the patches in point B, shown as arrows in Figure 11.2-1 .
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Chemical potential jaA

°oG

Chemical potential |nB

0
0 Gas phase

Adsorbed phase

Point A Point B

Figure 11.2-1: Schematic diagram of surface diffusion

Let the chemical potential of the point A is greater than that of the point B. The
mass transfer from point A to point B along the adsorbed phase contributed by the
patch having an interaction energy of E is driven by the difference in the chemical
potentials:

Ar

where L(E) is the mobility constant associated with that patch. Taking the distance
between the two points as small as possible, we obtain the following flux equation
in differential form:

Assuming a local equilibrium between the fluid and adsorbed phases, the
chemical potential of the adsorbed phase is equal to that of the fluid phase:
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g (11.2-5)

where C* is the gas phase concentration which is in equilibrium with the adsorbed
phase concentration C^(E). If Langmuir equation is used to describe this
equilibrium relationship, this gas phase concentration is given by:

C,(E)
C = = =- (11.2-6)

b ( E ) [ C C ( E ) ]
The above equation simply states the adsorbed concentration C^(E) of any patch
having an energy interaction of E is related to the gas phase concentration in a
special way such that the ratio of two terms, which both are function of interaction
energy E, is independent of the interaction energy.

Substitution of eqs.( 11.2-5) and (11.2-6) for the chemical potential into
eq.(11.2-4b) yields the following flux equation for the adsorbed phase written in
terms of its concentration

JB(E) = -D°(E) ^ ^ ^ (11.2-7)
»K »K ^ C ^ - C ^ E ) dr

where D° (E) is the corrected diffusivity (diffusivity at zero loading conditions) of

the patch of energy E and is given by

D°(E) = R gTxL(E) (11.2-8)

Since the surface diffusion is activated, this corrected diffusivity has the following
Arrhenius form:

(11.2-9)

where D ^ is the diffusion coefficient at infinite temperature and zero loading

condition. The coefficient "a" in the above equation means that the activation
energy for adsorbed phase diffusion is "a" times the energy of interaction between
the adsorbate and the adsorbent. In general, such a coefficient "a" is a function of E,
but without a fundamental proof of such dependence, we shall take that as a
constant. Literature on surface diffusion has shown that that constant a is between
0.33 to 1.
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Knowing the flux equation contributed by the patch of energy E, the overall
flux of the adsorbed phase is simply the total contribution of all patches, that is it is
the integral of the local flux (eq. 11.2-7) over the complete range of the energy
distribution

D°(E)
CU S-CU(E) dr

F(E)dE (11.2-10)

We will now address the formulation of a kinetic model for a heterogeneous
particle with single component systems first to illustrate the concept of energy
distribution, and then logically extend the mathematical formulation to
multicomponent systems.

11.3 Formulation of the Model for Single Component Systems

The assumptions of the model for the description of kinetics in a heterogeneous
adsorbent are:

• The system is isothermal
• The pore diffusivity and mass transfer coefficient are constant
• The surface diffusivity at zero loading and infinite temperature is constant

Let C^(E) is the adsorbed concentration in the adsorbed phase of the patch having an
adsorption energy E. The energy distribution F(E) is defined such that F(E) dE is
the fraction of site having energies between E and E+dE. The accumulation of the
adsorbed concentration at the position r within the particle is given by:

d_
at

|CM(E)F(E)dE (11.3-1)

The flux of the adsorbed species contributed by all patches at the position r is:

D°(E) aCu(E)

i 2 (
0

J[l-C,(E)/C,s]

With the above accumulation of the adsorbed species and the surface flux, the mass
balance equation can be written as:
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ac
(11.3-3)

where 8 is the porosity of the macropore, Dp is the pore diffusivity based on the
empty cross sectional area, and s is the shape factor of the particle. The terms in the
RHS of eq. (11.3-3) are the flux terms contributed by the free and adsorbed
molecules. For highly immobile adsorbed species, the pore volume diffusion
dominates. For most adsorption systems involving activated carbons these two
terms can be comparable in magnitude because the pore diffusivity is about 100 to
1000 times larger than the surface diffusivity while the concentration of the
adsorbed species is about 100 or 1000 times larger than that of the gas phase
concentration.

The mass balance equation involves the gas phase and adsorbed phase
concentrations. We assume equilibrium is established between the gas and surface
phases; hence at any point within the particle, the adsorbed concentration at the
patch of sites having an adsorption energy E is related to the gas phase
concentration, C, according to eq.( 11.2-6), or written in terms of the fractional
loading:

If the patches of sites having discrete adsorption energies of E,, E2, and so on, the
adsorbed concentrations of those sites are related to each other according to:

C ( r t ) - e ( M ; E ^ = 6 < r ' t ; E ' > - . . . ( 1 1 3 -5 )
tyEj^l-GfotjE,)] b(E 2 ) [ l -0(r , t ;E 2 ) ]

which means that for a given gas phase concentration the sites having higher
adsorption energy (that is higher affinity b) will have higher occupancy (higher
fractional loading) than those sites having lower adsorption energy.

Before adsorption is proceeded the particle is equilibrated with a stream of
adsorbate having a concentration of Q, and the surface concentration is in
equilibrium with this gas phase concentration, that is

t = 0; C = Ci and CU(E) = CUS
 b ( E ^ C i (11.3-6)

* i u. v / ixa 4 v / T"« \ y> v '
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The boundary condition at the center of the particle is:

r = 0; — = 0 and - ^ - L 0 (11.3-7a)
dr dr

The other boundary condition is that at the exterior surface of the particle, at which
the total flux contributing by the pore and surface diffusions into the particle must
be equal to the diffusion flux through the stagnant film surrounding the particle:

r,R; ^ g a a , , , . . , ] *m «.<*•*>F(E)dE.t-1Ct.

The model is applicable for any form of the energy distribution. The energy
distribution is a result of structural heterogeneity or distribution of surface defects or
other surface factors (for example, surface chemistry) that cause the variation in the
adsorption energy. Two extremes we could expect for the energy distribution. One
is the ideal surface where the distribution is the Dirac delta function, i.e.

F(E) = 6(E-E)

With this form, the model equations will reduce to the pore and surface diffusion
model dealt with extensively in Chapter 9:

dt dt i

D"(E) 5Cu(r,t;E)n - - 1 (H.3-8a)

( OB) ac,, - i
rs dr | \\-C (r.t:E)/C A dr

The other extreme of energy distribution is the bimodal energy distribution,
with a patch of energy E, occupying a fraction of a and the remainder is oocupied
by the patch of energy E2:

F(E) = o 8 ( E - E , ) + ( l - a ) 8 ( E - E 2 ) (11.3-9)

The model associated with this distribution represents a dual adsorption sites model,
where the diffusion into the particle is proceeded through three paths, one is the pore
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diffusion in the void space of the particle and the other two are diffusions in
adsorbed phase of energies E, and E2, respectively.

Other distributions between these two extremes often used in the literature are
the uniform and Gamma distributions because of their simplicity in form. Their
functional forms are:

F(E) = - l—— (11.3-10)
max min

an+1

F(E)= 4 (E-E0)"exp[-q(E-E0)] (11.3-11)

The mean and the variance of these two distributions are:

E= E m i n + E m a x and o= (Emax ~^min^ (11.3-12)

— and a = ̂ - ^ (11.3-13)

11.3.1 Simulations:

To see the effect of the energetic heterogeneity on the sorption kinetics, we will
show in this section the simulations when some of the system parameters, especially
the variance of the distribution, are varied.

The parameters listed in the following table are used as the base case in the
simulation. These parameters are for the system of n-butane onto activated carbon
at 101 kPa and 303 K. In this table, we present parameters for the two energy
distributions. One is the uniform energy distribution while the other is the single
site energy distribution (homogeneous solid)

Table 11.3-1: Base parameters used in the simulations

Particle

characteristics

Parameter a

Uniform

8 = 0.31

a=0.5

Energy

; R =

distribution

10"3m (slab half length)

Single Site distribution
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Energy

distribution
Emax=22.7, Emin = 8.3 kJ/mole

E = l ( E m a x + E m i n ) = 15.5 kJ/mole

a = (2V3)~\Emax - Emin) = 4.16 kJ /mole

E = 15.5 kJ/mole

Co

Equilibria

parameters

Dynamic

parameters

Co

bo

b =

D P

= 8.286xl(T3kmole/m3

= 2.62 m3 / kmole

b0 exp(l/ RgT) = 1231 m3 / kmole

. = 5. kmole /m3

= 124x10"*" m2/sec

. = 1.9xlO"8 m2/sec

b =

c^

D P

1231m3/kmole

= 5 kmole / m3

= 1.24 xlO"6m2/sec

= 8.76 xl(r1 0m2 / sec

The effect of the variance of the adsorption energy, a, (a measure of the surface
heterogeneity) on the adsorption and desorption dynamics is shown in Figure 11.3-1
for two values of variance a (0 and 6.16 kJoule/mole). The adsorption kinetic
curves for these variances are practically superimposed on each other. This is
because the patch of strongest sites has the highest affinity, hence higher density but
this patch posseses low mobility characteristics towards the adsorbate while the
patch of weakest sites has the lowest density but exhibits the highest mobility.
Hence, the overall kinetics of a solid having an energy distribution behaves similarly
to a solid having a narrower distribution, provided that these two solids have the
same mean energy and the same mean adsorption affinity. In the desorption case
where the solid, initially equilibrated with a stream of adsorbate of constant
concentration is desorbed into a stream of inert gas. Figure 11.3-1 shows a clear
influence of the surface heterogeneity on the desorption kinetics. This is physically
expected because the patch having weakest site will desorb quickly because of high
mobility, while the patch having the strongest sites will desorb at a slower rate.
Hence, the solids having much wider energy distribution will take longer time to
desorb.

Next we study the effect of the external bulk concentration. We learn from
Chapter 9 for homogeneous solids that the time scale is smaller for favourable
adsorption isotherm. Here we would like to see whether such a conclusion is still
valid for a heterogeneous solid. The effect of the external bulk concentration can be
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seen in the following two figures. Three external concentrations used in the
simulation of adsorption kinetics are 10.6, 20.6 and 30.6 kPa (Figure 11.3-2).
Increase in the bulk concentration results in a reduction in the adsorption time, the
same conclusion obtained for homogeneous solids (Chapter 9). The reason for this
decrease in the adsorption time has been given in Chapter 9. In the desorption
mode, the kinetics curve is not sensitive to the adsorbate concentration with which
the solid is initially equilibrated (Figure 11.3-3).

Fractional
uptake

200 400 600 800 1000

Time (sec)

Figure 11.3-1: Effect of variance on the fractional uptake versus time

0 50 100 150 200 250 300

Time (sec)
200 400 600 800 1000

Time (sec)

Figure 11.3-2: Effect of the bulk concentration Figure 11.3-3: Effect of the bulk concentration
on the adsorption kinetics on the desorption kinetics
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We now investigate the applicability of the heterogeneous model to the
experimental data of light hydrocarbons onto activated carbon (Do, 1997). First we
present the experimental methods from which the adsorption equilibrium data as
well as kinetics data are collected. The method for kinetic measurement is the
Differential Adsorption Bed (DAB) method, and the method for equilibrium
measurement is the conventional volumetric method. The DAB method has been
proven to be an useful and reliable means to collect the adsorption kinetics, and is
described in the next section.

11.4 Experimental Section

First we describe the adsorbent and adsorbates used to collect the kinetic data
for the testing of the heterogeneous model.

11.4.1 Adsorbent and Gases

The model adsorbent we used is an activated carbon in the form of extrudate
having a diameter of 1.7 mm. The properties of this activated carbon are
summarised in the following table.

Table 11.4-1: Characteristics of activated carbon

Particle density 733 kg/m3 = 0.733 g/cc
Total porosity 0.71
Macropore porosity 0.31
Micropore porosity 0.40
Average macropore diameter 8 x 10'7 m = 0.8 urn
Mesopore surface area 8.2 x 104 rrrVkg = 82 m2/g
Micropore volume 0.44 x 10'3 rrrVkg = 0.44 cc/g
Nitrogen surface area 1.2 x 106 mVkg = 1200 m2/g

The adsorbates used are the n-paraffins, ethane, propane and n-butane.

11.4.2 Differential Adsorption Bed Apparatus (DAB):

Adsorption kinetics are carried out with the DAB set up. It is designed such
that a constant environment inside the adsorption cell is always maintained and the
cell is kept at constant temperature. This is done by allowing a very high flow rate
to pass through the bed containing a very small amount of solid. This high flow is
such that the molar rate supply of the adsorbate is much greater than the adsorption
rate into the particles. Also with this high flow rate heat released by the adsorption
process will be dissipated very quickly.
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The apparatus is consisted of four parts (Figure 11.4-1): a gas mixing system,
the adsorption cell (C), the desorption bomb (B) and a gas chromatograph (or an
equivalent device) for concentration analysis.

Adsorbate
stream

F (four-way valve)
vent

&-

B

toGC

C (Adsorption cell)

Figure 11.4-1: Schematic diagram of differential adsorption bed

The adsorption cell (C) is connected to a four-way valve (F), which is used to
either isolate the cell from the flowing gas stream or allow an adsorbate stream to
flow into it. The three-way valve (T) allows either the gas stream to go to the four
way valve and thence to vent or the gas to flow into the reservoir, B. This reservoir
is fully instrumented with a pressure gauge and a temperature sensor, from which
the total number of moles in the reservoir can be calculated.

11.4.3 Differential Adsorption Bed Procedure:

In this section, we describe the operation of the DAB method. With the bed
isolated by the four way valve and the three way valve set to the position such that
the adsorption cell (C) is connected to the desorption bomb (B). These two are
cleaned by either vacuum or heating or a combination of them.

After the bed is cleaned, the three way valve is set to the position to isolate the
cell from the reservoir B, and the adsorption cell is brought to the adsorption
temperature with an aid of a flowing inert gas. Once this has been done, the cell is
isolated from the flowing gas by using the four way valve F.

• Step 1: With the adsorption cell isolated, mix the adsorbates to the desired
concentration. While this is done, the reservoir B is evacuated and once this is
done, it is isolated from the cell as well as the vacuum.
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• Step 2: At time t=0, the adsorbate stream is allowed to pass through the
adsorption cell by switching the four way valve. Adsorption is allowed to occur
over a period of t , and then the adsorption cell is isolated. During the period
of exposure t , the total amount inside the cell will be the amount adsorbed by
the solid up to time t plus the amount in the dead volume of the cell.

• Step 3: Next, turn the three way valve T to connect the adsorption cell to the
pre-evacuated reservoir B. Adsorbate molecules in the cell will desorb into the
reservoir due to the total pressure driving force. To facilitate with this
desorption, heat is usually applied to the adsorption cell and a small flow of
pure inert gas is introduced to flush the adsorbate into the bomb. After this
desorption step is completed, the three way valve is switched to isolate the
reservoir. Pressure and temperature of the reservoir are then recorded; hence
the total number of moles, which include that of the inert gas and that of the
adsorbate, is calculated.

• Step 4: Pass the gas in the reservoir to the GC for the analysis of the adsorbate
concentration, from which we can calculate the number of moles of adsorbates
in the reservoir. This amount must be subtracted from the amount in the dead
volume of the adsorption cell to obtain the amount adsorbed by the solid during
the period of t*. The amount in the dead volume is determined experimentally
by carrying the steps 2 to 4 with the adsorbents replaced by the same amount of
non-porous solids.

By repeating the above steps for different exposure times, we will obtain the full
uptake curve as a function of time.

We apply this DAB procedure to a sample of activated carbon whose
characteristics are given in Table 11.4-1 and three n-paraffin adsorbates: ethane,
propane and n-butane.

11.5 Results & Discussion:

A model system of ethane, propane and n-butane as adsorbates and an activated
carbon as the adsorbent are used to validate the heterogeneous kinetic model
presented in Section 11.3. The results have been discussed in Do (1997) where it
was shown that the equilibria of these adsorbates are adequately described by the
Unilan equation:

c., ^ 1 (11.5-1.)
• b C e -
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V3CT
S= (11.5-lb)

R gT V

(11.5-lb)

The fitting between the theory and the experimental data at three different
temperatures (283, 303 and 333 K) was carried out simultaneously to extract the
following parameters:
1. The saturation capacity
2. The adsorption affinity at infinite temperature
3. The minimum and maximum interaction energies
4. The mean interaction energy

The optimal parameters are tabulated in the following tables for the three adsorbates
used: ethane, propane and n-butane.

Table

T
°C

10

30

60

Table

T

°C

10

30

60

Table

T

°C
10

30

60

11.5-1: Parameters for the Unilan equation

kmole/m^

13.0

13.0

13.4

(kPa"1)

8.47 x 10-7

8.47 x 10"7

8.47 x 10

Emin

kJ/mole

6.26

6.26

6.26

i for ethane

kJ/mole

30.75

30.75

30.75

11.5-2: Parameters for the Unilan equation for propane

kmole/m3

13.0

13.0

13.4

boo

(kPa"1)

1.93 x 10"7

1.93 x l O 7

1.93 x 10"7

kJ/mol

0

0

0

11.5-3: Parameters for the Unilan equation

boo

(kmole/m3) (m3/kmole) (kJ,

5.545

5.016

4.559

2.62

2.62

2.62

15.5

15.5

15.5

kJ/mole

42.75

42.75

42.75

for n-butane

E

/ mole)

E

(kJ/mole)

18.5

18.5

18.5

1
(kJ / mole)

21.38

21.38

21.38

b

(m3 / kmole)

1780

1440

610

b >/̂ c

(kPa"1)

2.20 x l O 3 5 .20

1.31 x l O 3 4 .86

6.77 x 10 4.42

b v3a

(kPa-1) ' = TF

1.70 x 103 9.08

9.34 x 10"4 8.48

4.35 xlO"4 7.72

RT
2.89

2.86

2.62
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150 3.754 2.62 15.5 91.4 2.58

For ethane and propane, we show below the best fitted parameters for the
Langmuir adsorption isotherm equation, which are needed for the simulations of the
homogeneous model (eq. 11.3-8). This is for the comparison with the
heterogeneous model. The fit of the Langmuir equation is not as good as that for
the Unilan equation.

Table 11.5-4: Parameters for the Langmuir equation for ethane, propane

T°C
10

30
60

Ethane

bCkPa'1)

0.0516

0.0320
0.0167

Cu, (kmole/m3)

5.49

5.00
4.58

Propane

bCkPa"1)

0.470

0.217

0.0863

CfI, (kmole/m3)

5.00

4.69
4.36

In the study of the kinetics, we fit the heterogeneous model to the experimental
kinetic data of ethane and propane. The only parameter required in the fitting is the
surface diffusivity at infinite temperature, D ^ . The surface diffusivities at infinite

temperature extracted from the fitting for ethane and propane are

D ^ = 7.02xl0~7 and 1.34 x 10"6 mVsec, respectively. The following tables

summarises the values of the diffusivities obtained from the fitting of the
heterogeneous model as well as the homogeneous model.

table

T

°C

10

30

60

Table

T

°C

10

30

60

11.5-5: Diffusivity parameters for ethane

D

mz/sec

1.51 x 10"'
1.68 x 10 '

1.96 x 10'

Homogeneous model

D,(m2/s)

2.58 x 10'

3.41 x 10'

6.26 x 10'

11.5-6: Diffusivity parameters for propane

D

nvVsec

1.20 x 10'

1.30 x 10'

1.56 x 10'

Homogeneous model

D,(m2/s)

0.789 x 10'

0.928 x 10'

1.750 x 10'

Heterogeneous model

D'oo (m2/s)

702 x 10'

702 x 10"'

702 x 10'

Heterogeneous i

D ôo K / s )

1340 x 10'

1340 x 10'

1340x 10'

13.76 x 10'

17.84 x 10"'

24.83 x 10"'

model

14.27 x 10"'

19.26 x 10"'

28.23 x 10-'
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It is generally found that the heterogeneous model fits the experimental data
better than the homogeneous model. When they are used to predict the data at other
conditions, the heterogeneous model predicts better than its counterpart does,
implying the importance of the system heterogeneity. Although the "true" energy
distribution may not be uniform as we have assumed here, its use in the model,
nevertheless, points to its significance in the description of kinetic data.
Furthermore, the heterogeneous model is more advantageous to the homogeneous
model in the sense that the heterogeneous model requires only one diffusivity D ^

for all temperature data while the homogeneous model requires one value of D^ for
each temperature data.

11.6 Formulation of Sorption Kinetics in Multicomponent Systems

We consider a solid particle exposing to an environment containing N
adsorbates of constant concentrations. The surface topography is assumed to have a
patchwise configuration. For the development of the model we make the following
assumptions:

1. The system is isothermal
2. The particle is large enough so that the resistance to the mass transfer is due to

diffusion of free and adsorbed species along the particle coordinate
3. The pore diffusivity, the film mass transfer coefficient and the surface

diffusivity at infinite temperature are constant
4. Fluid phase and adsorbed phase are in local equilibrium at any point in the solid
5. Extended Langmuir isotherm is assumed to be valid at the patch level
6. The cumulative energy is the same for all species
7. The adsorbed flux is driven by the chemical potential gradient
8. At any given site, the ratio of the activation for surface diffusion and the

adsorption energy is a constant
9. The adsorption energy distribution is uniform (other distributions could be

used)

We first present the multicomponent equilibria and then deal with the
multicomponent kinetics next.

11.6.1 Adsorption Isotherm:

The local adsorption isotherm of the species "k" takes the following extended
Langmuir form:
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„,*„
where b[k;E(k)] is the adsorption affinity of the component k at the energy level
E(k)..The adsorption affinity, b[k;E(k)], is related to the adsorption energy and
temperature according to the following equation:

b[k;E(k)] = bco(k) exp[E(k) / RgT] (11.6-2)

where the adsorption affinity at infinite temperature, boo(k), is assumed to be
dependent on species.

With the assumption of uniform distribution, the functional form for F(E) for
the species "k" takes the form:

for Emin < E < Er
F[k;E(k)]^Emax(k)-Emin(k) min ma* (H.6-3)

0 elsewhere

with
00

jF[k;E(k)]dE(k) = l (11.6-4)
o

The overall adsorption isotherm of the species "k" in a multicomponent mixture is
simply the integration of the local adsorption isotherm over the complete energy
distribution domain:

(C,(k)> = C^k)] bl>'E(k>]C(k> TfcEW] dE(k) (11.6-5)

The integration of the above integral can only be carried out after we relate the
interaction energy of the species " j " to that of the species "k". This is achieved by
assuming the matching between the cumulative energies of different species:

Emin(j) _ E(k)-E m i n (k) (

Em a x( j ) -Em i n( j ) Em a x (k)-Em i n (k)
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11.6.2 Local Flux of Species k:

If the driving force for the surface flow is assumed to be the gradient of the
chemical potential, we can write the local surface flux of the adsorbed species k at
the energy level E(k) as:

If the adsorption isotherm takes the form of the extended Langmuir equation
(11.6-1), the local flux written in terms of the gradient of gas phase concentrations
is:

JJr,t;k;E(k)] = -
b[k;E(k)] 5C(r,t;k) (H.6-8)

dr

If one is interested in the expression for the flux written in terms of the gradient of
the adsorbed concentrations, one can apply the total differentiation of eq. (11.6-7) to
get:

(yr , t ;k;E(k)] N gC(r,t;k) dC^[r,t;j;E(j)]
J(l[r,t;k;E(k)] = -D^[k;

C(r,t) dr

(11.6-9)
Using the local extended Langmuir isotherm (eq. 11.6-1), we obtain the following
equation for the local flux written in terms of only the adsorbed concentrations:

J,[r,t;k;E(k)] = -D°[k; 5(k,j)

C|1[r,t;k;E(k)]
C^s(k)

N Cu[r,t;i;E(i)]
IT

• C (i)

acyr,t;j;E(j)]
8r

(11.6-10)
This form is more complicated than that when written in terms of the gas phase
concentration gradient (eq. 11.6-8). Computation wise, the flux equation using the
gas phase concentration gradient is a better choice because it gives much more
stable numerical computation.

The surface diffusion coefficient is taking the Arrhenius form:
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°D°[k;E(k)] = D° (k)exp
a(k)E(k)

RgT
(11.6-11)

where a(k) is the ratio of the activation energy for surface diffusion to the adsorption
energy. In the absence of any information regarding this parameter we will treat it
as a constant for all species.

11.6.3 Mass Balance Equations:

Carrying the mass balance in the particle for the adsorbate "k", we obtain the
following equation:

00

89C(£1o+ ( 1_ e )a rc [ M ; k .E ( k ) ] F [ k ; E ( k ) ] d E ( k ) =
dt at J

(11.6-12)
for k = 1, 2, ..., N. Here JM is the surface flux determined from eq. (11.6-8) or
(11.6-10). The adsorbed concentration at any point is related to the gas phase
concentration at any point as given in eq. (11.6-1).

The boundary condition at the exterior surface of the particle is:

r = R; s D p ^ ^ - ( l - s ) J j | 1 [ R , t ; k ; E ( k ) ] F [ k ; E ( k ) ] d E ( k ) = kn[Cb-C(R,t)]
0

(11.6-13)
that is the total flux into the particle (LHS) is balanced by the flux through the
stagnant film surrounding the particle (RHS).

The particle is assumed to be initially equilibrated with a stream of adsorbate at
concentration of C| = [Cj(l), Cj(2), ..., Cj(N)], i.e.

= 0; C(r,0;k) = C{(k) ; C,[r,0;k,E(k)] = C,s(k) b ^ E ( k ) ] C i (k) (11.6-14)

We have defined a set of equations which describe the sorption kinetics of a
multicomponent mixture in a single particle. When N = 1, this set of equation
reduces to the set for single component systems dealt with in the last section.
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The model equations (11.6-2) to (11.6-4) are validated with the experimental
data of binary and ternary systems of ethane, propane and n-butane onto activated
carbon. All the necessary equilibrium and kinetic parameters are obtained from the
single component fitting as done in the last section. In this sense the
multicomponent model is the predicting tool, and it has been shown in Do (1997)
that this multicomponent heterogeneous model is a good predictive model. It is
capable of predicting well simultaneous adsorption, simultaneous desorption and
displacement. Readers are referred to a review paper by Do (1997) for further
details.

11.7 Micropore Size Distribution Induced Heterogeneity

The effect of heterogeneity was accounted for by the use of the energy
distribution as shown in previous sections. For adsorption of paraffins onto
activated carbon, the source of the energy distribution is assumed to be due to the
micropore size distribution. This heterogeneity is called the micropore size-induced
heterogeneity. The energy of interaction between the micropore and the adsorbate
molecules is a strong function of the size of the adsorbate as well as the size of the
micropore. The effect of micropore size distribution on adsorption equilibrium has
been addressed in Chapter 6. Here we address its role in the adsorption kinetics.

The local adsorption isotherm in a pore having a width of 2r is assumed to take
the form of the Langmuir equation:

C ( E ) - C b ( E ) P C b - e E / R g T p (117-1)
C ( E ) ^ - ^ /V ( 1 L 7 1 )

where the interaction energy E between the micropore and the adsorbate molecule is
a function of the micropore size, that is

E = E(r) (11.7-2)

This relationship can be derived from the Lennard-Jones theory as described in
Chapter 6. Thus, if the micropore size distribution is known, we can write the
following equation for the overall adsorbed concentration.

•;-'!'
E / R T

« P

f(r)dr (11.7-3)

where f(r) is the functional form for the micropore size distribution. This micropore
size distribution is then converted into an energy distribution by the following
equation:



Analysis of Adsorption Kinetics in a Heterogeneous Particle 699

f(r) dr = F(E) dE (11.7-4)

The micropore size-induced energy distribution is then fitted by a polynomial
for the subsequent use in the dynamics calculation. The model equations for the
dynamics studies are the same as those presented in Section 11.6. The only
difference is that the energy distribution is deduced from the micropore size
distribution, instead of the uniform energy distribution. Hu and Do (1995) have
studied this and they have shown that the approach using the micropore size
distribution as the source of system heterogeneity seems to provide a better
description of the desorption data than the approach using the uniform energy
distribution.

11.8 Conclusions

We have shown a new mathematical model, utilizing the surface energy
distribution to understand the sorption dynamics into the particle. The model has
shown great promise in its role as a predictive tool to understand dynamics under a
wide range of conditions.

Regarding the future work, we suggest that the following aspects could be
explored to further our advances in this area
• The separate role of surface energy and structural heterogeneity
• The role of pore size distribution in structural heterogeneity
• More experimental data of other binary and ternary systems
• The heat effect in the heterogeneous model
• More detailed structured models
• Effect of pore evolution on the equilibrium and dynamics parameters of the

heterogeneous model





12
Time Lag in Diffusion and

Adsorption in Porous Media

12.1 Introduction
Basic information of diffusion and adsorption have been discussed in some details in
the last five chapters (7 to 11). In this chapter and the subsequent chapters we will
present various methods devised to determine the diffusion coefficient. We start
with a method of time lag, which was introduced in 1920 by Daynes. This method
can be exploited for the determination of diffusion and adsorption parameters. The
concept of this method is simple. Basically a porous medium is mounted between
two reservoirs (Figure 12.1-1).

Supply reservoir

Po (constant)

Receiving reservoir

PL(t)

pL(t)

time lag

Figure 12.1-1: Time lag setup and the typical pressure response versus time
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One reservoir is filled with a diffusing gas, hereafter called the supply reservoir, and
the other is maintained under vacuum. The latter reservoir is called the receiving
reservoir. At time t = 0, the permeation process is started and the pressure of the
receiving reservoir is monitored. Since it takes time for the diffusing gas to
transport through the porous media, the pressure in the receiving reservoir remains
very low until the diffusing gas breaks through into it. Thus, there is a lag in the
response of the pressure in the receiving reservoir; hence, the name of time lag is
given. Since the time lag is a result of various kinetic processes occurring inside the
porous medium, efforts have been spent to understand this time lag and to extract
kinetic parameters from the time lag information.

What to follow are the basis analyses of nonadsorbing gas in Knudsen flow and
in viscous flow. This is to illustrate the effect of transport mode on the time lag.
Next, we will consider a special treatment due to Frisch, which is useful to obtain
the time lag without getting involved in the detailed solution for the concentration
distribution across the particle. Finally, we consider the time lag analysis on
adsorbing gas, where the adsorption in addition to diffusion can yield many
interesting behaviours owing to the fact that adsorption can occur in the dead end
pores and adsorbed species could diffuse along the porous medium, processes of
which do not occur for non-adsorbing gases. Other factors such as the finite nature
of the receiving reservoir, the geometry of the porous medium, and the shape of the
adsorption isotherm can influence the time lag behaviour.

12.2 Non-Adsorbing Gas with Knudsen flow

We will first illustrate the time lag method with a simple case of non-adsorbing
gas and conditions are chosen such that the transport mechanism is due to the
Knudsen mechanism. Diffusion of oxygen, nitrogen, argon, krypton, methane and
ethane through inert analcite spherical crystals (Barrer, 1953) at low pressure is an
example of non-adsorbing gas with Knudsen flow. Conditions of the experiments
are chosen such that the diffusion into the crystals does not occur and flow is
restricted to the Knudsen mechanism around the individual crystallites in the bed.
The time lag method can be used to complement with the steady state method by
Kozeny (1927), Carman (1948) and Adzumi (1937).

The porous solid can be assumed to be composed of many non-intersecting
capillaries having equal length, longer than the length of the porous medium (Figure
12.2-1). The ratio of the capillary length to that of the medium is called the
tortuosity. Furthermore, we assume that the capillary radius is uniform, and is
denoted as r. Let the capillary length be Lc and the porous medium length be L.
The tortuosity, which is a measure of the solid structure, is given by:
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(12.2-1)

which, by definition, is greater than unity.

Figure 12.2-1: Schematic of an ideal capillary in the solid medium

Another model for porous solid is a model of packed bed containing very fine
grains, and the inter-grain volume defines a space for diffusing molecules to pass
through (Figure 12.2-2). Details of this model can be found in Chapter 7.

Porous media

Diffusing
molecule

Figure 12.2-2: Flow of molecules through a porous medium made up of small grains

Since the pressures of the two ends of the medium are finite, viscous (Darcy)
flow might be operating in addition to the Knudsen flow. To restrict the flow to
only Knudsen diffusion, we must maintain the conditions of the experiment such
that the Knudsen mechanism is dominating. This is possible when the pressure is
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very low or the capillary radius is very small. The condition for the validity of the
Knudsen flow is P.d < 0.01 Pa-m (Levenspiel, 1984), where P is the total pressure
and d is the diameter of the channel. For example, for a pore size of 1 micron, the
maximum pressure for the Knudsen diffusion mechanism to occur is 10 Torr. At
higher pressures, viscous flow due to the pressure gradient becomes important. This
will be discussed in Section 12.4.

When Knudsen flow is the controlling mechanism, the transport flux (mole
transported per unit area of the capillary cross section area) is

J K = - E > K ^ (12.2-2a)
ax

where x is the co-ordinate along the capillary and DK is the Knudsen diffusivity,
defined as

(12.2-2b)

For constant capillary radius, this Knudsen diffusivity is a constant. With this
constitutive flux equation, the mass balance equation describing the concentration
distribution in the capillary is:

— = D K ^ (12.2-3)

where C is the diffusing gas concentration in the capillary. The porous medium is
bounded by two reservoirs. The concentration in the supply reservoir is kept
constant during the whole course of diffusion and that of the receiving reservoir is
maintained low relative to the supply reservoir, usually of the order of a few percent
of the concentration of the supply reservoir. Thus, the boundary conditions imposed
at two ends of the capillary are:

x = 0; C = C0 (12.2-4a)

x = L c ; C « 0 (12.2-4b)

Solving the mass balance equation (12.2-3) subject to the above two boundary
conditions yields an analytical solution for the concentration distribution, from
which system behaviours can be derived, and one such important behaviour is the
time lag, which can be exploited to obtain the diffusion coefficient.



Time Lag in Diffusion and Adsorption in Porous Media 705

Boundary conditions of the form (12.2-4) can be readily maintained
experimentally. To obtain the time evolution of the concentration distribution in the
capillary, the initial state of the capillary must be defined. There are two possible
initial states which are feasible experimentally. One is that the capillary is free from
any adsorbate, and the other initial condition is that the concentration in the
capillary is the same as the concentration in the supply reservoir. The first initial
condition is possible by putting a partition between the porous medium and the
supply reservoir, while to achieve the second initial condition the partition is put
between the porous medium and the receiving reservoir. We now deal with these
two initial conditions separately.

12.2.1 Adsorption: Medium is Initially Free from Adsorbate

When the capillary is free from any molecule of the diffusing gas, the initial
condition is:

t = 0; C = 0 (12.2-5)

Solving the mass balance equations (12.2-3) subject to the boundary and initial
conditions (12.2-4) and (12.2-5) by methods such as the Laplace transform or the
separation of variables yields the following solution for the concentration
distribution along the capillary:

„

The first term in the RHS is simply the steady state linear concentration profile,
and the second term is the transient term responsible for the evolution of the profile
from the initial state to the final linear steady state profile. The linear steady state
profile is due to the assumption of constant diffusion coefficient. For nonconstant
diffusion coefficient as we will show later in Section 12.3, the steady state profile is
no longer linear. Figure 12.2-3 shows the evolution of the concentration profile for
the case of constant diffusion coefficient.

Knowing the concentration profile as given in eq. (12.2-6), the transient flux
across any plane perpendicular to the capillary axial direction is calculated from the
Knudsen flux equation (12.2-2), that is:

L\
(.2.2-7,

of which the first term
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(12.2-8)

is the steady state flux and the second term is the transient contribution to the flux.
The steady state flux is usually achieved after 2 to 3 times the time lag (Van-
Amerongen, 1949), which is determined later in the next section.

C(x,x)/C0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 12.2-3: Evolution of the concentration profile in the porous medium

Eq. (12.2-7) is the transient flux at any point inside the capillary. Of interest to
us is the flux at either end of the capillary, depending on whether we wish to
measure the pressure of the receiving reservoir or that of the supply reservoir.
Usually in practice the pressure of the receiving reservoir is monitored. We now
investigate the behaviour of the receiving reservoir first, and then the supply
reservoir next.

12.2.1.1 Properties at the Capillary Exit:

The flux at the exit of the capillary is obtained by setting x = Lc into eq. (12.2-
7), and we get:

n=l

(12.2-9)

This equation is valid for all times, but the convergence of the series is very slow for
short times. For short times, a better solution can be obtained by taking Laplace
transform of the governing equation and then find the asymptotic solution when s —»
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oo, which is corresponding to t -» 0. The short time solution for the flux at the exit
of the capillary is given (Roger et al., 1954):

n=0

(12.2-10)

which converges faster for small values oft. Usually only the first term in the above
series is sufficient for the calculation, thus the short time solution is:

(12.2-11)

Rearrange this equation, we get the following form amenable for linear plotting

Thus, a plot of ln^J L Vt j versus 1/t would yield a straight line with the following
slope and intercept

Slopes
4D

(12.2-13a)

Intercept = In 2cJ^- . (12.2-13b)

When using eq. (12.2-12) for data analysis, an accurate measurement of the flux at
short time is required. This method is, therefore, recommended for very slow
permeating porous media where the time lag is too long to practically measure.

Knowing the short time flux (eq. 12.2-10), the number of moles received by the
receiving reservoir up to time t is:

t

QL(t) = AjjL(t)dt (12.2-14)

or

4DKt
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where A is the capillary cross sectional area. Keeping only the first term in the
above series, we get the following short time solution for the amount received by the
receiving reservoir up to time t:

limQL = 2AC0
t->o

L-"l-5gH-I,-« (12.2-16)

Knowing the amount entering the receiving reservoir, the pressure can be
calculated from:

"QL (12.2-17)

Combining the above two equations we get the following measurable pressure of the
receiving reservoir:

lim—^-=:
t->oPn

where

A V

e =
4DKt

(12.2-18)

(12.2-19)

Eq.(12.2-18) is useful to analyse data at short times. The validity of the short time
solution is

where tlag is the time lag to be determined later. Eq.(12.2-18) is applicable for low
permeability membranes. For highly permeable membranes, short time solution is
not recommended because the range of validity for the short time is too short for
accurate measurement. For this case, we use the solution for the flux valid at all
time (eq. 12.2-9) and obtain the following solution for the amount collected in the
receiving reservoir from t= 0 to t

in which the following identity has been used
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Knowing the amount diffusing into the receiving reservoir, the pressure variation
with time is then obtained from eq.(12.2-17), that is:

P L W _ A D K «. ~c . c XV i\n+i * _ | ~K | (122-22)
VLC Vc

This pressure increases at small times and after some time its behaviour is linear
with respect to time due to the attainment of a steady state flow of molecules
through the medium. The linear asymptote takes the form:

t
VLC{ 6D

(12.2-23)

The above equation has two interesting properties. First, the slope is proportional to
the Knudsen diffusivity and the linear dimension of the system. Second, the
intercept of this linear asymptote with the time axis is:

L 2 T 2 T 2

^ (12.2-24)ldB 6DK 6DK

This is called the time lag. This time is a measure of the time scale that molecules
diffuse through the medium. Since the time lag measurement is a rather
straightforward task, it is a preferred method to many others to determine the
Knudsen diffusivity as no further analysis is required on the data to obtain the

P (t) / P
diffusivity. Figure 12.2-4 shows a plot of j ^ y versus T = DKt/Lc

2. The slope

of the pressure versus time at long time is obtained from eq.( 12.2-23) as:

AD
S* = - P o (12.2-25a)

Note that the parameter A is the cross-sectional area of the capillaries. It is related
to the cross-sectional area of the pellet, Ap, according to

ALC = ApLe.

Therefore, the slope S^ can be written as:

eADLDK
S , = ' Po (12.2-25b)
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This equation provides the information on how quickly the pressure of the receiving
reservoir rises with time at long time. This information is important for design as it
is necessary to restrain the flow of molecules into the receiving reservoir such that
its pressure does not exceed few percents of the inlet pressure during the course of
the experiment. This constraint is necessary because of the requirement of the
boundary condition (12.2-4b). To illustrate this, we take an example of benzene
molecule diffusing through an inert porous medium having a capillary length of 10
cm, a diffusion area of 0.1 cm2, an average pore radius of 0.5 u, and the volume of
the receiving reservoir is 1000 cm3. The operating temperature is 293 K and the
inlet pressure is 1 Torr. The low pressure of the supply reservoir is necessary to
ensure that the diffusion mechanism through the medium is by the Knudsen
mechanism.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

T

Figure 12.2-4: Plot of the reduced pressure of the receiving reservoir versus T

The Knudsen diffusivity is calculated as (Table 7.4-2):

DK = 9700 r J — = 9700 (5 x 10"*) J ^ ^ = 1.08 cm2 / sec

The rate of pressure increase at steady state (eq. 12.2-25a) is:

lim
dPL c (0.1cm2)(1.08cm2/sec)(lTorr)
— - = SW =- = -
dt (1000cm3)(1.4)(10cm) nn in_6rr A^ 4

= 7.7x10 °Torr/sec = 4.63x 10 *Torr/min

in which we have assumed a tortuosity factor of 1.4. In order for the pressure of the
receiving reservoir to be maintained less than 5% of that of the supply reservoir,
that is 0.05Torr, the experiment should be completed within 100 min. This stopping
time must be greater than the time lag, which is calculated from eq.(12.2-24):
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tlag =
(1.4 xlO)2

6 x 1.08
= 30 sec

12.2.1.LI Parameter Determination

The parameter characterising the diffusion through the medium is the Knudsen
diffusivity, which could be determined from the time lag given in eq. (12.2-24) or
from the short time solution (eq. 12.2-18). The long time solution for time lag is
preferrable if the experimental data exhibit a linear asymptote behaviour at long
time and the constant boundary conditions (12.2-4) are maintained throughout the
course of the experiment. If the medium is rather impermeable and the time lag is
practically too long to measure, then the application of the short time solution is the
only possible choice.

One aspect of the model is the assumption of constant Knudsen diffusivity. To
validate this assumption, we can extract the diffusivity from the short time solution
as it reflects the transient behaviour of the system, and also extract the diffusivity
from the time lag information. The latter reflects the overall kinetic behaviour of
the system. If the two extracted diffusivities are the same then the assumption of
constant diffusivity holds and the system is a pure diffusion system. On the other
hand, if the diffusion coefficient extracted from the short time solution is smaller
than the steady state diffusivity, then there exists a sorption process occuring during
the transient operation within the medium as the steady state flow is unaffected by
the amount adsorbed.

What we show below is a convenient way to determine the diffusion coefficient
from the short time solution without recourse to any optimization procedure.
Combining the short time solution (eq. 12.2-18) and the steady state rate of pressure
rise (eq. 12.2-25), we get

This short time solution can be compared with the exact solution

PL(t)= i f 1 ( 2 j . l)n+1 1
t S ° ° T l 6 7T2

 n=1 n2

(12.2-26a)

(12.2-26b)

which is obtained from eq.(12.2-22), where
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4 "
(12.2-26c)

The RHS of eq. (12.2-26b) is a function of the nondimensional time T. Plot of the
RHS versus x is shown in Figure (12.2-5).

1.0

0.8

RHS of 0.6
eq.( 12.2-26)

0.4

0.2

0.0

Exact solution

Short time solution
(eq. T2:2-26

0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 12.2-5: Plot of the RHS of eq. (12.2-26) versus T

This plot can be used to determine the diffusion coefficient, and this is done as
follows. For each experimental value PL(t), evaluate the LHS of eq. (12.2-26a), and
then use the plot in Figure (12.2-5) to obtain a value of 6. After this is done for all
values of PL(t), a plot oft versus 0 will give a straight line according to eq. (12.2-
26c). The slope of this straight line is:

4DK

This slope has the units of time, and it is 3/2 times the time lag given in eq. (12.2-
24).

We shall illustrate this with the experimental data of Barrer (1953). His system
is a pure diffusion process of sulfur dioxide through a bed of analcite sphere. The
bed length is 98 cm, and the pressure rise at long time as 2.234 x 10~4 cmHg/min.
The following table tabulates the pressure of the receiving reservoir (PL) versus time
during the initial time period. The LHS of eq. (12.2-26a) is evaluated for every data
in the table and is shown in the third column of the same table. Having these values,
Figure (12.2-5) is used to obtain 0 for every data and this is included in the fourth
column.



Time Lag in Diffusion and Adsorption in Porous Media 713

Table 12.2-1: Time lag data of Barrer (1954)

time (min)
10.3
15.0
20.0
25.3
30.0

Pi (cmHg)
4 x 10"5

1 x 10-4

2.5 x 10"4

5 x 10-4

9.75 x 10"4

P,/Scot(-)
0.01739
0.02985
0.05593
0.08850
0.14552

ew
0.256
0.294
0.355
0.4178
0.516

A plot of t versus 0 is shown in Figure 12.2-6, and a straight line can be drawn
through all the points and the slope of such line is 56 min, from which the
diffusivity is calculated as:

(98 cm)2

4(56 min)(60 sec/ min)
= 0.7134 cm2 /sec

0.5

Figure 12.2-6: Plot of t (min) versus 6

Using the time lag equation (12.2-24), a value for the Knudsen diffusivity of 0.769
is obtained. The diffusion coefficient obtained from the short time analysis is 5%
smaller than the time-lag diffusivity. This small difference could be attributed to the
experimental error or it could be attributed to a very small adsorption of sulfur
dioxide on analcite particle.

Another useful quantity for the checking of the experimental data is the zero
order moment, defined as the following definite integral of the difference between
the steady flux and the transient flux:
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(12.2-27)

The RHS of the above zero-order moment equation is independent of the dynamic
parameter and involves only known quantities: Lc and Co. Thus the integrity of the
flux data can be checked to ensure that it satisfies the zero-order moment equation
before the data can be used to determine the diffusivity.

12.2.1.2 Properties at the Capillary Entrance:

We have seen that the measurements of the pressure of the receiving reservoir
can be utilised to determine the diffusivity. The measurement of the pressure of the
supply reservoir can also be effectively used in a similar manner to achieve the same
purpose. This is done below.

Evaluating the transient flux equation (12.2-7) at the capillary entrance (that is x
= 0), and then integrating the result with respect to time from 0 to t we obtain the
following quantity diffusing into the capillary:

L2

in which we have used the identity

=i nn=l

Carrying out the mass balance around the supply reservoir, the pressure of the
supply reservoir is related to Q0(t) as follows:

R T * R T
P0(t) - P0(0) = — 1 - jAJodt = — 1 - Q0(t) (12.2-30)

0

where V is the volume of the supply reservoir and P0(0) is its initial pressure.
A plot of Qo(t) versus T is shown in Figure 12.2-7. There is a rapid decrease of

the pressure of the supply reservoir due to the very sharp pressure gradient at the
capillary entrance at very short times. At sufficiently long time, the supply reservoir
pressure approaches a linear asymptote given by:
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limQ0(t) = - (12.2-31)

This linear asymptote when extended to the time axis will give an intercept of

(12.2-32)t . a g = -
3D,

T2L2

3D,,

which is in the negative range of the time axis.

Amount
supplied

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00

T

Figure 12.2-7: Plot of the amount supplied versus x

This time lag (12.2-32) using the pressure response of the supply reservoir or
the time lag (eq. 12.2-24) using the pressure response of the receiving reservoir can
be used to determine the diffusivity. Thus, the time lag method provides a very
convenient if not a straightforward method to determine the diffusion coefficient.
The method is not restrictive to the simple Knudsen diffusion mechanism, it is also
applicable to other situations, for example
(a) Knudsen and viscous flow for diffusing gas
(b) Knudsen flow for adsorbing gas following either a linear or nonlinear isotherm
(c) Knudsen and surface diffusions for adsorbing gases or vapours
(d) Knudsen flow into a finite reservoir

We shall discuss these situations in the subsequent sections, but first let us
consider the pure Knudsen diffusion case whereby the capillary initially contains
some diffusing molecules.
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12.2.2 Medium Initially Contains Diffusing Molecules

We have considered the case whereby the capillary is initially free from any
diffusing molecules. We now study the case where the capillary is filled with the
diffusing and the initial concentration of the diffusing gas in the capillary is assumed
to be different from that of the supply reservoir. The initial condition of eq. (12.2-3)
is:

t = 0; C(x,0) = Q (12.2-33)

where Q is assumed uniform along the capillary.
With this new initial condition, the solution for the concentration distribution

inside the capillary subject to two constant boundary conditions (12.2-4) is:

2 ( V
C = C0 1 -

where

I + a) cos(n7i) - a . | nnx
sin

n=l
exp -

DKn27i2 t

a =•

(12.2-34a)

(12.2-34b)

The first term in the RHS of eq. (12.2-34a) is the steady state linear
concentration profile which is the same as that of eq. (12.2-6). This is expected
because the steady state profile should be independent of the initial state of the
capillary. The difference between this case and the last case of initially molecule-
free capillary is the way the concentration distribution within the capillary
approaches the steady state profile. Figure 12.2-8 shows this approach for the case
where the capillary is free of any adsorbate and the case where the initial
concentration in the capillary is the same as that of the supply reservoir.

l.o ,

0.0 0.2 0.4 0.6 0.8 1.0

Figure 12.2-8: Evolution of the concentration profile in the porous medium
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Knowing this concentration distribution as given in eq. (12.2-34), the transient
fluxes at the entrance and exit of the capillary are obtained by applying the diffusion
law(eq . 12.2-2), that is:

: ) - a l e J - H - ^ l (12.2-35a)
L c n=l

K C 0 2D K C 0 ^ ( n 2 7 i 2 D K 0 / i ? 9 ocu \T-L+ 0 X [ 0 + a)-«cos(n7c)] exp _JL. (12.2-3!)b)
n=i

Knowing the transient fluxes as given in the above equations, the amounts entering
and leaving the capillary from t = 0 to t are:

- AD^Cn
Qo = •

U
ctL2 (l + a)L2 2L2 ^ [(1+ a)cos(n7t)-a] f DKn27i2t | (12 .2-36a)

t / t exp| | | ^ '
3D K 6 D K 7T D K n=1 n

ADKC0[ aL2
c (l+a)L2

c 2L2 A [ ( l + q)-acos(n7c)] f P K " 2 ^ 2 ^ ] (12.2-36b)

Plots of these quantities versus time yield a linear asymptote at long time and these
linear asymptotes will cross the time axis at a time which is known as the time lag. For
the pressure response of the supply reservoir, the time lag is obtained from eq. (12.2-
36a) and it is

L2 L2

t = c c — £ - + ( l + c c ) — — (12.2-37a)lag 3 D K
 V ' 6 D K

 V

Similarly, the corresponding time lag for the receiving reservoir is

L2 L2

t, =-a—
c-—(1 + a)—£- (12.2-37b)

lag 6D V y 3 D V
6DK

The expressions for the time lag (eqs. 12.2-37) are applicable for whatever the initial
concentration of the diffusing gas in the capillary is. For example, when the
capillary is initially free of any diffusing molecules ( a = - 1), the time lags for the
supply and receiving reservoirs are:

L2

( t l a g ) = c— (12.2-38a)
V l a 8 / SUPPLY RESERVOIR ^TV.

= _ _ / 2

/SUPPLY RESERVOIR

and



718 Measurement Techniques

RECEIVING RESERVOIR 6 D ^
(12.2-38b)

which are the results we have obtained earlier (eqs. 12.2-32 and 12.2-24),
respectively.

When the initial concentration of the diffusing gas in the capillary is the same as
that of the supply reservoir, that is a = 0, we obtain the following time lags for the
supply and receiving reservoirs:

/ SUPPLY RESERVOIR 6 D v

and

RECEIVING RESERVOIR 2>T>V

(12.2-39a)

(12.2-3%)

The two time lags in eqs. (12.2-38) and the two in eqs. (12.2-39) make up four
time lags this method can provide. This is commonly referred to in the literature as
the four time lag method, and either one of them can be used to determine the
diffusivity or for the certainty of parameter determination, more than one time lag
can be used.

12.3 Frisch's Analysis (1957 - 1959) on Time Lag

Section 12.2 shows the essential features about the time lag method, which is a
useful tool to determine the diffusion coefficient. This is done by simply measuring
the pressure of either the supply reservoir or the receiving reservoir, and then
extrapolating the linear asymptotes of the long-time data to the time axis. The
intercept of such extrapolation is the time lag, which is conveniently used to
determine the diffusion coefficient. When the diffusion mechanism is pure Knudsen
mechanism, the proper equations for the time lag are given in eqs. (12.2-38) and
(12.2-39) depending the initial state of the capillary. What has been done in order to
get to the expressions for the time lag is that the mass balance equation (12.2-3)
must be solved subject to the constant boundary conditions (12.2-4) and some
proper initial condition to first yield the solution for the concentration distribution,
from which the flux can be obtained by application of the Fick's law (12.2-2a).
Knowing the flux, the quantities of diffusing in and out of the capillary can be
derived, and subsequently the time lags are finally obtained. Such a lengthy
procedure can be avoided if our purpose is purely to obtain the expression for the
time lag, rather than the evolution of the concentration distribution. Frisch (1957,
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1958, 1959) was the first to provide this simple means, and hence hereafter the
method is called the Frisch's method. All the method requires is the determination
of the steady state concentration distribution, which is of course a much easier task
than the determination of the transient concentration distribution. Furthermore, the
Frisch method is very versatile as it is not applicable to the case of constant
diffusion coefficient but also to many other complicated cases involving nonlinear
equation as we shall show in the next few sections.

What we show in this section is the essential steps of the Frisch's method to a
case of slab geometry although the method is applicable to cylindrical and spherical
geometries as well. The mass balance in a slab geometry medium with a
concentration dependent diffusion coefficient is:

where the diffusion coefficient D(C) is assumed to be a function of concentration.

12.3.1 Adsorption:

We will demonstrate the Frisch method with the case where the medium is
initially free from any diffusing species (that is the initial condition is given by eq.
12.2-5). The boundary conditions are assumed constant and given in eqs. (12.2-4).

If the amount of gas (or pressure) is measured at the exit of the slab medium,
there will be an initial lag in the rise of the amount versus time due to the fact that
the diffusing molecules take time to transport across the medium, and then afterward
the amount will increase linearly with time as a result of the steady state flow of
molecules through the porous medium. Before solving for the time lag by this
Frisch's method, it is necessary to consider the steady state behaviour of the system.

12.3.1.1 Steady State Consideration

At steady state, the mass balance equation (12.3-1) will become:

d

dx dx
(12.3-2)

where the subscript oo denotes the steady state. This steady state mass balance is
solved subject to the constant boundary conditions (12.2-4), and the following
solution for the steady state concentration is obtained in implicit form:
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Co / \ Co

j D(u )du= — I D(u)du (12.3-3)
cM(x) \LJ o

from which the steady state flux can be calculated using the constitutive flux
equation:

dC 1 ̂ °
J,, = - D ^ ) — - = — I D(u)du = constant (12.3-4)

dx L o

This steady state flux is a constant as a result of the constant boundary conditions.
Although it takes time for the steady state condition to be reached, if we assume this
steady state flux is instantaneously attained from t = 0 the amount collected per unit
area of the capillary from t = 0 to t is given by

t Co

Q(O(t) = (jfl0)t = - f D(u)du (12.3-5)
i-» o

In fact the flux during the early stage of diffusion is lower than the steady flux due
to the transient build-up of mass within the capillary; therefore the actual amount
collected at time t will be less than the "theoretical" amount calculated by eq. (12.3-
5).

12.3.1.2 Time Lag of the Receiving Reservoir:

Having obtained the necessary equations at steady state condition, we now turn
to the derivation of the time lag for the receiving reservoir. The transient molar flux
at the exit of the capillary and the amount of gas collected by the receiving reservoir
per unit area of the capillary are:

^ | (12.3-6a)

and

Q(t) = JjL(t)dt (12.3-6b)
o

respectively. Eq. (12.3-6b) is the quantity that we would readily obtain
experimentally.

To obtain this transient amount collected by the receiving reservoir QL(t) we
need to consider the transient mass balance equation (12.3-1). First, integrating this
equation with respect to x from L to x, we obtain:
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(12.3-7)
x=L

Integrating this result again with respect to x from 0 to L, and noting that the flux at
the capillary exit JL(t) is not a function of x, we have:

Lx
\ \
OL dt

= JD(u)du + JL( t)L
c0

(12.3-8)

from which we can obtain the following expression for the transient flux at the
capillary exit:

LL

Ox at
(12.3-9)

The first term in the RHS is simply the flux at steady state (eq. 12.3-4). Thus, the
transient flux at any time t is less than the steady state flux due to the transient build-
up of mass in the capillary (the second term in the RHS of the above equation).
Only when time is sufficiently large that this transient rate of mass hold-up will be
zero.

Knowing this transient flux (eq. 12.3-9), the amount collected by the receiving
reservoir is calculated as in eq. (12.3-6b) and the result is:

Co

Q(t) = - J D(u)du
L o

i LL

t j j C(z,t)dzdx
Lo

(12.3-10)

This is the actual amount collected by the receiving reservoir from t = 0 to time t.
Note that the first term in the RHS of eq. (12.3-10) is the hypothetical amount
collected Q^ if the steady state flux is instantaneously started from t = 0 (c.f eq.
12.3-5). Observing eq. (12.3-10) we note that if we know the transient
concentration distribution, the integral in the RHS can be evaluated. However, this
is not necessary if the time lag is what we need rather than the details of how
diffusing molecules are distributed themselves within the capillary during the
transient period. We take the limit of eq. (12.3-10) when time is large, and the limit
is a linear asymptote. We denote this asymptote as Qa(t) and it is given by

limQ(t) = Qa(t)= I[°D(u)du
t->« L o

t -
EXIT

(12.3-11)
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In the limit of large time, the concentration distribution C(z,t) in eq. (12.3-10) is
simply the steady state concentration distribution C^z). Comparing eqs. (12.3-10)
and (12.3-11) in the limit of large time, we get the following expression for the time
lag:

LL L
\\ C00(z)dzdx jxC00(x)dx
0ĵ  0

Co

I D(u)du
o

(12.3-12)

D(u)du

This is a very useful expression for the time lag. All it needs is the concentration
distribution at steady state. Thus by measuring the time lag experimentally (the
LHS of eq. 12.3-12), the RHS can be evaluated to yield information about the
diffusion coefficient. Let us proceed this one step further. Substituting the steady
state concentration distribution given in eq. (12.3-3) into the above equation and
then carrying out the integration by parts will give the following expression for the
time lag written completely in terms of the diffusion coefficient function:

j wD(w) 1 D(u)du dw

EXIT

J D(u)du

(12.3-13)

Observing the above equation, we note that measuring the time lag does not
necessarily provide us with the information about the functional form of the
diffusion coefficient. This is usually what we would like to obtain for a given
system. One could, however, choose a functional form for D containing one or
more parameters, and then by measuring the time lags at various values of the
concentration of the supply reservoir we can do a nonlinear optimisation to extract
those parameters for the assumed functional form of the diffusion coefficient.

We note in eq. (12.3-13) that the time lag in general is a function of the inlet
concentration Co, due to the concentration dependence of the diffusion coefficient.
It will become independent of Co only when the diffusion coefficient is a constant.
Indeed, when D is a constant, the steady state concentration distribution (eq. 12.3-3)
is reduced to:

(12.3-14)
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and the time lag (123-13) will reduce to:

(t, ) =— (12.3-15)
V l ag/EXIT 6E)

which is the result we obtained earlier using the complete solution approach. Here
we see the power of the Frisch's approach of achieving the same result without the
need to obtain the transient concentration distribution.

12.3.1.3 Time Lag of the Supply Reservoir

The procedure presented in the above section can be applied to the entrance of
the capillary. The only difference for this case of supply reservoir is the step in
eq.( 12.3-7). The limit for the integration in this case is from 0 to x, rather than L to
x as in the last case for the receiving reservoir. This exercise is left to the reader.
The solution for the time lag for the pressure response of the supply reservoir is:

(•,.)

L

j(L-x)C00(x)dx
= --2—7; (12.3-16)

ENTRANCE \°
j D(u)du
o

When the diffusion coefficient is constant, the above equation reduces to that given
in eq. (12.2-32).

12.3.2 General Boundary Conditions:

In the previous section, we dealt with the case of diffusion through a medium,
which is initially free from any adsorbate. In this section, we will generalise the
conditions imposed on the system. We assume that the medium is initially filled
with some adsorbate, but uniform in profile, and the inlet and outlet of the medium
are exposed to some constant concentrations. The method of Frisch presented in the
previous section is again applicable to this general case.

The initial and boundary conditions for this general problem are:

t = 0 ; C = a (12.3-17)

x = 0; C = C0 (12.3-18a)

x = L ; C = Ci (12.3-18b)

Using the Frisch's method and applying the above initial and boundary conditions,
the time lags obtained for the receiving and supply reservoirs are:
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EXIT

Jxfc^xJ-aldx
o L J

Co

I D(u)du

and

ENTRANCE
D(u)du

(12.3-19a)

(12.3-19b)

where C^ is a solution of the following quadrature:

Co

I D(u)du= - | D(u)du (12.3-20)

Substituting Q, of eq. (12.3-20) into eqs. (12.3-19), we obtain the following
solutions for the time lag written in terms of diffusion coefficient:

EXIT
= L2

D(u) (u - a) I D(w)dw du

Co

j D(u)du
c,

(12.3-21a)

ENTRANCE

I
c,

( u

D(u) (u - a) 1 j D(w)dw
VCi J

"Co

I D(u)du
c,

3

du

(12.3-21b)

Eqs. (12.3-21) provide general expressions for the time lags of the receiving and
supply reservoirs when the following conditions are met:

(a) medium has slab geometry
(b) isothermal condition
(c) constant initial distribution of molecules in the capillary
(d) constant boundary conditions
(e) diffusion coefficient is a function of concentration
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Example 12.3-1 Time lag for the case of constant diffusion coefficient

Apply the general expressions (eq. 12.3-21) for the time lag to the case
of constant diffusion coefficient, we get:

( \ =h-
Vla8/EXIT D (C.-C,)7

ENTRANCE

2

D

C2

—_—
3

Q
—L
6

(Co

Ci 1

-c

a
- — ( C

2

1)2

^ - C \
J O 1 /

(12.3-22a)

(12.3-22b)

We see that when the concentration at the exit of the medium is not zero
and the initial concentration in the medium is not either zero or Co the time
lags are dependent on the inlet concentration Co even though the diffusion
coefficient is a constant. Thus the time lag is independent of inlet
concentration only when the following conditions are satisfied:

1. diffusion coefficient is constant
2. concentration at the exit of the medium is zero
3. initial concentration is either zero or equal to the inlet cone. Co.

Figure 12.3-1 shows plots of the reduced time lag (scaled against the time
lag at a = 0 and C1 = 0) for the case of a = 0. Here we note that the non-
zero concentration at the medium exit results in an increase in the time lag,
which is not unexpected because of the decrease in the overall driving force
across the medium.

1.6

Reduced
time lag

Supply
reservoir

0.00 0.05 0.10 0.15 0.20

c,/c0
Figure 12.3-1: Plot of the reduced time lag versus C / C Q
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Example 12.3-21 Exponential functional form for D

We now consider the case where the diffusion coefficient takes the
following functional form:

T)(C} - D e a C (12 V 2 ^

where Do is the diffusivity at zero loading, and a is a constant. The
capillary is assumed initially free of any diffusing molecules and the
concentration at the capillary exit is much lower than that at the entrance,
that is Cx « 0.

Substitution of the expression for the diffusion coefficient (eq. 12.3-
23) into the time lag equations (12.3-21) yields:

EXIT

ENTRANCE

4Df ( e a C ° - l ) 3

[eaC° (2aC0e
aC'» - 4aC0 - e

aC» + 4) - 3]

4D0

(12.3-24a)

(12.3-24b)

When a = 0, the diffusion coefficient (12.3-23) becomes constant, and it is
not difficult to prove using the Taylor series expansion that the time lag
solutions given in eqs. (12.3-24a) and (12.3-24b) reduce to those given in
eqs. (12.2-24) and (12.2-32), respectively.

To investigate the effect of concentration dependence of the
diffusivity, we plot the time lag for finite a to that for a = 0 for the
receiving reservoir and the supply reservoir

R EXIT ~
fe)

EXIT
(eoC° l)3

(12.3-25a)

RENT

ENT

Figure 12.3-2 shows this ratio versus ccC0, and we note that an increase
in either the coefficient a or the concentration will result in a decrease in
the time lag as a consequence of the increase in the apparent diffusivity,
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Doe
aC . Thus, if the experimental data of time lag versus concentration Co

shows a decrease with concentration, it could point to the fact that the
apparent diffusivity is a function of concentration, but it says nothing about
the mechanism of transport of molecules through the medium. We will
show later that the viscous flow mechanism and the adsorbing gas
situations also give rise to the behaviour of a decrease of time lag for the
concentration (pressure) of the supply reservoir.

1.00

0.95

Reduced
time lag 0.90

0.85

0.80

Receiving
oir

Supply
reservoir

0.0 0.1 0.2 0.3 0.4 0.5

Figure 12.3-2: Plot of the reduced time lag versus aC0

Example 1&3-3 Darken-diffusivity

The Darken diffusivity takes the following form:

DoD(C) =
1- (3C

(12.3-26)

with(3C<l.
For the capillary initially free of any diffusing gas and the pressure at

the capillary exit is maintained low during the course of diffusion, the time
lags are obtained by substituting eq. (12.3-26) into eqs. (12.3-21). We get

"2 ( \
-21n +2pC0

U P < V /1oao '7^(12.3-27a)

In 1

EXIT 2 D
1

1 - P C C
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In
i-pc0

+ 21n -
u-pc0

-2pC0 ln |
1-PCo

-2PCO

/ENTRANCE 2 D

i - pc 0

(12.3-27b)

Similarly to the example 2, the time lags for this case also decrease with an
increase in either the coefficient (3 or the pressure of the supply reservoir.
Figure 12.3-3 shows the reduced time lags (scaled against time lags
corresponding to P = 0) for the receiving and supply reservoirs versus PCO.
The reduced time lags' decrease with PCO is due to the increase in the
apparent diffusivity.

Receiving
reservoir

Reduced
time lag 0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

PC0

Figure 12.3-3: Plot of the reduced time lag versus PCO

12.4 Nonadsorbing Gas with Viscous Flow

We have shown the essential features of the time lag in Section 12.2 using the
simple Knudsen diffusion as an example, and a direct method of obtaining the time
lag in Section 12.3. The diffusion coefficient dealt with in the Frisch's method in
Section 12.3 is concentration dependent. In this section we will deal with a case
where the transport through the porous medium is a combination of the Knudsen
diffusion and the viscous flow mechanism. We shall see below that this case will
result in an apparent diffusion coefficient which is concentration dependent, and
hence it is susceptible to the Frisch's analysis as outlined in the Section 12.3. This
means that the results of equations (12.3-21) are directly applicable to this case.
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The viscous flow mechanism is important when the pressure of the system is
reasonably high. When this is the case, the constitutive flux equation describes a
combined transport of Knudsen diffusion and viscous flow as:

J = - D
B0RgT ac

ax
(12.4-1)

where DK is the Knudsen diffusivity, Bo is the viscous flow parameter and |i is the
viscosity. This constitutive flux equation can be rewritten as:

J = -D (1 + oC) —
ax

where the parameter

(12.4-2)

a =
B0RgT

(12.4-3)

is a measure of the relative importance of the viscous flow to the Knudsen flow.

Example 12,4-1 Importance of the viscous flow

To give an idea how important this parameter is, we take the following
example of nitrogen at 298 K flowing through a cylindrical capillary of
radius r. The parameter Bo and the Knudsen diffusivity take the form:

and hence the parameter a is:

a =
16>/8

Substituting the following values into the above equation for a

Viscosity, u
Temperature, T
Gas constant, R
Molecular weight, M

= 1.75 x 10"4 gem1 sec1

= 298K
= 8.314 x 107 g cm2 sec"2 mole1 K1

= 28 g/mole
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we get

( T ] = ( 5 . 5 9 x l O ) f
U cm3 / mole) V ; U c

The following table shows the values of a for a number of capillary radius

r (micron) a (cc/mole)
0.01 5.59 xlO2

0.1 5.59 x 103

J 5.59 x 104

For a concentration of the supply reservoir of Co = 1 x 10'5 mole/cc (which
is about 186 Torr), we calculate aC0 as 0.00559, 0.0559, 0.559 for
capillaries of radii 0.01, 0.1 and 1 micron, respectively. This means that
viscous flux is not so important in capillaries of radii 0.01 and 0.1 micron.
For larger capillary (1 micron), the viscous flux becomes more important.

The mass balance equation for describing the concentration distribution in the
medium is:

This equation has exactly the form studied in Section 12.3 where the Frisch's
method was illustrated. Thus, the general solutions given by eq. (12.3-21) are
applicable. We shall take the case whereby the medium is initially free of any
diffusing molecules and the pressure of the receiving reservoir is much less than that
of the supply reservoir. The time lags for the receiving and supply reservoirs are:

+ a C 0 / 2 ) 3
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A number of observations could be deduced from this analysis of the case
involving viscous flow:
(a) when the viscous flow is absent, the time lag solutions are reduced to those for

the case of constant Knudsen diffusivity dealt with in Section 12.2
(b) the time lag decreases when the supply pressure increases.

Figure 12.4-1 shows the effect of the viscous flow parameter otC0 on the
reduced time lag (scaled against the time lags corresponding to no viscous flow).
We see that the viscous flow reduces the time lag as we would expect physically.

0.8

Reduced 0.6
time lag

0.4

0.2

0.0

|V:
: ^ \ ^ ^ Receiving
: Vv^p^^esewoir

; S u p p l y ^ ' "——^̂ ~~— ÎIIZZ
: reservoir

Figure 12.4-1: Plot of the reduced time lag versus ctC0

To investigate the relative contribution of the Knudsen flow and the viscous
flow, let us check the temperature dependence of the parameter a. First we write
the apparent diffusivity in terms of pressure instead of concentration as the
measurements are done in terms of pressure:

D a p p = D K ( l + ctP

where

ocP =
B

(12.4-7a)

(12.4-7b)

The temperature dependence of viscosity of many gases at moderate pressures is
stronger than T°5, while the Knudsen diffusivity is proportional to T°5. Thus the
parameter ccP decreases with an increase in temperature, suggesting that the Knudsen
mechanism is gaining its dominance at high temperature.
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12.5 Time Lag in Porous Media with Adsorption

The analysis so far dealt with the time lag method for diffusing (non-adsorbing)
gases. The method can be applied to adsorbing gases or vapours as well. This
section and the subsequent sections will show the applicability of the time lag
method to adsorption systems and how adsorption and diffusion parameters can be
extracted from the analysis.

One clear distinct difference between a non-adsorbing system and an adsorbing
system is the longer time lag observed in the adsorbing system. This is simply due
to the accumulation of mass by the medium, hence retarding the penetration of the
concentration front. The stronger is the adsorption, the longer is the time lag. Since
the amount adsorbed on the medium is strongly dependent on temperature, it can be
effectively used as a parameter to study the adsorption system.

We first illustrate the time lag procedure on a simple adsorption system where
the partition between molecules in the gas phase and those on the surface is linear
(linear isotherm). We also consider at any local point within the medium, the mass
exchange between the two phases is so rapid that local equilibrium is
instantaneously established, that is:

C ^ = K C (12.5-1)

where C^ is the concentration of the adsorbed phase and K is the Henry constant.
Other factors such as nonlinear isotherm, finite mass exchange between the two
phases, and non-constant diffusion coefficient will be dealt with in the subsequent
sections.

12.5.1 Linear isotherm

We consider the case of linear isotherm between the gas and solid phases. The
mass transport into the particle is assumed to occur by two parallel mechanisms:
pore and surface diffusions. The mass balance equation describing the
concentration distribution in a slab porous medium with these two parallel
mechanisms is:

02.5-2,

The parameter 6 is the porosity of the void space available for pore diffusion (that is
mesopore and macropore voidage), C is the concentration of the free species
(mole/cc of gas), and C^ is the concentration in the adsorbed phase (mole/cc of solid
phase). The diffusion coefficients for these two diffusion mechanisms are assumed
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constant, although the diffusion coefficient for the surface diffusion is known to
have a highly concentration dependence. If we, however, restrict ourselves to low
concentration (low pressure), then the adsorption isotherm will be linear and the
assumption of constant surface diffusion coefficient is applicable.

The interaction between the gas phase and the adsorbed phase inside the porous
medium can be very fast relative to the diffusion process or it can be comparable to
the diffusion process. If the former is the case, we will have what is called the local
equilibrium, that is at any time t if the gas phase concentration at a given point x is
C(x,t) then the adsorbed phase will be in equilibrium with that gas phase
concentration. We will first deal with the case of instantaneous adsorption and then
consider the finite rate of adsorption next.

12.5.1.1 Instantaneous Adsorption

When the adsorption rate is much faster than the diffusion rate, the local
adsorption equilibrium prevails:

CM(x,t) = KC(x,t) (12.5-3)

Substitution of this linear isotherm equation into the mass balance equation (12.5-2)
yields the following equation:

— = D — (1

where the apparent diffusivity is defined as:

e D p + ( l - e ) D s K
a p p~ e + ( l - e )K

(12-5-5)

The mass balance equation written in the form of equation (12.5-4) is identical in
form to eq. (12.2-3) for the case of nonadsorbing gas operating under the Knudsen
mechanism. This means that the complete analysis of Section 12.2 or the Frisch's
method of Section 12.3 is applicable to this case. The time lags for the receiving
and supply reservoirs when the porous medium is initially free of any molecules are:

= (12.5-6a)
EXIT 6 D a p p

and
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= (12.5-6b)
ENTRANCE 3D V '

respectively.
The pressure of the supply reservoir does not affect the time lags as is expected

for a linear isotherm. The temperature dependence of the time lag is studied by
investigating the temperature dependence of the apparent diffusivity. The
dependence of relevant parameters on temperature is shown below:

(12.5-7a)

(12.5-7b)

(12.5-7C)

With these parameters dependence on temperature, the dependence of the apparent
diffusivity has been investigated in Section 9.2.1.13 (eq. 9.2-15). This apparent
diffusivity exhibits a monotonous decrease with temperature, suggesting that the
time lag is smaller at higher temperature due to the combined effect of the lower
amount adsorbed and the higher diffusion coefficients.

Example 12.5-1: Magnitude of time lag for adsorbing gases

To show an idea how long the time lag is for the case of adsorbing gas,
we take an example with the following values for the relevant parameters.

Parameter Symbol Value

Pore diffusivity
Surface diffusivity
Henry constant
Porosity
Particle length

K
6

L

0.5 cmVsec
10~5cm2/sec
10000
0.33
1 cm

The apparent diffusivity is calculated as:
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(0.33X0.5) + (1 - 0.33)(10000)(lQ-5) = 0 0 0 Q 2 5 6 cm2

app e + (l-e)K 0.33 + (l-0.33)(l 0000) ' sec

The time lags for the receiving and supply reservoirs are:

- = 650 sec « 11 min(•...)
L2

EXIT 6Dapp 6(0.000256)

= « 22 min
ENTRANCE 3D

For the same set of parameters except now that the gas is non-adsorbing,
that is K = 0, the corresponding time lags are:

EXIT 6D p 6(0.5)
. = O33*c

- = 0.66 sec
ENTRANCE 3D

Thus we see that the adsorbing gas increases the time lag significantly
compared to the non-adsorbing gas. Conducting the time lag method to an
adsorbing system exhibiting a linear isotherm is not different from that of a
non-adsorbing gas except that the medium is short otherwise the time lag
would be too large to practically measure

12.5.2 Finite Adsorption
One of the assumptions made in the last analysis is the local adsorption

equilibrium. We would like to investigate in this section that if such assumption
does not hold, that is the exchange rate between the two phases is comparable to the
diffusion rates, would the time lag be affected? For this case, the mass balance
equation for the concentration distribution is still governed by eq. (12.5-2). The
relationship between the concentrations of the two phases is given by the following
kinetic equation:
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where ka is the rate constant for adsorption. If this rate constant is very large
(strictly speaking when the adsorption rate is faster than the diffusion rate), this
equation is reduced to the local linear adsorption equilibrium equation (12.5-3) dealt
with in the last section.

Take the case of initially free adsorbate in the medium and the constant
boundary conditions (12.2-4) imposed on the system, the mass balance equations
(12.5-2) and (12.5-8) can be solved by Laplace transform (Appendix 12.1) to give
the following solution for the amount collected in the receiving reservoir:

QL =
a(sn)e s"'

6 ( £ D P )
 n=1|ssinh[a(s)L]s 1

(12.5-9)

where A is the cross sectional area of the medium, and a is a function of complex
variable s and is defined as

£S +
O-E)ska

s + k a / K
(12.5-10)

and sn are poles and are given by:

u2 -n2n2

eKL2
forn=l,2,.... (12.5-1 la)

1
u = —

2 K
(12.5-1 lb)

Knowing the amount of sorbate collected in the receiving reservoir (eq. 12.5-9), the
time lag can be readily calculated by observing the asymptotic behaviour of that
equation (the first two terms), and we get the following expression for the time lag:

t iQ« —
L2 [e

eDn

(12.5-12)

which is identical to the time lag obtained for the case of local equilibrium. This
means that the finite mass exchange does not affect the time lag information. In
other words, the linear asymptote of the amount collected in the receiving reservoir
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is independent of the rate of mass interchange between the two phases, whether it is
infinitely fast or finite. This rate of mass interchange only affects the way the
transient curve approaches the linear asymptote (the third term in eq. 12.5-9). One
can view the time lag as the integral of the overall diffusion process across the
medium, and hence it is unaffected by the way in which mass is exchanged inside
the medium.

A similar analysis was presented by Goodknight et al. (1960) and Goodknight
and Fatt (1961) in the context of diffusion through a porous medium with dead end
volume. The dead end pores can be viewed as the adsorption capacity sites in the
context of adsorption.

12.5.2.1 Frisch 's Time Lag

Instead of solving the problem by the Laplace transform, we could apply the
Frisch's method to derive the time lag without the need of solving the transient
concentration distribution. The Frisch's method outlined in Section 12.3 can be
applied here, and the analysis presented below briefly accounts for this
development.

First, we integrate the mass balance equation (12.5-2) with respect to x from x
to L and then again with respect to x from 0 to L, we obtain:

(12.5-13)

where C ô is the adsorbed concentration at the entrance of the medium, which is
assumed to be in equilibrium with Co.

CM 0=KC 0 (12.5-14)

Integrating eq. (12.5-13) again, but this time with respect to time from 0 to t, and
making use of the definition of the amount collected by the receiving reservoir as:

t I acl ,. _ sc,
QL(t) = A - 6 D p — -( l -e )D

oV V*U
(12.5-15)

we obtain the following expression for QL(t) as a function of the concentration
distribution inside the porous medium:
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A[SD C 0 + ( 1 - E ) D C o l t A L
r Vr , ^ i m * IA\

QL(O = - L - 2 S—=—' — J J[eC(z,t) + (1 - e)C^(z,t)] dz dx (12.5-16)
0 x

This is an equation for the amount collected by the receiving reservoir valid for any
time, provided the concentrations of the two phases are known as function of x and
t. Since the information at large time (i.e. time lag) is only needed, we take the limit
of the above equation when t -> oo and note that

limC(x,t) = C00(x) = Co( 1 - f ] (12.5-17a)

x,t) = C ^ ( x ) = KC00(x) (12.5-17b)

we have

limQL(t) = —I——- ~-r\ JlECoo(z) + (l-e)C (z)ldzdx (12.5-18)
t->oo L L J Jl J

0 x

The steady state solutions (12.5-17) were obtained by solving the mass balance
equation at steady state.

Substitution of the steady state concentration distributions (eqs. 12.5-17) into
the linear asymptote equation (12.5-18) yields:

A|d>,c.»(,-.)D,q.|f L»[.,(,-.)K] 1 ( 1 2 , ,9 )

L [ 46Dp+(l-E)DMK]J

which gives the time lag

f ( )
t l a g = , L : - ^ U p (12.5-20)

6[6Dp+(l-e)D,K]

The above time lag is independent of the rate constant for adsorption ka. Thus, the
finite mass exchange kinetics does not affect the time lag. This is true even when
the finite mass exchange kinetics equation takes other form than the one shown in
eq. (12.5-8) provided that the relationship between the concentrations of the two
phases is linear at equilibrium.
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12.5.3 Nonlinear Isotherm

The analysis in the last two sections is only applicable when the adsorption
isotherm is linear, a situation where the pressure is very low. At such low pressure,
the surface diffusivity is a constant, validating the use of solutions given in the last
two sections. Although the linear analysis yields simple analytical solutions, its
advantage disappears when we wish to learn more about the adsorption system. For
example, when a time lag experiment is carried out, and if the time lag of the
receiving reservoir is monitored, eq. (12.5-6a) only states that the apparent
diffusivity can be calculated as:

Da p p=-f- (12.5-21)

Unless we know the Henry constant K and the pore diffusivity a-priori from some
independent experiments, we have no means to calculate the surface diffusivity.
This problem can be overcome if we now conduct the experiment over the nonlinear
range of the isotherm. It is this isotherm non-linearity that we could delineate the
separate contribution of the pore and surface diffusions.

The nonlinear isotherm is assumed to take the general form:

C^=f(C) (12.5-22)

The mass balance equation describing the concentration distribution no longer takes
the form of eq. (12.5-2) as over the nonlinear range of the isotherm the surface
diffusivity is no longer a constant. Rather the proper mass balance equation should
be:

Combining eqs. (12.5-22) and (12.5-23), we obtain the following mass balance
equation written in terms of the fluid phase concentration:

£ | | ] (12.5-24)
at dx|_ ax J

where

G(C) = e + (1 - e)f(C) (12.5-25a)

H(C) = eDp + (1 - e)DM(f(C)) f (C) (12.5-25b)
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The form of eq. (12.5-24) is different from the form of eq. (12.3-1) which was
analysed in the section describing the Frisch's method. However, the procedure
described therein is applicable here as well, and this is done as follows.

12.5.3.1 The Frisch 's Method

To obtain the time lag using the Frisch's method, we must first determine the
steady state concentration distribution. This is found by setting the time derivative
in eq. (12.5-24) to zero, and we get:

d . - c o , „ (12.5-26)
dx dx

Solution of the above equation subject to the constant boundary conditions (12.2-4)
is written in the following implicit form:

Co f C 0 >|
[H(u)du = - [H(u)du (12.5-27)

c.(x) Ho )

Knowing this concentration of the free species, the concentration of the adsorbed
phase at steady state is given by:

CMW=f(C00(x)) (12.5-28)

To obtain the time lag expression, we integrate eq. (12.5-24) with respect to x from
L to x and obtain:

(12.5-29)

The second term in the RHS of the above equation is the flux entering the receiving
reservoir. We denote that as JL(t). Integrating the above equation again with respect
to x from 0 to L, we get:

Lx 0

( ( G ( C ) — d z d x = fH(u)du + fjL(t)]L (12.5-30)
OL ^ Co

Finally integrating this result with respect to time from t = 0 to t, we obtain the
following result for the amount collected by the receiving reservoir per unit area of
the medium:
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t-ijjG(C)C(z,t)dzdx (12.5-31)

Taking the limit of the above equation when time is large, we obtain:

Jlim-^f-
t-»oo A

j - JH(u)du (t-t l ag) (12.5-32)

where the time lag is given by:

LL

JjG(CO0)Co0(z)dzdx

(12.5-33a)
o

jH(u) du

or after integration by parts to reduce the double integral to a single integral, it takes
the final form:

* ! « = •

JxG(Cco(x))Coo(x)dx

jH(u) du

(12.5-33b)

Changing the integration variable from x to C^, we finally obtain the expression for
the time lag written in terms of the capacity function G and the diffusivity function
H as follows:

Co f C 0 >|
L2 Ju G(u) H(u) JH(W) dw du

O V_u )

(c° V
jH(u)du

(12.5-34)

The explicit expression for this time lag depends on the choice of the adsorption
isotherm f(C) and the functional form for D^(C^).
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Example 12.5-2: Langmuir isotherm and pore diffusion mechanism

Before dealing further with the time lag equation (12.5-34), let us
consider the case of simple Langmuir isotherm, chosen here to illustrate the
effect of the isotherm nonlinearity. The Langmuir equation is:

(12.5-35a)

where C ŝ is the maximum saturation capacity and b is the Langmuir
adsorption affinity, taking the following temperature dependence form:

Tn ' (12.5-35b)b ^ b ^ e x p l — — | =b o exp
RgT0 V T

with b0 being the adsorption affinity at some reference temperature To.
To separate the contribution of the surface diffusion (which we know

from Section 12.5.1 that it reduces the time lag) on the time lag, let us
neglect the surface diffusion in this example and assume that pore diffusion
is the only transport mechanism. For such a case, we have:

(12.5-36a)
2

(1 + bC)2

H(C) = eDp (12.5-36b)

where K = bC^s, which is the Henry constant at zero loading. Substitution
of eqs. (12.5-36) into the general time lag equation (12.5-34), we obtain the
time lag for the case of Langmuir isotherm with pore diffusion:

6{sDp)
t,ag = - T - T [ S + (1 - e)K • F(X)] (12.5-37)

6 { D ) L

where ¥(X) is a function of the isotherm nonlinearity (hereafter called the
isotherm nonlinearity factor) and is given by:

Y(X) = _ J _ + _ [ X _ (i + A,)ln(l + X)\ V; X = bC0 (12.5-38)

The parameter X is a measure of the isotherm nonlinearity. The isotherm is
called linear when this parameter is much less than unity, and is strongly
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nonlinear when it is greater than 10; otherwise it is called moderately non-
linear.

In the limit of linear isotherm, that is low concentration, the time lag
given in eq. (12.5-37) is reduced to:

limtlag =
lag 6 eDp

(12.5-39)

which is the result (12.5-6a) obtained earlier in the analysis of the linear
isotherm case.

To see the effect of the isotherm nonlinearity, let us investigate the
reduced time lag scaled against the time lag corresponding to zero loading:

lag

limt,.
(12.5-40)

The approximation of the above equation is simply that the capacity of the
adsorbed phase is much larger than that of the fluid phase. Figure 12.5-1
shows this ratio at three temperatures 273, 293 and 333 K plotted versus
b0C0 for Q/RgT0 =10. Here we see that the isotherm nonlinearity reduces
the time lag. This is explained as follows. A double in the pressure
corresponds to less than double increase in the adsorbed phase
concentration due to the convexity of the isotherm, and hence the driving
force for permeating through the medium is enhanced, resulting in a lower
time lag. For example, for moderate nonlinear isotherm X = 1, we have
F(l) = 0.68; a reduction of 32 % in the time lag.

Reduced
time lag

Figure 12.5-1: Plot of the reduced time lag versus b0C0 for Q/RgT0 = 10
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We now see that there are a number of factors that can cause a reduction in the
time lag. These factors are:

(a) presence of the viscous flow
(b) presence of the surface diffusion
(c) nonlinearity of the isotherm

Delineation of these factors can be done with experiments carried out at
different temperatures as their dependence on temperature follows different rate.
The viscous flow is less important at high temperature (Section 12.4), the surface
diffusivity increases quickly with temperature, and the adsorption capacity decreases
with temperature, usually at a rate much faster than the rate of increase in the
surface diffusivity. Thus, delineation is possible.

Let us return to the general expression (12.5-37) and investigate the situation
where the adsorption isotherm is strongly nonlinear (that is X » 1). For this case,
we have:

The second term in the RHS of the above equation is generally larger than the first
term, so the time lag equation for the case of irreversible isotherm is reduced to:

l i m t o . L ( l e ) — - (12.5-41b)
' C6feDp)

Thus, we see that the time lag in this case is inversely proportional to the supply
reservoir concentration, a good feature which could be exploited experimentally.

Freundlich isotherm and pore diffusion

For Freundlich isotherm of the form

CM =KC1 /n (12.5-42)

the time lag for the receiving reservoir under the conditions of constant
inlet concentration, zero exit concentration and zero initial condition is
given below:

L2

6D
1 +

(!-e)C,
(l +1 / n)(2 +1 / n) eC0

(12.5-43)
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Example 12,5-4: Dual Langmuir isotherm and pore diffusion

For dual Langmuir isotherm of the form

Cu = r 1 - ^ - + Cug2
 hlC (12.5-44)

** ^ 1 + ̂ C ^ s 2 l + b2C

the time lag for the receiving reservoir under the conditions of constant
inlet concentration, zero exit concentration and zero initial condition is
given below:

tlag = i r 1 + ̂ - K i F ( ^ . ) + ̂ 7^ K 2F(^) l (12.5-45)

where the functional form F is given in eq.( 12.5-38) and

K ^ b j C ^ , ; K2=b2C^ s2 (12.5-46a)

Exarjaple 12.5-5 Langmuir isotherm and dual diffusion mechanism

Let us now turn to the case where both the Langmuir isotherm and
surface diffusion are included. We assume that the surface diffusivity takes
the following Darken relation form:

D^ = ^ (12.5-47)

For this case, the functions G(C) and H(C) are:

(1-6)K ( l -^)KD^G ( c ) = 8 + o ^ r H ( C ) = 8 D p + V ^ f (12-5-48)
Substitution of the above expressions for G(C) and H(C) into the
expression for the time lag (eq. 12.5-34) yields the following solution:

_ L2 o L e(l + A,yrjL li + ^ J L K vi + ̂ J (12.5-49a)
tlag ~ —

P

where

B 0-8)KD
; X = bC0 (12.5-49b)

E D P
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Example 12.5-6 Toth isotherm

We finish this section by considering another isotherm equation: the
Toth equation, which is a popular equation in describing adsorption
isotherm of numerous practical systems. It has the form:

CM = f(C) = C B '^—Ur (12.5-50)

For simplicity, we ignore the surface diffusion in this example. We have:

G(C) = s + r
 ( 1 " £ ) ^ / t + 1 ; H(C) = eDp (12.5-51)

and the time lag then is given by eq. (12.5-34) or in implicit quadrature
form below

(l -e)K
l/t+i

(c o -u )du (12.5-52)

12.6 Further Consideration of the Time Lag Method

The time lag method has been shown to be a promising tool to study transport
through a porous medium. For non-adsorbing gases, the method is effectively used
to characterise the Knudsen flow as well as the viscous flow. Experimental
conditions can be adjusted, for example temperature and pressure of the supply
reservoir, that one of the two mechanisms dominates the overall transport. Knudsen
diffusion is known to dominate the transport when the pressure is low and the
temperature is high. When dealing with adsorbing gases or vapours, the
nonlinearity of the isotherm results in a decrease in the time lag with an increase in
the supply reservoir pressure. The surface diffusion of the adsorbed species also
contributes to the decrease of the time lag.

In this section, we will address this method one step further. First we show how
the steady state concentration distribution can be measured experimentally, and how
the time lag can be obtained irrespective of the mechanism of transport within the
medium.
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12.6.1 Steady State Concentration:

Let CT be the total concentration of the solute in the porous medium, defined as
mole per unit volume of the particle, that is:

C T =eC + ( l - e )C^ (12.6-1)

where C is the sorbate concentration in the void space and CM is the concentration in
the adsorbed phase. For strong sorbates, the latter concentration is of order of 100
or 1000 times larger than the concentration in the gas phase.

The flux of the species in the medium is assumed to follow the Fick's law
equation:

^ - (12.6-2)

whereby the flux equation is expressed in terms of the total concentration gradient,
and the diffusion coefficient is a function of this total concentration.

If the mechanism of transport into the porous medium is the parallel pore and
surface diffusion mechanism, the flux equation can be written in terms of the two
individual concentration gradients as follows:

^ (12.6-3)

To conform this flux equation (12.6-3) to the form involving the total concentration
(12.6-2), we make the following transformation:

J T = - e D D + ( l - e ) D s - ^ - \ \ ^ - P ^ = - D ( C T ) ^ - (12.6-4)
<7C J V C ^ T V OX OX

where the total diffusion coefficient is written in terms of two individual diffusion
coefficients and the isotherm behaviour:

(12.6-5)

At steady state, the total flux across the porous medium is a constant as there is no
further accumulation on the pore surface as well as the pore volume

JT = - D ( C T ) — - = constant (12.6-6)
dx
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Integrating the flux equation with respect to x subject to the following constant
boundary conditions:

x = 0; C T = C T 0 (12.6-7a)

and
x = L; C T « 0 (12.6-7b)

we obtain the following equation for the total concentration:

CTo C T O C T

J D(u)du f D(u)du - f D(u)du
* = ^ = S ^ - 2 = J(c T O ) -J (c T )
L CTO cT 0 J ( C T O )

JD(u)du JD(u)du
0 0

The above equation provides a very interesting means to determine the total
concentration as a function of the distance along the medium. Experimentally, the
steady state flux J(CT0) can be readily obtained for any value of CT0 at the inlet of the
medium. In general, the following figure (12.6-1) shows a typical behaviour of the
steady state flux J(CT) versus CT. If this plot is linear, it suggests that the diffusion
and adsorption properties do not change with concentration. For such cases, the
steady state concentration distribution is linear. What is shown below is a procedure
to determine the profile when there is a variation of diffusion and adsorption
properties with concentration. Thus, the task is that what is the steady state
concentration profile when the pressure of the supply reservoir is CT0.

The steady state flux corresponding to CT0 is J(CT0) shown as point A in the plot
of Figure 12.6-1. At an arbitrary concentration CT (0 < CT < CT0), we draw two lines
shown as dotted lines in the figure to obtain the flux J(CT). The position at which
the total concentration is CT is calculated from eq. (12.6-8), that is:

Thus, by choosing a number of concentration CT < CT0, the steady state
concentration profile can be generated.

12.6.2 Functional Dependence of the Diffusion Coefficient

The determination of the concentration profile from the previous section also
provides a useful step to determine the concentration dependence of the diffusion
coefficient D(CT). Recall the flux equation as:
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J T = - D ( C T ) - (12.6-10)

The steady state flux is measured experimentally (Figure 12.6-1) and the previous
section shows how the concentration profile CT versus x is obtained. Thus, the
diffusion coefficient D(CT) can be calculated from eq. (12.6-10). An alternative
approach to this is to use the flux curve directly (that is J(CT) versus CT). This is
done below.

J(CT0)

J(CT)

Figure 12.6-1: Plot of the flux versus the total concentration

Integrating the flux equation (12.6-10) with respect to x from x = 0 to L, we

get:

LJ T(CT)= fD(u)du
o

(12.6-11)

Differentiating this equation with respect to CT yields the following expression for
the diffusion coefficient:

dJT(CT)
D(CT) =

dCT
(12.6-12)

The derivative dJT(CT)/dCT can be evaluated from Figure 12.6-1 and hence the
diffusion coefficient is obtained from eq. (12.6-12) without a recourse to the
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determination of the concentration profile. For a particular experiment with the inlet
total concentration of CT0, we have:

JT(CT0) = - D ( C T ( x ) ) ^ ^ (12.6-13)

Thus, the concentration gradient at any value of CT within the medium is obtained
by combining eqs. (12.6-13) and (12.6-12):

dCT(x) _ JT(CT0)

dx L_dJT(CT)
(12.6-14)

dCT

It should be stressed here that knowing the diffusion coefficient as a function of the
total concentration does not infer any information about the transport mechanism
within the medium. If the transport mechanism is known, say parallel pore and
surface diffusions, then the diffusion coefficient based on the gradient of the total
concentration is determined from eq. (12.6-5). Combining eqs. (12.6-1) and (12.6-
5), we get:

e D p + ( 1 - 8 ) 0 ^ ) ^
D(CT) = j= 2k_ (12.6-15)

••<'->£
Thus if D(CT) is determined experimentally as described earlier, the RHS of eq.
(12.6-15) can be evaluated and the surface diffusivity can be obtained if the pore
diffusivity can be either obtained from an independent means. Usually this is done
with an inert gas such as helium. Since it is non-adsorbing, its Knudsen diffusivity
can be obtained from the time lag experiment as there is no surface diffusion in the
case of non-adsorbing gas. Knowing the Knudsen diffusivity for helium, the
Knudsen diffusivity of any adsorbate is calculated from:

in which we have assumed Knudsen diffusion is the sole transport mechanism.

12.6.3 Further about Time Lag

We have discussed in some details about the time lag method and how it can be
obtained directly by the method of Frisch. Before closing out this chapter, we show
below some useful properties of time lag (Barrer, 1967, 1968).
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Whether the flow mechanism by diffusion or viscous in nature, the conversation
equation of mass requirement embodied in the following expression:

— = -div(J) (12.6-17)
at

where C is the total concentration per unit volume of the medium and J is the mass
transfer per unit total cross-sectional area of the medium. If the flow is uni-
directional, the above mass balance equation will become:

^ = -™- (12.6-18)
at ax

The boundary conditions and initial condition are given as in eqs. (12.2-4) and
(12.2-5).

We now proceed with the Frisch method and apply it on eq. (12.6-18).
Integrating the mass balance equation with respect to x from x to some plane X,
where 0 < X < L, we have:

1 — dx = -J(X,t) + J(x,t) (12.6-19)
x at

Integration with respect to x again over the full domain of x (that is from 0 to L)
gives:

L X dC L

11 — d x = -LJ(X,t) + j J(x,t)dx (12.6-20)
o x at o

Let J00(C0) be the flux at steady state with Co being the concentration of the supply
reservoir . Adding and subtracting the RHS of the above equation with LJoo(C0), we
have:

L X BC L

J J — d x = U a o ( C o ) - U ( X > t ) + I[j(x,t)-Ja o(Co)]dx (12.6-21)
o x at o J

We define Q(X,t) as the quantity passing through the plane X from t = 0 up to time t
per unit cross-sectional area, that is:

Q(X,t) = Jj(X,t)dt (12.6-22)
o

Now integrating eq.( 12.6-21) with respect to time from 0 to t yields:
LX t L

j j C(z,t)dzdx = LtJo0(C0)-LQ(X,t) + jj[J(x,t)-Jo0(C0)]dxdt (12.6-23)
Ox 00
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Solving for Q(X,t) gives
i LX i tL

,t) = t J o o (C 0 ) - - j{C(z , t )dzdx- - j{ [ j o o (C 0 ) - J (x , t ) ]dxd t (12.6-24)
Lox LooL J

As time is sufficiently large, the amount Q(X,t) will reach an asymptote of Qa(X,t):

I LX I tL
Qa(X,t) = tJM(C0) - - J J C0 0(z)dzdx--JI[J0 0(C0)-J(x,t)]dxdt (12.6-25)

L o x Loo

where C^ is the steady state concentration. This linear asymptote Qa(X,t) cuts the
time axis at a value, called the time lag. It is given below:

T x = - * - (12.6-26)

where

Qoo - Q W = 7[Joo(C0) " J(x,t)] dt (12.6-27)
o

Eq. (12.6-26) is the time lag for any position X in the medium. To obtain the time
lag at the inlet of the medium, we set X = 0 and that at the exit, replace X by L.
Thus the two time lags measured experimentally are:

L ooL

j (x -L)C o o (x )dx+ j j [ J o o (C 0 ) - J (x , t ) ]dxd t
To = -2 2.2 (12.6-28a)

L ooL

1 xC00(x)dx+ j { [ ^ ( C Q ) - J(x,t)]dxdt
TL = ^ TTFTi (12.6.28b)

The difference between these two time lags is:

AT = T L - T 0 = j °°v ' (12.6-29)
o 1^(00)

We see that this time lag difference involves the steady state concentration profile
only. If we rewrite this difference as follows:

L

AjC00(x)dx

AT = - ^ - — — (12.6-30)
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where A is the cross-sectional area of the medium. The numerator is the total
amount of the adsorbate in the medium at steady state, and the denominator is the
mass transfer rate at steady state. Thus the difference in time lags is the ratio of the
capacity of the medium divided by the mass transfer rate, and it has a physical
meaning of a hold-up time in the medium. This difference can be used to check the
integrity of the time lag data.

Special case: Fick's law
If the flux J(x,t) is governed by the Fick's law and the diffusion coefficient is a
function of concentration only (not on distance or time)

J(x,t) = - D ( C ) | £ (12.6-31)
dx

Integrating this equation with respect to x from 0 to L gives:
L C o

fj(x,t)dx= jD(u)du = LJao(Co) (12.6-32)
0 0

With the above equation, the time lags given in eqs. (12.6-28) are reduced to:
L

I(x-L)C00(x)dx
To = -5 (12.6-33)

Joo(C0)L

L

jxC00(x)dx
TT =-2 (12.6-34)

L Joo(C0)L
 V

Thus in this special case of diffusion coefficient being a function of only
concentration, the time lags are function of only the steady state behaviour as shown
in the above equations.

12.7 Other Considerations

The time lag method is shown to be a useful tool for the characterisation of a
porous medium. Conditions are usually chosen in such a way that the constant
boundary conditions are satisfied (12.2-4). This is usually possible but there are
situations where the receiving reservoir is small and its pressure can not be
maintained to satisfy the zero boundary condition (12.2-4b). In such cases, the
pressure will rise and the boundary condition at the exit of the medium is replaced
by:
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x = L; C = Cb(t) (12.7-1)

where Cb(t) is the time dependent concentration of the receiving reservoir, and it
satisfies the mass balance around the receiving reservoir:

V ^ W = - A J ( x , t ) | x = L (12.7-2)

Here V is the volume of the reservoir and A is the cross section area of the medium.
Barrie et al. (1975) have solved this problem with constant diffusion coefficient.
Nguyen et al. (1992) addressed the same problem and proposed the following form
for the pressure of the receiving reservoir:

Cb(t) = (12.7-3)

Although mathematical solutions are always possible for time varying boundary
conditions, experimental preparation should be exercised such that the constant
boundary conditions hold during the course of experiment. This would then
simplify the analysis and hence the ease of obtaining the diffusion coefficient, which
is after all the main purpose of the time lag method.

Because of its versatility, the time lag method has been applied to many other
cases, such as:
(a) Permeation with first order reaction (Ludolph et al., 1979; Leypoldt and Gough,

1980)
(b) Permeation with serial and/or parallel paths (Chen and Rosengerg, 1991; Ash et

al., 1963, 1965; Jaeger, 1950)
(c) Permeation in cylindrical and spherical media (Barrer, 1941, 1944; Jaeger,

1946; Crank, 1975).
Review of some of these aspects has been given in Rutherford and Do (1997).

12.8 Conclusion

This chapter has addressed the method of time lag, and we have shown its
application to a large number of diffusion and adsorption problems to show its
utility in the determination of the diffusion coefficient as well as adsorption
parameters. The central tool in the time lag analysis is the Frisch's method, and such
a method has allowed us to obtain the expression of the time lag without any
recourse to the solution of the concentration distribution within the medium. We
shall present in the next few chapters other methods and they all complement each
other in the determination of parameter.



13
Analysis of Steady State and

Transient Diffusion Cells

13.1 Introduction

The last chapter shows the utility of the time lag method and its applications in
the characterization of diffusion and adsorption of pure component systems. In this
chapter we address the diffusion cell method, which is used mainly with systems
containing two solutes. The process involves the counter-diffusion of these two
solutes through a porous medium from one chamber to the other. Usually both of
these chambers are open, but there are applications where one of the chambers is a
closed chamber. There are two modes of operation of the diffusion cell method.
One is the steady state diffusion cell, and the other is the transient diffusion cell.

The steady state diffusion cell was first developed by Wicke and Kallanbach in
1941. Hereafter we shall refer this method as the WK method. In their method, a
pellet or many pellets are mounted in parallel between two open chambers (Figure
13.1-1). In one chamber, one component (labelled as A) is flowing into and out of
the chamber by convection, and in the other chamber another component (B) is also
flowing into and out of that chamber. The residence time in these two chambers are
usually much smaller than the diffusion time through the pellet. The species A
diffuses through the pellet in the opposite direction to the diffusion path of the
species B. The pressures of the two chambers are maintained the same, and hence
the counter-flows of the two species are by the mechanism of combined molecular
diffusion and Knudsen diffusion. The fluxes of these solutes are calculated by
simply measuring the concentrations of A and B in the exit streams of the two
chambers. This steady state method of Wicke-Kallanbach is very simple to carry
out and it provides a simple means to calculate steady state fluxes through the pellet.
However, it does have a number of problems:
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(a) dead end pores are not characterized by the measurement of the steady state
flux as they do not contribute to the through-flux

(b) incorrect determination of the diffusivity if the pellet is anisotropic

A+B B+A

Porous medium

A B
Figure 13.1-1: Wicke-Kallenbach diffusion cell

To overcome these problems, the operation of the diffusion cell in the transient
mode will reveal the contribution of the dead end pores. It is important to obtain the
information of these dead end pores as they are usually the pores providing most of
the adsorption capacity in the pellet. The principles of the steady state and transient
operations of the diffusion cell are very similar to the principles of the time lag
presented in the last chapter. The dead end pores are not reflected in the time lag
information. Their information must be obtained from the analysis of the transient
curve describing the approach of the receiving reservoir's pressure towards steady
state. Thus, in order to understand the diffusion characteristic of a pellet, both the
steady state and transient operations should be carried out.

To operate the diffusion cell under transient condition, the concentration of one
of the solutes is perturbed in one chamber and its concentration in the other chamber
is monitored. The time-variation of that concentration will depend on the interplay
of various processes occurring inside the pellet. Those processes responsible to the
flow through the pellet are reflected in the response, while those processes occurring
inside the pellet but not directly contributing to the through flux will be reflected in
the response as a secondary level. This will be clear later when we deal with the
analysis of the transient diffusion cell.

Despite the fact that the transient operation can provide additional information
about the system, for example the dead end pore, it does suffer a number of
disadvantages:
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(a) nonisothermal behavior may be important
(b) mathematical analysis is more tedious than the steady state analysis

There are many ways that we can invoke a transient operation. The common
ways used widely are as follows. A component (usually an inert gas but this is not
necessary) is allowed to flow in both chambers. Once this is achieved and the
pressures of both chambers are equalized, the other solute is injected into one
chamber either as a pulse or a step input. In either mode of injection, the
concentration of this solute is monitored at the other chamber (Figure 13.1-2).

Concentration response

Step input

JJ \Pulse input

A+B A+B

Porous medium

A A+B
Figure 13.1-2: Transient operation of the diffusion cell

In the pulse injection method, the response curve contains information about the
various processes occurring inside the pellet. The moment method is applied to
analyze the response curve. The zero-order moment gives the amount injected into
the system. The first order moment contains information about the processes
responsible directly to the through flux, while the second-order moment contains
information about the secondary processes occurring in the pellet. Similar to the
pulse injection method, the response curve of the step injection method also contains
information about all processes occurring in the pellet. This curve is usually
analyzed by matching the time domain solution to the experimental data. The
steady state of the step-injection response contains only information about the
through processes while the transient part of the curve contains information of all
processes.
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13.2 Wicke-Kallenbach Diffusion Cell

The steady state diffusion cell is composed of a porous medium bound by two
chambers. The porous medium can be either a particle or a collection of particles
mounted in parallel as shown in Figure 13.1-1. The advantages and disadvantages
of the steady state diffusion cell are listed in the following table.

Table 13.2-1: Advantages and disadvantages of the steady state diffusion cell

Advantages Disadvantages
1. Easy to set up and collect data
2. No heat interference on mass transfer
3. Simple analysis

1. Unable to characterize dead end pores
2. Unable to identify anisotropic pellets

At steady state, the flux through the pellet is a constant, and this flux is the flux
through the interconnected pores (or through pores) joining two ends of the pellet
(Figure 13.2-1). The dead end pores do not contribute to the steady state flux even
though most of the capacity reside in the dead end pores. Also the steady state
method does not reveal the mass exchange between the fluid and adsorbed phases.
This is due to the equilibrium between the two phases at any point within the pellet
and hence no contribution of the adsorption process on the steady state flux through
the pellet. Moreover because of the local equilibrium between the two phases at any
points within the particle, there is no heat release and hence isothermal condition is
always ensured in the steady state operation.

Dead end pore

Closed pore
Figure 13.2-1: Through pores, dead end pores and closed pores in a particle

The steady state Wicke-Kallabach method is usually conducted with a binary
system with an aim of determining the binary diffusivity and Knudsen diffusivity in
the porous medium. In this binary system, one gas (A) is flowing into and out of
one chamber, and the other gas (B) is flowing into and out of the other chamber.
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Due to the concentration gradient imposed across the pellet, a counter-current mass
transfer will occur. Let NA be the steady state flux of the component A and NB be
that of the component B. If the total pressure is maintained constant throughout the
system, the mechanism for mass transfer through the particle is due to the combined
molecular and Knudsen diffusions. The steady state flux of the component A for the
case of a cylindrical capillary is (Chapters 7 and 8):

N A = ^ A i L l n
 1 - ( J A B y 2 ^ A B ^ K , A | ^ ^

aABL V ! ~ aABVl + DAB / DK,A )

where c is the total molar concentration (= P/RgT for ideal gas), DAB is the molecular
binary diffusivity, DK A is the Knudsen diffusivity of the component A, L is the
length of the capillary, y, and y2 are mole fractions of A at two ends of the capillary,
and aAB is defined as:

(13.2-2)

The Knudsen diffusivity for a cylindrical capillary is given by:

(13.2-3)

For the case of pellet, the presence of uneven pore size as well as the
interconnection of pores and tortuous path of diffusion, the flux expression for the
pellet case has to be derived from that for a cylindrical capillary (eq. 13.2-1) through
some model about the structure of the pellet. One such model is the parallel path
pore model and in this model the "effective" flux is calculated by summing the
combined Knudsen and molecular binary diffusions over each increment of pore
volume. The expression for the steady state effective flux is:

where f(r) dr is the void volume having pore radii between r and r + dr per unit
volume of the pellet, and it has the following property

;= Jf(r)dr (13.2-5)
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with 8 being the particle porosity. The effective steady state flux (13.2-4) has units
of moles transported per unit total cross sectional area of the pellet per unit time. In
that equation, the parameter q is the tortuosity factor accounting for the tortuous
path of diffusion.

The effective steady state flux is usually defined in terms of a parameter called
the effective diffusivity as follows:

NA,cff = - D e ^ (13.2-6)

Integrating this equation subject to constant boundary conditions at two ends of the
pellet, we get (assuming constant De):

NA,eff = D e c ( y i - y 2 ) (13.2-7)

Comparing eqs. (13.2-7) and (13.2-4) yields the following expression for the
effective diffusivity:

DAR °r (l-aARy2+DAR/DK A(r)\
De = = ^ r N — — ^ ^ f ( 0 <*r (13.2-8)

q ° ( y y ) U + D / D ( ) j

We see that in the transition regime (that is when bulk and molecular diffusions
are both operating) the effective diffusivity is not just a function of the system
parameters but also on the operating conditions as well.

When pore size is very small or pressure is very low, the Knudsen diffusion will
dominate the transport, eq. (13.2-8) is reduced to:

D e = —jDK f A ( r ) f ( r )dr (13.2-9)
^ o

The effective diffusivity in the regime of Knudsen diffusion is simply the
average of the Knudsen diffusivity over the pore size distribution. The steady state
flux in this case takes a simple form:

NA,eff = C(y '~y 2)]DK | A(r) f(r) dr (13.2-10)

On the other hand, when the pore size is large or the pressure is high, the
molecular diffusion will control the overall flux through the pellet. For this case, eq.
(13.2-8) is reduced to:
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and the steady state flux is:

A B

Having the general expression for the steady state flux (eq. 13.2-8) and the two
limits when either Knudsen diffusion or molecular diffusion dominates the transport
(eqs. 13.2-10 and 13.2-12), experiments can be conducted to extract the necessary
parameters.

For example, the experimental conditions can be adjusted such that the
molecular diffusion is the dominating mechanism (high pressure). This can be
experimentally confirmed by the validation of the independence of the steady state
flux with respect to the total pressure because the total molar concentration c is
proportional to the total pressure while the molecular diffusivity is inversely
proportional to pressure (eq. 13.2-12). In this regime, eq. (13.2-12) can be used to
determine the tortuosity factor if the binary diffusion coefficient DAB is known.

We can also adjust the conditions, for example low pressures, such that the
Knudsen diffusion is the controlling mechanism. In this case, eq. (13.2-10) can be
used to describe the steady state flux and to extract the tortuosity factor if the pore
volume distribution is known from other independent experiments, such as the
capillary condensation experiment as learnt in Chapter 3.

The porosity e used in the above analysis is that of the through pores, which are
pores connected between the two ends of the pellet, and the tortuosity factor is for
those pores. As mentioned earlier, the steady state method does not reveal any
features about the dead end pores as well as the adsorptive characteristics if there are
any. Usually pellets are made by compressing small grains or crystals (usually of
the order of 1 micron) at very high pressure.
(a) If those grains remain discrete after the compression and they themselves have

pores usually much smaller than pores formed by the inter-particle voids, these
pores are called the dead end pores. Using the steady state method, the
measured flux does not reflect any contribution from those dead end pores.
Only pores between the grains are characterized. In this case the porosity in eq.
(13.2-8) is the porosity of the through-pores, and the pore volume distribution
f(r) only reflects those pores.

(b) If the grains form a continuum joining two ends of the pellet, then the diffusion
through the grain will also contribute to the measured steady state flux. The
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diffusion through the grain is very complex. If the pores of the grain are of
molecular dimension then they can only accommodate molecules in the
adsorbed state and the diffusion of the adsorbed molecules is called the surface
diffusion. In this case the total flux is the summation of the pore flux and the
surface flux. The pore flux is given by eq. (13.2-8) and the surface diffusion
flux can be calculated from the following equation

dCu

NA,s = - D , , e f f - ^ (13.2-13)

where D^eff is the effective surface diffusivity and CM is the adsorbed
concentration. The integral of the above equation subject to constant boundary
conditions is:

(13.2-14)

For simplicity we have assumed constant surface diffusivity although in general the
surface diffusivity is a strong function of adsorbed concentration. Thus, the integral
equation (13.2-14) is strictly applicable to the situation where the difference in
concentration is small enough to ensure constant surface diffusivity or when the
loading is low. For such a case, the total flux at steady state is:

q o A B L J l l - a A B y 1 + DA B /DK > A(r)
r + -^en V ^, , - , , . , ( 1 3

L

Usually the pore volume diffusion flux is characterized by the use of a non-
adsorbing gas. When an adsorbing gas is used the contribution of the surface
diffusion can be obtained by subtracting the pore diffusion flux from the total flux.
Knowing the surface diffusion flux, the effective surface diffusivity then can be
calculated.

13.3 Transient Diffusion Cell

The steady state diffusion cell method, despite its simplicity in operation and
measurement, does not give us information about the dead-end pores. The
information about the dead-end pores is important in two respects:
(a) Most of the adsorption capacity resides in the dead-end pores
(b) Transient operation of a solid containing dead-end pores might be controlled by

the ability of the adsorbate molecules to enter the dead-end pores, usually
micropores. This means that the time scale of the adsorption process is
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controlled by the time it takes for the molecules to penetrate into the dead-end
pores.

If these two aspects are needed to understand the given adsorption system, then
the steady state diffusion cell is not the answer, but rather we must resort to the
transient diffusion cell. Before addressing the utility of the transient mode in the
determination of the dead-end pore characteristics, let us illustrate the method with a
non-adsorbing gas. The difference between a non-adsorbing gas and an adsorbing
gas is the formulation of the mass balance equation inside the particle. The mass
balance equations for the two chambers are the same for both cases as there is no
adsorption in the chambers.

In the transient operation of the diffusion cell, an inert gas is usually passed
through the two chambers and their total pressures are adjusted to be the same. At
time t = 0+ an impulse of tracer, either non-adsorbing gas or adsorbing gas, is
injected into one chamber and its concentration is monitored at the other chamber.
Perfect mixing is assumed in both chambers. This is usually satisfied with a proper
design of the system, for example having the influent stream injected directly to the
flat face of the particle.

133.1 Mass Balance around The Two Chambers

The mass balance equations describing the concentration change for the two
chambers are:

( O - F A i (13.2-16a)
x=0dt dx
A —V/

-F2Cb 2 (13.2-16b)
x=L

where V, and V2 are volumes of the two chambers, A is the cross-sectional area of
the pellet, F, and F2 are volumetric flow rates into and out of the two chambers, and
Cbl° is the time-vary ing input of the tracer into the chamber 1.

These two mass balance equations generally describe the concentration
evolution in the two chambers. Since our purpose of using the diffusion cell to
extract useful information about the diffusion, the cell design is usually such that the
mass balance equations can be rendered to a simple form for subsequent simpler
analysis. With this objective in mind, the chambers' volumes can be made small
enough such that the gas residence times in the two chambers are much smaller than
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the diffusion time inside the particle. When this is satisfied experimentally, the
mass balance equations (13.2-16) are reduced to:

cbi =Cbi(t) (13.2-17a)

(13.2-17b)
x=L

13.3.2 The Type of Perturbation

The transient operation of the diffusion cell depends on the shape of this input
versus time. Usually the following three inputs in concentration are normally used:

Impulse
The impulse function takes the form

(13.2-18)

such that
00

jF1Cg1(t)dt = AF,=Q (13.2-19)
o

where Q is the amount of tracer injected into the system.

Square pulse
Injecting a tracer into the system as an impulse is usually not possible in
practice as it takes a finite time to complete the injection. Let this injection
time be to, the concentration of the tracer at the inlet of the chamber 1 is:

Cg,(t) = A-[U(t)-U(t-t0)] (13.2-20)
such that

=Q (13.2-21)
0

The unit of A is mole/cc, while the unit of A in the case of impulse is mole-
sec/cc as the delta function has an unit of sec"1.

Step input
Instead of injecting the tracer as a pulse (impulse or square pulse), the
tracer can be injected as a step injection. The step input is simply:

Cg,(t)=AU(t) (13.2-22)

where A is the concentration of the step input (moles/cc).
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Another type of input which is not normally used is the periodic input.
With this input the standard frequency response method can be applied and
the system parameters can be obtained from the amplitude and phase
analysis.

13.3.3 Mass Balance in the Particle

As mentioned earlier the difference between the non-adsorbing gas and the
adsorbing gas is the formulation of the mass balance in the particle.

13.3.3.1 Non-adsorbing Gases

For non-adsorbing gas, the mass balance in the particle is:

s T f = s D p 0 (13.2-23.)

where 8 is the porosity of the through pores, eT is the total porosity (that is porosity
of the through pores plus the porosity of the dead-end pores) and Dp is the effective
pore diffusivity in the through-pore network.

Since the total pressures of the two chambers are maintained the same, the
viscous flow is either absent or negligible compared to the diffusive flow. Eq.
(13.2-23a) only accounts for the diffusive flow.

The boundary conditions of the mass balance equation (13.2-23a) are:

x = 0; C = Cbl (13.2-23b)

x = L ; C = Cb2 (13.2-23c)

of which we have ignored the film resistances at the two flat surfaces of the particle.
This is very reasonable as the system can be designed to minimize this resistance
compared to the internal diffusional resistance.

13.3.3.2 Adsorbing Gases

When dealing with adsorbing gases, it is important to consider the topology of
the adsorbed phase. We shall consider two topologies of the adsorbed phase. In the
first topology, the adsorbed phase behaves like either a continuous surface
connecting two ends of the pellet and hence the mobility of the adsorbed phase
along the particle is accounted for (Figure 13.2-2). Activated carbon is an example
of this topology. In the second topology, the adsorbed phase is a collection of
transverse dead-end pores, and there is a resistance to molecular flow inside those
pores. There are two sub-classes of this second topology. In the first sub-class the
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size of the dead end pores is of molecular dimension and these pores accommodate
molecules only in the adsorbed state (Figure 13.2-3), while in the second sub-class
the size of the dead-end pores is large enough to accommodate molecules in both
free and adsorbed forms (Figure 13.2-4). Zeolite pellet is an example of the first
sub-class, while alumina is a good example of the second sub-class. Let us now
consider these two topologies.

Adsorbed molecule

Figure 13.2-2: Porous solid with dead-end pores of molecular dimension

Free molecule

Figure 13.2-3: Porous solid with dead-end pores of molecular dimension

Adsorbed molecule

Free molecule

Figure 13.2-4: Porous solid with dead-end pores of dimension such that two forms of molecule exist
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] 3.3.3.2.] Topology? 1: Continuous Surface joining The Two Ends of the Pellet

The mass balance equation describing the concentration change in the pellet is:

ac..
+ ( l e )

at v ; at
(13.2-24)

where C^ is the adsorbed concentration and D^ is the diffusivity of the adsorbed
species, which is generally a function of the adsorbed concentration. The pore
diffusivity describes the diffusion of the free species in the through-pore network.

If the rate of mass exchange between the two phases is faster than the diffusion
rate, we can invoke the local equilibrium between the two phases, that is:

(13.2-25)

where f is the functional form for the adsorption isotherm.

For linear adsorption isotherm, C^(x,t) = K-C(x,t) , the mass balance equation
(13.2-24) becomes:

¥ = D ap P i^ (13.2-26a)
ut OX

where the apparent diffusivity is given by:

e D D + ( l - e ) K D u

Dapp = P , ' " (13.2-26b)
vv + ( l ) K

When K = 0 (that is non-adsorbing gas) the above equation reduces to:

6 - ^ = 6 D D ^ (13.2-27)

7 3.3.3.2.2 Topology 2a: Dead-End Pores of Molecular Dimension

If the dead-end pores are of molecular dimension, adsorbate molecules in these
pores are subject to the attraction force of the walls, therefore the only state in these
pores is the adsorbed state. Assuming there is no adsorption on the wall of the
through pores, the mass balance equation in the particle is:

(13.2-28)
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where 8 is the porosity of the through-pore, and C^ is the mean concentration in
the dead-end pore and is defined as follows:

Ar , - n d V u (13.2-29)

with V^ being the volume of the solid containing the dead-end pores, that is the
particle volume minus the through pore volume.

The concentration in the dead end pore is distributed along the pore, and its
distribution is governed by the following mass balance equation in the dead-end
pore:

— - = r D u ( c J — - (13.2-30)
dt r OT|_ v ' dr J

where r is the distance along the dead end pore, and D^ is the micropore diffusivity.
The boundary conditions of eq.( 13.2-30) are:

r = 0; —*- = <> (13.2-31a)
or

r = R; CM = f[c(x,t)] (13.2-31b)

Eq. (13.2-3lb) states that at the mouth of the dead-end pore, there is a local
equilibrium between the molecules in the macropore and the molecules at the pore
mouth of the dead-end pore.

For non-adsorbing gases, the mass balance equation (13.2-28) reduces to eq.
(13.2-27).

13.3.3.2.3 Topology 2b: Dead-End Pores with Both Forms of Molecules

When the dead-end pores have a size such that they can accommodate both free
and adsorbed molecules, the mass balance of the particle is:

6-ac
dt

E.. + 1 -"H dt v »> dt

82C
= e D p — (13.2-32)

OX

where ĉ  is the porosity of the dead-end pore, defined as the ratio of the volume of
dead-end pore to the volume of solid, Cm is the concentration of the free molecule in
the dead-end pore, and C^ is the concentration of the adsorbed molecule in the dead-
end pore.
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Carrying out the mass balance in the dead-end pore yields the following
equation:

en^S L + ( 1 - e J — = SDm4—frS—1 (13.2-33)

Assuming a local equilibrium between the two phases inside the dead-end pore,
we have the following relationship between the free molecule and the adsorbed
molecule:

(13.2-34)

The boundary conditions of eq. (13.2-33) are:

r = 0; ^ n i = ^ L = o (13.2-35a)
ar ar K J

r = R; Cm=C(x,t) (13.2-35b)

For non-adsorbing gases, the mass balance equation (13.2-32) reduces to eq. (13.2-
23a) with 8T = 8 + ^1 -

13.3.4 The Moment A nalysis

When the system equations are linear (that is when the adsorption isotherm is
linear or the system is perturbed incrementally), we can apply the method of
Laplace transform to solve the set of equations and obtain the inverse by either the
method of residues or a numerical inversion scheme. For the two types of input, the
impulse and the square input, the inversion is not necessary if we are interested in
using the response to extract the system parameters. If this is our goal which is the
case for the diffusion cell method, then the method of moment can be useful for this
purpose.

Given a concentration response, the n-th moment is defined as follows:

00

mn = JtnC(t)dt (13.2-36)

and its normalized n-th moment is scaled against the zero-order moment:

(13.2-37)
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The second central moment is of interest in the determination of parameter and
is defined as:

00

J ( t -^ i ) 2 C(t )d t

u2'=-^ = (13.2-38)

The method procedure is as follows.
(a) First a mathematical model is developed for a given system.
(b) Taking Laplace transform of the mathematical equations and obtain the solution

for the concentration that we wish to utilize
(c) The zero-order, first-order and the second central moments are obtained from

the solution obtained in the Laplace domain by using the following formula:

(13.2-39)m n ( l ) l i m ^
s->o ds

where C(s) is the Laplace transform of C(t)

00

C(s)= Je"stC(t)dt (13.2-40)
o

(d) Matching the zero-order, first-order and second-order central moments of the
theory with those obtained from the experimental response will yield equations
to determine the necessary parameters.
We now first illustrate the method of moment by using the simplest case of non-

adsorbing gas.

13.3.5 Moment Analysis of Non-Adsorbing Gas

For the case of non-adsorbing gas, the governing equations describing the
concentration change in the particle and in the chambers are given in eqs. (13.2-23)
and (13.2-17). Taking Laplace transform of those equations, we get:

(13.2-41)

00

x = 0; C = Je~stCg,(t) dt (13.2-42a)
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x = L; F2 Cb2 = -AeDD

dx
(13.2-42b)

x=L

For the case of perfect impulse of tracer (eq. 13.2-18), eq. (13.2-42a) will become:

00

x = 0; C=|e- s tC^,( t )dt = A (13.2-43)
o

The concentration of the tracer in the chamber 2, Cb2, is what we would like to
monitor. Thus solving eqs. (13.2-41), (13.2-42b) and (13.2-43) for Cb2, we obtain
the following normalized first-order moment:

(13.2.44)
<SDp( A8D

For very high flow rate of the carrier gas in the chamber 2, the normalized first-
order moment will reduce to:

L 2

l i m n , = (13.2-45)
F2->« * 6Dp

It is interesting but not surprising that the first-order moment given in the above
equation is identical to the time lag dealt with in Chapter 12. They both represent
the mean diffusion time of non-adsorbing molecule taken to diffuse from one end of
the pellet to the other end.

The normalized first-order moment (eq. 13.2-44) can be matched with the
experimental moment

00

JtCb2(t)dt

• =

Jcb2(t)dt

to obtain the pore diffusivity Dp. Thus the moment method allows us to extract the
diffusivity without the need to obtain explicitly the temporal evolution of the tracer
concentration in the chamber 2. Another advantage of the moment method is that
there is no need to obtain a calibration curve relating the concentration to the signal
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of the detector as the proportionality constant cancels out in the numerator and the
denominator on eq. (13.2-46).

^i^ifefij Diffusion of helium in nitrogen through a Boehmite
particle

Dogu and Smith (1972) used pellets made by compressing porous
Boehmite particles. They provided the following data about the system of
non-adsorbing helium in nitrogen at 24 °C and 1 arm.

Pellet length, L 2.44 cm
Pellet diameter, D 1.35 cm
Macropore porosity, 6 0.480
Total porosity, 8 0.771
Mean macropore radius, rM 2990 A
Chamber volume, V, = V2 0.5 cc
Volumetric flow rate range, F2 20 - 150 cc/min

By matching the experimental moment to the theoretical first-order
moment, they obtain a value for the diffusivity:

eDp = 0.079 cm2 / sec

This pore diffusivity is related to the combined diffusivity Dc as:

D p = ^ _ (13.2-47)
q

where

— = 1 " C T l 2 y i + (13.2-48)
Dc D12 DKtl(rM)

Under the conditions carried out by Dogu and Smith, the mole fraction
of helium is very low, and hence the combined diffusivity becomes:

— = — + (13.2-49)
D c D12 DK>1(rM)
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At 24 °C and 1 arm, the molecular diffusivity of helium in nitrogen is
0.713 cmVsec and for a macropore radius of 2990 A, the Knudsen
diffusivity is calculated as (Table 7.4-2):

I 297 K
D K , = (9700)(2990 x 10"8 cm) 1!±— = 2.5 cm2 / sec

y 4 g / gmole

The combined diffusivity is:

1 1
- l

( l i V
= + — = 0.555cm2 /sec

U.713 2.57
DK 1(rM)

Using eq. (13.2-47), we obtain the following tortuosity factor:

• = 3.37
_ eDc (0.480)(0.555)

q " eDp " 0.079

13.3.6 Moment Analysis of Adsorbing Gas

The utility of the transient diffusion cell is not just useful for the study of a
diffusion process involving a non-adsorbing gas, it can be used to study adsorption
systems as well. Let us illustrate this with the case of pellet with dead-end pores of
a size such that two forms of molecule (that is free and adsorbed molecules) are
possible. In this case the mass balance equations describing the concentration
distribution in the particle are given in eqs. (13.2-32) to (13.2-35). Usually when
the diffusion cell method is used to extract parameters, conditions are chosen such
that the adsorption isotherm is linear. Thus, the equilibrium relation of eq. (13.2-34)
becomes:

C ^ = K C m (13.2-50)

Solving the mass balance equations for the case of linear isotherm subject to the
boundary conditions (13.2-17) by the method of Laplace transform and from the
solution we obtain the following moments when the input is an impulse (Dogu and
Ercan, 1983):

(3sDpA/L)
(13.2-51)
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[ (6D P A/L) + F] 2 (13.2-52)

15sDpe,Dm(l-s)

The first normalized moment contains the diffusion coefficient in the through-
pore, while the second central moment contains the diffusion coefficients in both
pores. Matching the first moment (eq. 13.2-51) with experimental moments will
allow us to extract the macropore diffusivity, and matching the second moments we
would obtain the micropore diffusivity. In matching the second moment, we require
the high degree of accuracy of the experimental data as a drift in the tail of the
response curve could give rise to the incorrect determination of the second moment.

Dogu and Ercan (1983) used this method to extract dynamic characteristics of a
system of ethylene on ot-alumnia. The following information is available for their
system at 45°C and 1 arm

Micropartice radius, R
Pellet length, L

Cross-section area, A

Through-pore porosity, 8

Micropore porosity, ê

Henry constant, K

= 20u
= 0.6 cm

= 1.41 cm2

= 0.36

= 0.578

= 40

Matching the moments, they found

•334

10"6cm2/sec

eDp = 0.0334 cm2/sec

13.4 Conclusion

The methods presented in the last two sections can be applied to any other
diffusion models in the pellet. Readers are encouraged to apply the method to their
specific systems. Despite of the simplicity suggested by the method, the extraction
of the micropore diffusivity (second order process) requires a very careful collection
of experimental data. If micropore diffusion is dominating the dynamic uptake, the
batch adsorber provides a better means to extract the micropore diffusivity, and this
will Be discussed in Chapter 15.



14
Adsorption and Diffusivity Measurement

by a Chromatography Method

14.1 Introduction

Chapters 9 to 11 deal with the dynamic analysis of a single particle exposed to a
constant bulk environment. The method of differential adsorption bed discussed in
Chapter 11 is suitable for the application of the single particle analysis. A
permeation method called the time lag method is useful for characterisation of
diffusional flow, viscous flow and surface flow of pure gas through a single pellet
(Chapter 12). The diffusion cell method either in steady state mode or transient
mode is useful to characterize binary diffusional systems (Chapter 13). All these
methods evolve around the analysis of a single particle and they complement each
other in the characterization of diffusion and adsorption characteristics of a system.
From the stand point of system set-up, the time lag and diffusion cell methods
require a careful mounting of a particle or particles between two chambers and
extreme care is exercised to avoid any gas by-passing the particle.

The single particle analysis is applicable to the differential adsorption bed or
TGA method. Naturally, the single particle analysis is the simplest as it does not
require the solution of any additional equation describing concentration variations
outside the particle. The method presented in this chapter is the chromatography
method and from the stand point of system set-up it is the easiest to set up. All it
requires are the careful packing of particles into a cylindrical column, a means to
inject some tracer into the column, and of course a means to monitor the exit
concentration as a function of time. In the chromatography operation, the injection
can be in almost any form provided the tracer concentration decreases to zero in
finite time, for example a perfect impulse or a square input. The tracer will
propagate down the column with a speed of which the magnitude depends on the
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affinity between the fluid and adsorbed phases. The spread of the exit concentration
versus time depends on the speed of the molecules can diffuse in and out of the
particle. Thus by measuring the exit concentration versus time, we can analyse for
its mean retention, from which the affinity can be obtained, and its variance from
which some information of the dynamic characteristics can be deduced. Usually the
chromatography method is utilized to obtain the kinetic information within the
particle, but the exit concentration response is affected not only by the diffusional
resistance or any resistances within the particle but also by the axial dispersion or
any nonideal behaviour of the axial flow along the column. Thus to extract the
information on the resistances inside the particle, the axial dispersion contribution
on the spread of the column response needs to be carefully isolated. It is this
isolation process that makes the chromatography not so attractive in the reliable
determination of the internal diffusional resistances. Table 14.1-1 shows the
advantages and disadvantages of the various methods.

14.2 The methodology

The method of chromatography is very simple. Particles of uniform size or
narrow particle size distribution are packed in a cylindrical column. An inert gas is
introduced into the column until the column is stabilised in the sense that the
detection at the column exit detects no variation in the signal. This is registered as
the base line. After this has been achieved, a pulse of tracer, either in the form of an
impulse or a square input, is introduced at the inlet of the column. If the tracer is
nonadsorbing, it will exit the column at the mean retention of the system. However,
if the tracer is an adsorbing solute, its movement down the column is retarded due to
the affinity between the tracer and the particle, and this speed of propagation
depends on the magnitude of this affinity. The stronger the affinity, the longer it
takes for the tracer to exit the column. The exit concentration is monitored by an
appropriate detection device, and it usually exhibits a bell shape response curve with
the mean retention time being proportional to the affinity between the two phases.
The spread of the curve is a complex function of all dispersion forces in the system.
These dispersive forces are:

(a) axial dispersion
(b) film resistance
(c) all resistances within the particle

(cl) pore diffusion resistance in macropore
(c2) micropore diffusional resistance
(c3) finite adsorption resistance
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Table 14.1-1: Advantages and disadvantages of various methods

Method
Single particle
(DAB)
Chapter 9, 10, 11

TGA
Chapters 9, 10,
11

Time lag
Chapter 12

Diffusion cell
Chapter 13

Chromatography
Chapter 14

Batch adsorber
Chapter 15

Advantages
• Reliable data
• can deal with any type of

system
• isothermality is ensured.
• can deal with any mixtures

• quick collection of data

• very easy to collect and
analyse data

• isothermal in steady state
operation

• easy to set up and collection of
data

• quick if only affinity constant
is required

• easy to set up and collection of
data

• useful for expensive
adsorbates

Disadvantages
• very time consuming

• flow rate is limited due to the
instability of the balance at
high flow rate

• can not deal with more than on
adsorbate unless coupled with
other means such as mass
spectrometry

• nonisothermality if the
adsorbate is strongly adsorbing

• difficult in mounting pellet
• nonisothermal if high pressure

is used
• can deal with only pure

component

• extraction of dead end pore
requires the analysis of second
moment

• heat effect in transient
operation of diffusion cell

• Data analysis is quite
cumbersome

• nonisothermal operation

• non-isothermal operation

If the goal of this method is to determine the internal resistances, the first two

resistances (outside the particle) must be isolated either by known correlations or by

way of experimental methods.
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14.2.1 The General Formulation of Mass Balance Equation

The analysis of this method involves the formulation of mass balance equations
describing the concentration distribution in two subsystems:
(a) mass balance equation in the column
(b) mass balance equations in the particle.

The mass balance equation describing the concentration distribution along the
column accounts for the rate of hold up in the column, the axial dispersion, the
convection term and the rate of mass transfer into the particle. This mass balance
takes the following form:

where Cb is the concentration of the tracer in the flowing fluid, D^ is the axial
dispersion coefficient, J|R is the mass transfer rate into the particle per unit
interfacial surface area, a is the interfacial area per unit bed volume, eb is the bed
porosity, and u is the superficial velocity.

If the particles are spherical of radius R, the interfacial area per unit bed volume
is

(14.2-2)

The boundary conditions of the mass balance equation (14.2-1) generally take
the form

z = 0; C b = C 0 ( t ) (14.2-3a)

z = L —^- = 0 (14.2-3b)
UL

Strictly speaking, one should impose the more proper boundary condition at the
entrance to allow for the axial dispersion at the inlet, that is

z = 0; D a x ^ = u (C b -C 0 ( t ) ) (14.2-4)

With the long column commonly used in the chromatography operation, the use of
eq. (14.2-3a) is satisfactory.

The mass balance equation describing the concentration inside the particle can
be written in the following general format:
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F(C,x,t) = 0 (14.2-5)

where the dimension of the vector F depends on the dimension of the concentration
vector C which is defined as

0 = ^ C2 . - Cn] (14.2-6)

where Cj represents the concentration of the j-th phase within the particle, with C,
being the intra-particle concentration of fluid phase which is in contact with the bulk
outside the particle. The other concentrations Cj (j = 2, 3, ..., n) represent those of
different form in the adsorbed phase.

The boundary condition of eq. (14.2-5) is usually in the form of the film
boundary condition, that is

x = R; j | R = k m ( c b - C , | R ) (14.2-7)

The specific form of eq. (14.2-5) depends on the assumption of the diffusion
mechanism within the particle. We shall address this by applying to three specific
cases in the next three sections.

14.2.2 The Initial Condition

The initial state of the column can be either in two following situations.
(a) the column is initially free of any tracer molecule
(b) the column is initially equilibrated with a tracer of a concentration C*.

In the first situation, a carrier fluid (which is usually an inert fluid but this is not
necessary) is passed through the column, and once this is stabilised a tracer is
injected into the column with a concentration of C0(t) at the inlet. The concentration
is chosen such that the adsorption isotherm of this tracer towards the solid packing
is linear. This results in a set of linear equations which permit the use of Laplace
transform to obtain solution analytically. Knowing the solution in the Laplace
domain, the solution in real time can be in principle obtained by some inversion
procedure whether it be analytically or numerically. However, the moment method
illustrated in Chapter 13 can be utilised to obtain moments from the Laplace
solutions directly without the tedious process of inversion.

In the second situation, the column is initially equilibrated with a tracer having
a concentration of C*, and once this is done the column is injected with a pulse of
tracer having a concentration of C* + AC* where AC* « C*. Because of this small
perturbation in the tracer concentration, the mass balance equations can be
linearised around the concentration C*. The resulting linearised mass balance
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equations are then susceptible to linear analysis of Laplace transform. We shall
illustrate more about this later.

The injection of tracer can be in either the following form. For the case of
initially tracer-free column

z = 0; C b = A 8 ( t ) (14.2-8)

or

r T fC0 for 0< t < t0
z = 0; Cb=C0U(t)-U(t-t0)] = ° ° (14.2-9)

I u tor t > IQ

where 8(t) is the Dirac delta function and U(t) is the step function.
For the case of column initially equilibrated with C* concentration, the

injection can be in either of the following form:

z = 0; C b = C * + A 5 ( t ) (14.2-10)

or
f * +AC * for 0 < t < t0

* fo r t> t f t
 ( 1 4 - 2 - H )

lo

14.2.3 The Moment Method

With either the impulse or square injection, the response of the exit
concentration versus time exhibits a bell-shape curve, from which the moments can
be obtained experimentally. The n-th moment is defined as follows:

00

mn = JtnCb(z,t)dt (14.2-12)
o

and the normalised moment scaled against the zero order moment is defined as

u n = — (14.2-13)
m0

The n-th central moment is defined as the moment relative to the centre of
gravity of the chromatographic curve:

l °°
H ' n = J(t-n,)nCb(z,t)dt (14.2-14)
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The set of governing linear equations are solved by the method of Laplace
transform. The transform is defined as

Cb = JVst Cb(z,t)dt (14.2-15)

Thus if we know the solution in the Laplace domain, the n-th order moment can
be readily obtained by taking the n-th derivative of Cb as shown below.

, n d"C b ( s )

dsn (14.2-16)
s=0

By matching the theoretical moments given in eq. (14.2-16) with the
experimental moments, we can obtain the various parameters of the system.

14.3 Pore Diffusion Model with Local Equilibrium

Let us first illustrate the chromatography method with the simplest diffusion
mechanism within the particle: the pore volume diffusion. For this mechanism the
mass balance equation (eq. 14.2-5) describing the concentration within the particle
is (that is the function F of eq. 14.2-5 has the following form)

F(C,x,t) =
dt dt drV dt

(14.3-1)

Here C = |C, CjJ , where C is the pore fluid concentration, C^ is the adsorbed
concentration, K is the Henry constant and Dp is the pore diffusivity. Here we have
assumed the particle is spherical.

For this model, the flux into the particle J|R (of eq. 14.2-1) takes the form:

(14.3-2)

Thus, the set of governing equations for this case are

eq. (14.2-1): bed equation
eq. (14.2-3): bed boundary conditions
eq. (14.3-1): particle equations
eq. (14.2-7): particle boundary condition.
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Solving these equations subject to the entrance condition (14.2-9) by the
method of Laplace transform yields the solution for the exit concentration Cb(L,s)
in the Laplace domain. Making use of the formula (14.2-16), we obtain the
following first normalised moment and the second central moment.

(14-3-3)

2LE t2

J L ( 8 d + 5 f + S M ) + T ! (14.3-4); ( d f M ) T !

where the parameter 50 is the capacity parameter defined as

( 1 4 . 3 - 5 )

The parameters 5d, 5f and 6M are the parameters characterising the contribution of
axial dispersion, film resistance and pore diffusion resistance towards the spread of
the chromatographic response. They are given by:

(14.3-6a)

(14 .3-6b)

It is interesting to note that the contributions of these three dispersive processes are
additive, and such additive property can be used to our advantage in the parameter
determination.

14.3.1 Parameter Determination:

In principle, by matching the theoretical moments with the corresponding
experimental moments, the adsorption and diffusion parameters can be extracted.
To facilitate the reliability of the parameter extracted, we can make use of an inert
tracer as well as an adsorbing tracer, and carry out experiments for both of them at
different flow rates.

With the inert tracer (that is no adsorption, K = 0), we have the following first
normalised moment.



Adsorption and Diffusivity Measurement by a Chromatography Method 783

At the same flow rate, the first moment of the adsorbing tracer is given by
eq.( 14.3-3). Taking the difference between the first moment for adsorbing tracer
and that for the inert at the same flow rate, we get

M-l "(^l)INERT _fc £ bL (143-8)

which suggests that a plot of the LHS versus the group ( s b L / u ) would yield a
straight line whose slope is equal to the Henry constant. This shows the utility of
using the inert gas and the variation of the flow rate in the experiment to obtain the
Henry constant. The linearity of the isotherm can be experimentally confirmed by
carrying out experimental runs at different concentrations of adsorbate in the pulse.
If the same results are obtained as well as the chromatographic curve is symmetrical
then the assumption of isotherm linearity is justified.

The dynamic parameters have to be determined from the second central
moment as they only affect the spread of the response curve. Like the first
normalised moment, we can also utilise the variation of the flow rate to
systematically extract the dynamic parameters:
(a) axial dispersion coefficient
(b) film mass transfer coefficient
(c) pore diffusivity.

Rearranging eq. (14.3-4) as follows:

where we see that the RHS is the summation of the three dispersion forces: pore
diffusion, film diffusion and axial dispersion. They affect the spread of the
chromatographic curve in an additive manner as we have discussed earlier. The
diffusional resistance term (5M) is independent of velocity as it should be since flow
variation outside the particle does not affect the internal resistance. This diffusional
resistance is proportional to the square of the particle radius. The film resistance
term (5f) is a linear function of particle radius and depends on the velocity though
the film mass transfer coefficient.
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If we plot the LHS of eq. (14.3-9) versus (sb / u) , we could obtain the axial
dispersion from the slope and the intercept of such plot in 5f + 5M. We note that the
intercept is corresponding to infinite velocity at which the contribution of the film
mass transfer resistance is negligible, and hence the intercept is simply 5M, from
which the pore diffusivity can be extracted:

E b L £ J lD0M

14.3.2 Quality of The Chromatographic Response

The chromatography response is characterised by the first normalised moment
and the second central moment. The extent of spread of the chromatographic
response can be measured as the ratio of the spread (second central moment) to the
square of the first normalised moment:

M2
Da

(l + 80)
(14.3-11)

For a given system, that is for given particle size, length, porosity, the degree of
spread is a function of velocity. To obtain the explicit dependence of the degree of
spread in terms of velocity, we need to express the axial dispersion in terms of
velocity. Here we use the following expression for the axial dispersion (Ruthven,
1984).

d ] (14.3-12)

where DM is the molecular diffusivity, and

y, =0.45 + 0.55 6 (14.3-13a)

y2=0.5 (14.3-13b)

The parameter 5f is related to the film mass transfer coefficient, which is a
function of velocity. For a packed column, the film mass transfer coefficient can be
calculated from the following correlation.

, 0 . 6

M
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As a first approximation, we take k™ as a constant. Substitution of eq. (14.3-12) into
eq. (14.3-11) gives:

(l + 50)
(14.3-15)

The contribution of the axial dispersion towards a smaller spread occurs when
the velocity is increased. On the other hand, the contribution of the film and pore
diffusional resistances is unfavourable with an increase in the velocity. The
following figure (14.3-1) shows the two opposing effects on the degree of spread.

Degree of
spread pore & film diffusion

optimum velocity u

Figure 14.3-1: Plot of the Degree of Spread versus Velocity

Thus the chromatography operation is optimal when the function in the RHS of eq.
(14.3-15) has a minimum. The optimal velocity is:

(14.3-16)

An equivalent term commonly used in the chromatography literature is the
height equivalent to a theoretical plate (HETP). It is related to the degree of spread
as follows:

HETP = (14.3-17)
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14.4 Parallel Diffusion Model with Local Equilibrium

Very often that when dealing with adsorption of many gases and vapours in high
surface area solids such as activated carbon and silica gel that surface diffusion can
contribute significantly to the overall uptake. For this mass transfer mechanism, the
mass balance equation describing the concentration distribution within the particle
are:

dC n .dC _ 1 S
8 + (1-8) — = eDn—

at V ' dt p r2 dr

C^ = KC (14.4-lb)

The flux into the particle J|R now takes the form:

This model is identical in form to the model dealt with in the last section with the
replacement of eDp of the last model by

eD p +( l -e )D M K (14.4-3)

Hence the moment results of the last model (eqs. 14.3-3 and 14.3-4) are used with
the above replacement of the diffusivity.

14.5 Pore Diffusion Model with Linear Adsorption Kinetics

Section 14.3 dealt with the pore diffusion model and the rate of mass exchange
between the two phases is much faster than the diffusion rate. In this section we
shall consider the case where such mass exchange is comparable in rate to the
diffusion, and this mass exchange can be described mathematically by the following
equation:

C M (14.5-1)
KJ v J

ka C
dt \ K

The flux into the particle for this model still takes the same form as eq. (14.3-2).
The set of mass balance equations for this case are

eq. (14.2-1): bed equation
eq. (14.2-3): bed boundary condition
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eq. (14.3-la) and (14.5-1): particle equation
eq. (14.2-7): particle boundary condition.

The first normalised moment and the second central moment for this case of
pore diffusion and finite mass exchange kinetics are:

(14.5-2)

— (14.5-3)
12

where
(\-E^)E If n-cM^l

(14.5-4)

J a z B ^ l j o ^ ^ r (izeJKf (_L + _L.)\ (14.5-5)
L \\ * 15 L J U D k R j j

We see in eq. (14.5-3) that the second central moment is the summation of four
dispersion processes:

(a) finite adsorption kinetics
(b) pore diffusion resistance
(c) film diffusion resistance
(d) axial dispersion.

14.6 Bi-Dispersed Solids with Local Equilibrium

14.6.1 Uniform Grain Size

The utility of the chromatography method has been illustrated with a number of
adsorption models:

(a) pore diffusion model with local equilibrium
(b) parallel diffusion model with local equilibrium
(c) pore diffusion model with finite adsorption kinetics

In these models the affinity constant K is obtained from the first normalised moment
and the diffusion characteristics are obtained from the second central moment. The
contribution of each resistance on the spread of the responses curve (that is the
second central moment) is additive. This behaviour of the moment technique holds
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no matter what diffusion mechanisms are operating within the particle. We shall
further illustrate this by applying the chromatography method to bi-dispersed solids,
such as zeolites and molecular sieving carbon. In these solids, we have macropore
diffusion in the void space between the grains and micropore diffusion in the
channels within the grain. The exterior surface area of the grain is very small
compared to the capacity volume within the grain and therefore the adsorption
capacity on the grain exterior surface area is usually neglected.

Like the last three models dealt with so far, the difference between the models
is the formulation of model equations within the particle. For this case, the mass
balance equations within the pellet are:

dc
u i a f 2dc

(14.6-la)

r ^ = R ^ ; C ^ = K C (14.6-lc)

v = R; 8 D p — = k m ( C b - C ) (14.6-ld)

where 8 is the macropore porosity, C is the concentration in the macropore, Dp is the
macropore diffusivity, D^ is the micropore diffusivity, C^ is the concentration in the
grain (mole/cc of the grain), R^ is the grain radius, R is the particle radius, and K is
the Henry constant. The micropore diffusivity is known to have a strong
concentration dependence (Chapter 7). However, in the chromatography operation,
the tracer concentration is usually very low, resulting in a linear isotherm (eq. 14.6-
1 c) and constant micropore diffusivity.

The set of governing equation is composed of
eq. (14.2-1): bed equation
eq. (14.2-3): bed boundary condition
eqs. (14.6-1): particle equations and boundary conditions.

These equations are linear and are susceptible to Laplace transform analysis, from
which we can obtain the theoretical moments. The first normalised moment and the
second central moment for this model are:
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Mi = — i L ( 1 + 5o) + "V (14.6-2)
u 2

. =2L8b_/ g g \ _to_ (14.6-3)
^2 u v d f M n; 1 2

where

8 0 = | v * ^ ^ | | 1 + v i ^ ^ i | ( 1 4 > 6 . 4 )

(14.6-5)

eb 15Dp

8 J ( 1 4 .6-6)

(14.6-7)

5 = v* ^J_ji v i (14.6-8)
8b 15D^

The Henry constant K is determined from the first normalised moment and all
the kinetic parameters are determined from the second central moment. It is noted
that the contributions of the axial dispersion and the film are the same for all
models, and the contribution of the macropore diffusion is also the same in all
models involving macropore diffusion. These contributions are additive, which
makes the chromatography method simple in its analysis.

We summarise all the results in the following table, with the following notation
to denote the various models.

Model A: Pore diffusion model with local equilibrium
Model B: Parallel diffusion model with local equilibrium
Model C: Pore diffusion with finite adsorption kinetics
Model D: Bi-dispersed model with local equilibrium
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Table 14.6-1: Comparison of moments from various kinetic models

where

First normalized
moment

Second central moment

§o

5d

8,

6M

eD

5a

A

eD

0

0

IB

. 2 L s b /

^ 2 u V

(l-8b)8

eb

s b

(l-8b)Re2

eb 3km

(l-8b)R282

8 b 15eD

8D

0

0

d +8 f +5 M +5

0-e)K]

B J

l u /

/I _\17 ~|2

L ' e J
T (I-e)K-l2

I1 s J
p+(l-8)KDs

C

sa

0

' 12

D

cD

0

(14.6-9)

(14.6-10)

(14.6-11)

(14.6-12)

(14.6-13)

(14.6-14)

p

(l-6b)(l-6)K2

(14.6-15)

15D,
(14.6-16)

14.6.2 Distribution of Grain Size:

The grains in bi-dispersed solids are usually not uniform in size due to our
inability to tailor the grain size. Therefore to properly account for the diffusion
characteristics inside the grain we must include the grain size distribution in the
mathematical model. Let ^R^) be the grain distribution such that



Adsorption and Diffusivity Measurement by a Chromatography Method 791

(14.6-17)

be the fraction of grain having radii between R^ and R^ +
The mass balances in the particle for this case are given by (14.6-1) with the

exception that eq. (14.6-la) is replaced by

E = \
- 8 )

D,
dCtl (14.6-18)

Applying the moment analysis to the new set of equations (eqs. 14.2-1, 14.2-3,
14.6-lb to 14.6-ld, and 14.6-18), we obtain the first normalised moment and the
second central moment given as in eqs. (14.6-2) to (14.6-7) and

(14.6-19)

For a log normal distribution of the grain size

f(Ru) = - exp

the parameter 6̂  will take the form

(14.6-20)

(14.6-21)

In the case of uniform grain size distribution (that is a = 0), eq. (14.6-21)
reduces to eq. (14.6-8) obtained in the earlier section for uniform grain size.

14.7 Bidispersed Solid (Alumina type) Chromatography

The bi-dispersed solid dealt with in Section 14.6 is zeolite type solid where the
micropores within the grain are of molecular dimension, and hence they only
accommodate one type of adsorbate within the micropore, namely the adsorbed
species. In this section we shall consider another type of bi-dispersed solids where
the micropores are large enough to accommodate adsorbate in both forms: free form
as well as adsorbed form. For such cases, the mass balance equations inside the
particle are:
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ac n 1 B(_2dc-) 3<i-sM)_ „ ac,
(14.7-1)

04-7-2)

< 1 4 7 - 3 )

where C is the concentration of the free species in the macropore, Q is the
concentration of the free species in the micropore, and C^ is the adsorbed
concentration in the micropore (mole/cc of the grain solid), sM is the macropore
porosity (macropore volume/total particle volume), eM is the micropore porosity
(micropore column/grain volume), Dp is the macropore diffusivity, Dj is the
micropore diffusivity of the free species, ka is the adsorption rate constant and Kj is
the equilibrium constant.

Applying the moment method, we obtain the following first normalised
moment and the second central moment.

(14.7-4)

(14.7-5)

where

M

(14.7-7)

0 ^ ) R 4 L ( M ) S t C M X f ) ,
^b 3 k m L 8 £ J
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Note at ê  is the micropore porosity based on the grain volume. The micropore
porosity based on the particle volume is

em = O ~ e M ) S (14.7-11)

and the total porosity based on the particle volume is

e m + O - e M ) S (14.7-12)

14.8 Perturbation Chromatography

The chromatography analysis presented so far for a number of practical
adsorption models illustrates its usefulness in determining the adsorption equilibria
constant in the form of Henry constant and the various kinetics parameters. This
technique usefulness is not limited to the very low concentration range where we
extract the Henry constant, it can also be applied to any concentration and if applied
appropriately we can obtain the slope of the adsorption isotherm at any
concentration. The appropriate method is the perturbation chromatography and its
operation is as follows. First the column is equilibrated with a concentration, say
C*, until all void space within the column and particle have a solute concentration
of C* and the adsorbed phase has a concentration of f(C*) where f is the functional
form for the adsorption isotherm. After the column has been equilibrated with a
flow of concentration C*, we inject into the column a pulse of adsorbate having a
concentration of C* + AC* where AC* « C*. With this small perturbation in
concentration, the responses of the concentration in the column and in the particle
will take the following asymptotic form:

Cb =C*+ACb (14.8-la)

C^C*+AC (14.8-lb)

(14.8-lc)

We shall illustrate the principles of the perturbation chromatography on the
adsorption model for pore diffusion with local equilibrium.

The mass balance equation describing the concentration distribution with the
particle are:

CM=f(C) (14.8-2b)
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We substitute the expansions (eq. 14.8-1) into the balance equations for the bed
(eq. 14.2-1) and the particle (eq. 14.8-2) and obtain the following necessary
equations in terms of the perturbed variables.

=

a ^ r , V D / R
a(AQ

p 5r

s ^ + (l-s)
OX. dt '•VSr

AC

dAC

dr

(14.8-3a)

(14.8-3b)

(14.8-3c)

where 3f/<3C]C* is the slope of the adsorption isotherm at the concentration C*.

We see that the new set of equations in linear and is identical to that in Section
14.3 with the exception that the Henry constant in Section 14.3 is now replaced with
the slope of the adsorption isotherm at C*. Thus if the moment method is applied
on the perturbed variable ACb at the exit of the column, we will obtain the first
normalised moment and the second central moment as given in eqs. (14.3-3) and
(14.3-4), respectively with K replaced by

df(C*)

dC
(14.8-4)

This type of experiment can be repeated at different concentration C* and the
adsorption isotherm is readily obtained as

faf (C)
(14.8-5)

14.9 Concluding Remarks

We have illustrated the chromatography method and showed that the operation
is straightforward, and the moment analysis is very simple in the task of parameter
determination. Provided that some precautions are taken care of (such as careful
packing, removal of heat release) the chromatography method is recommended as a
quick way to learn about the affinity as well as the diffusion characteristics of the
system.



15
Analysis of a Batch Adsorber

15.1 Introduction

The methods of time lag, diffusion cell and chromatography are useful to
characterize the adsorption and diffusion properties of an adsorption system.
Although in principle, those methods can be extended to cover situations such as
multicomponent systems or nonlinear isotherm, but such extension is limited due to
the limitations pointed out in Table 14.1-1. In this chapter we present another
method, the batch adsorber method, as another tool for diffusion and adsorption
characterisation. This method is easy to set up, and it can handle practically any
complexities of an adsorption system. In practice, we can prepare the batch
adsorber in a number of ways. For example, an amount of solid sample is put inside
a closed reservoir and an amount of adsorbate is introduced into the reservoir and its
content is stirred with some means of stirring. Another way is restraining the
particle in a mesh basket attached to a stirrer and the stirrer is rotated, and an
amount of adsorbate is then introduced into the reservoir. The third way is to
simply pack an amount of solid in a small column connected to a closed loop, and
then an amount of adsorbate is introduced into the loop and its content is circulated
through the bed of solids at a speed such that the gas residence time in the loop is
much less than the adsorption time. Among the three configurations, the last one is
the most preferred choice as it is easy to pack the solid in a small column and the
gas circulation rate through the column can be adjusted such that the heat released
from the adsorption process can be effectively removed and hence maintaining the
isothermality of the system. Common to these three configurations is the need for a
means to monitor the adsorbate concentration in the gas phase. This is done by a
number of means, such as the thermal conductivity detector (TCD) or FT-IR, and
they allow the concentration to be monitored continuously.
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15.2 The General Formulation of Mass Balance Equation

The mass balance equations for the batch adsorber are much simpler than those
of the chromatography method. The mass balance involves the balance equation in
the reservoir and the balance equations in the particle.

The mass balance equations in the particle depend on the diffusion and
adsorption mechanisms inside the particle. Those equations have been discussed in
great details in Chapters 9, 10 and 11. In this chapter we will address a number of
simple diffusion and adsorption models of which analytical solutions are feasible in
order to illustrate its application in parameter determination. Other complex models
can also be used with the batch adsorber method but the parameter determination
must be done numerically.

Common to all adsorption and diffusion mechanisms within the particle is the
mass balance in the reservoir. Assuming perfect mixing, the mass balance equation
in the reservoir is

^ A.j|_ (15.2-1)
dt

where V is the volume of the reservoir, Cb is the concentration of the adsorbate in
the reservoir, A is the total exterior surface area of all particles, and J|R the mass
transfer into the particle per unit interfacial area.

If the particles are spherical in shape, the total exterior surface area is

(15.2-2)

where rrip is the mass of the particle, pp is the particle density (mass/volume of
particle) and R is the particle radius. For particles of other shape, the total exterior
surface area is

where s = 0 for slab particle and R is its half-length, and s = 1 for very long cylinder
and R is its radius.

As mentioned earlier, the mass balance equations inside the particle depends on
the adsorption and diffusion mechanisms within the particle. We can write these
mass balance equations for the particle as

F(C,x,t) = 0 (15.2-4)
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where the dimension of the functional form F depends on the dimension of the

concentration vector C

C = [C, C2 . - Cn] (15.2.5)

where Cj is the concentration of the adsorbate of the phase j within the particle. Let
C, be the concentration of the free species and C2, C3 ... CN are concentrations of the
adsorbed species in various forms.

15.2.1 The Initial Condition

The batch adsorber can be operated by either having the reservoir initially free
of any adsorbate and at time t = 0+ an amount of adsorbate is introduced into the
reservoir. For this case the initial conditions are:

t = 0: C b = C b o , C = 0 (15.2-6)

Another condition is that the adsorber is initially equilibrated with an adsorbate of
concentration Cbl and at t = 0+, the concentration in the bulk is increased from Cbl to
Cb2., that is

t = 0; Cb = Cb2 C = [Cblf f2(Cbl)f f 3 (C b l ) , - , fn(Cbl)] (15.2-7)

15.2.2 The Overall Mass Balance Equation

Since the total mass is conserved within a closed reservoir, the mass loss from
the bulk phase of the reservoir must be the same as the mass gain by the particle.
This is achieved by simply integrating the mass balance of the particle (15.2-4) over
the whole volume of the particle and adding the result to the mass balance of the
reservoir to finally get

d C L + d ( N I ) = ( )

dt dt

where NT is the total number of moles within the particle. This total amount is a
function of the concentrations of adsorbate in the free and adsorbed forms, that is

NT =N T (<C>) (15.2-9a)

where

<C>= JcdV (15.2-9b)
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Integrating the overall differential mass balance equation (15.2-8) with respect to
time from t=0 to t gives:

V C b + N T = V C b 0 + N T 0 (15.2-10)

The LHS is the total amount of adsorbate at any time t and the RHS is that amount
at t = 0. This is simply a statement of conservation of mass.

At steady state, the concentration of the free species within the particle is equal
to the bulk concentration, that is

0 , = ^ = ^ (15.2-11)

and the adsorbed species concentrations are in equilibrium with the free species that
is

Cj^fjfQJ (15.2-12)

for j = 2, 3, , n, when f] is the adsorption isotherm functional form for the adsorbed
phase j . Then the conservation of mass at steady state will give:

VCfl0+NT(Ca0>f1(Ca0),f2(Coo),..) = VC b 0 +N T 0 (15.2-13)

This is a nonlinear algebraic equation in terms of C^, from which the steady state
concentration can be obtained.

15.3 Pore Diffusion Model with Local Equilibrium

Let us first illustrate the batch adsorber analysis with a simple adsorption
diffusion mechanism inside the particle: the pore volume diffusion with local
equilibrium. For this mechanism, the mass balance equations describing the
concentration distribution within the particle are:

F(C,x,t) =
dt dt r

2 d A dt

C u - f ( C ) =

(15.3-1)

where C = |C, C^ I and f is the functional form for the adsorption isotherm. For

this model, the flux J|R into the particle is:

Jl = s D D ^ (15.3-2)
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The boundary condition at the exterior surface of the particle is:

Dpf|r = R; = k
m ( C b" C l R ) (15.3-3)

Eqs. (15.2-1) and (15.3-1 to 15.3-3) describe the evolution of the concentrations of
all phases in the system. The evolution of these concentrations is constrained by the
constant total number of moles in the system, that is the loss of mass in one sub-
system is balanced by the gain of mass in another sub-system. This is achieved by
multiplying eq. (15.3-la) by î dr and integrating the result with respect to r from 0
to R, and finally adding the result to eq. (15.2-1) gives:

,dC

where

dt

C

dt dt
= 0 (15.3-4a)

| r 2 C d r , (15.3-4b)

This equation simply states that the loss of mass in the reservoir VdCb / dt is

balanced by the gain of mass within the particle (the curly bracket term).

Integrating eq. (15.3-4a) with respect to time from 0 to t gives:

(15.3-5)

where C^ is the initial bulk concentration in the reservoir, and Q is the initial
concentration in the particle and C^ = f(Q) is the adsorbed concentration which is in
equilibrium with Q. Eq. (15.3-5) is the statement of the conservation of mass.

At steady state, we must have

lim Cb = lim C = Ca
t->oo t->oo

(15.3-6a)

limC,, = (15.3-6b)

Thus, the conservation of mass at steady state is:
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VCM + ^ [sC. + (1 -8)f(CM)] = VCb0 + ^E- [eCj + (1 -s)f(Cj)] (15.3-7)
\ Pp / \ Pp /

This is a nonlinear algebraic equation for C^, from which it can be solved to give the
steady state concentration of the adsorbate in the reservoir. Explicit solution of eq.
(15.3-7) depends on the specific form of the functional form of the adsorption
isotherm f. Let us deal with the following three isotherms:

(a) linear isotherm
(b) rectangular isotherm
(c) Langmuir isotherm

Linear isotherm
We have the following functional form for the linear isotherm

f(C) = KC (15.3-8a)

The steady state concentration can be solved from eq. (15.3-7) and we get

C M = a C b 0 + ( l - a ) C i (15.3-8b)

where

a = -, ^ < 1 (15.3-8c)

We can see that when the reservoir is very large such that a «1, the steady state
concentration C^ is approximately equal to the initial concentration of the reservoir,
and when the reservoir is very small such that a « 0 the steady state concentration is
approximately equal to the initial concentration of the particle. Both of these
extremes are physically expected.

Rectangular isotherm
The adsorption isotherm takes the form

C M S (15.3-9)

The steady state concentration is:
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In this case of irreversible isotherm, the initial concentration Q inside the particle
must be zero; otherwise for finite Q (no matter how small it is) the irreversible
adsorption isotherm states that the adsorbed phase (f(Ci) = C ŝ) is completely
saturated. Hence no adsorption kinetics will happen no matter what the initial bulk
phase concentration is.

Eq. (15.3-10) also states that the steady state bulk phase concentration is
positive when

P L - e ) C M S , (15.3-11)

that is the initial amount in the reservoir (VCb0) must be more than enough to

saturate all the sites within the particle lmp / pp Ml - e)C^. If the constraint (15.3-

11) is not satisfied, that is the initial mass in the reservoir is not enough to saturate

all adsorption sites inside the particle, then the steady state concentration is

(^=0, (15.3-12)

and only a fraction of the particle is saturated with adsorbate; that is the particle is
divided into two regions: the outer shell and the inner core. The outer shell is
saturated with adsorbate while the inner core is free from any adsorbate. The
position dividing the two regions at steady state is readily calculated from the mass
balance that is

(15.3-13)

where a is the volume fraction of the outer shell. If the particle is a sphere of radius
R, then

R

^ (15.3-14)
R }
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Here Rf ̂  is the position demarcating the outer shell and the inner core at steady
state. Combining eqs. (15.3-13) and (15.3-14), we obtain this position as given
below:

-i 1/3

vc bO

us

< R (15.3-15)

The existence of the adsorption front at steady state is only possible with the
irreversible isotherm.

Langmuir isotherm
For Langmuir isotherm, the functional form is

bC
C , = f ( C ) - C w

bC
(15.3-16)

Substituting this Langmuir equation into the conservation of mass equation at steady
state (eq. 15.3-7) and solving for the solution, we obtain:

- A + A2 + 4 B b V +
mne

1/2

2b

- l

where

A = V + —p- [e + (1 - e)K] - B.b ; K = bCus

(15.3-17a)

(15.3-17b)

mrv c»+ |_ar+ ( i-E ) c«Tf^ (15.3-17c)

Let us make an observation about the effect of nonlinearity on the steady state
concentration. We choose the situation where the particle is initially free from
adsorbate, that is Q = 0. The steady state concentration for the three isotherms are
tabulated below.
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Isotherm Steady state concentration Eq#
Linear V (15.3-18)

v + —£-
Up

Langmuir

b0

(15.3-19)

; B = VCbo

Irreversible

bo _ J

cb0

fv h
v ^ p

](>-e)CMS

J c b 0
/ \
0

for V P **» p h r^r1
V^bo ' I1 Z)^\i

pp

otherwise

(15.3-20)

s

In the linear isotherm case, the extent of uptake CJC^ (given in eq. 15.3-18) is
independent of the initial concentration used. This is not the case for the case of
nonlinear isotherm. The following figure (15.3-1) shows a plot of this extent of
uptake versus the initial bulk phase concentration

u8

0.7 -

1e-6 1e-5 1«-4

Figure 15.3-1: Plot of C,* /Cb0 versus Cb0

In generating the above figure, we have used for the following parameters, V = 1000
cm3, nip = lOg, pp = lg / cc, e = 0.33, b = 20 000 cc/mole, C^ = 0.005 mole/cc.
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15.3.1 Linear Isotherm

We have formulated the mass balance equation and considered the steady state
concentration. Let us now address the dynamic behaviour for the case of linear
isotherm.

f(C) = KC (15.3-21)

Solving for the concentration in the reservoir by using the Laplace transform, the
following solution is obtained for the bulk concentration

where

b0
B

n

1 B
i

2 6

"l + (B/3)X2
n-pn~

0-Pn)2

( V

'si11 i-pj

(15.3-22)

(15.3-23a)

(15.3-23b)

(15.3-23C)

(15.3-23d)

8 D p

(15.3-23e)

The eigenvalues Xn are positive roots of the following transcendental equation:

B X2

(15.3-24)

For infinite stirring (Bi -» oo), the coefficient d^ and the eigenvalues are obtained
from:
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1 8
— (15.3-25a)

?incotan?in - 1 = — X2
n (15.3-25b)

The first ten eigenvalues for two values of B (B = 1 and 10) are tabulated in the
following table.

j

1
2
3
4
5
6
7
8
9
10

B=l
3.7264
6.6814
9.7156
12.7927
15.8924
19.0049
22.1251
25.2504
28.3793
31.5106

B = 1 0
3.2316
6.3302
9.4564
12.5901
15.7270
18.8654
22.0048
25.1447
28.2849
31.4255

The transient solution given in eq. (15.3-22) contains two terms. The first term is
the steady state solution (which is simply eq. 15.3-18) and the second term is the
transient contribution to the bulk concentration. This equation can be used to fit
experimental data to extract the diffusion coefficient, in this case the pore
diffusivity. This is usually done by a nonlinear optimization procedure, that is a
value for the diffusivity is guessed and the theoretical curve is generated from eq.
(15.3-22). The next step is to calculate the residual defined as

Residual = £[Cb(tj)-Cb(tj)|exp]2 (15.3-26)

where n is the number of data point. The optimisation procedure is then to
minimize the above residual and when such minimum (usually local minimum) is
found, the parameter obtained is the optimised parameter.

An alternative approach to the above numerical optimization involves only a
simple linear plot. This procedure is as follows:
(1) For a known isotherm parameter, that is K, calculate B using eq. (15.3-23b) (or

it can obtained from steady state concentration).
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(2) Evaluate the eigenvalues from eq. (15.3-25b) and the coefficient an (eq. 15.3-
25a). Then generate a plot of (VC^ versus nondimensional time T using eq.
(15.3-22) as shown in Figure 15.3-2.

(3) From the experimental data (tj5 Cb(tj)) obtain the nondimensional time Tj
corresponding to this data point. Repeat this for all experimental data points.

(4) Plot Tj versus tj and this should give a straight line (by the virtue of eq. 15.3-
23c) with a slope of

sDr

R2[e
(15.3-27)

Knowing this slope the pore diffusivity can be calculated.

Figure 15.3-2: Plot of C /C versus T (eq. 15.3-22)

15.3.2 Irreversible Adsorption Isotherm

When the adsorption isotherm is irreversible, the mass balance equations in the
particle are (see Chapter 9 for more detail):

Rf < r <R (15.3-28a)
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(15.3-28b)
\ / u s j , — p *•>

at or R
IRf

subject to:

r = R f ; C = 0 (15.3-29c)

r = R; - e D p ^ l = k m ( C - C b ) (15.3-29b)

The mass balance for the adsorbate in the reservoir is

(15.3-30)
dt R ^ p p / p d r

Eqs. (15.3-28) simply state that the particle is divided into two regions separated by
the position Rf. The process occurring in the saturated outer region is by pore
diffusion and the rate of mass accumulation is that region is assumed negligible (that
is dC I dt « 0 ) . At the adsorption front (R=Rf), the adsorbate concentration is
zero and the molar flux at the front is equal to the adsorption rate.

Solving eqs. (15.3-28) to (15.3-30) yields the following solution for the bulk
concentration.

- ^ - = l - c t ( l - X 3 ) (15.3-31)

where X = R/R is a function of time, determined from the following equation:

1 eDpCb0t-t -t (15.3-32)

where

(15.3-33a)

^ (15.3-33b)
E D P
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Eq. (15.3-31) can be used to match with the experimental data to extract the pore
diffusivity. The procedure is done as follows:

(i) for a given data (t,, Cb(j)), evaluate X, from eq. (15.3-31).
Knowing this Xj? evaluate the LHS of eq. (15.3-32) and let this
value be Hj. Repeat this step for all data points.

(ii) Next, plot the LHS of eq. (15.3-32), that is Hj, versus tj for all j .
We get a straight line with a slope of

P b - (15.3-34)

from which the pore diffusivity can be determined.
For the transient solution for the bulk concentration (eq. 15.3-31) to be positive,

we must have:

cc<l (15.3-35a)

that is

(15.3-35b)

the steady state concentration is achieved when the adsorption front Rf reaches the
center of the particle (that is Rf = 0):

V C b 0 - ^

and the time it takes to reach this adsorption steady state concentration is

(15.3-37)

It takes finite time to reach the steady state and this is the property of the irreversible
isotherm. In contrast, the time it takes to reach the steady state concentration in the
case of linear isotherm is infinite and therefore to estimate the time scale of
adsorption we have to use the time taken for the concentration to reach, say 95% of
the steady state concentration.
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If a > 1, or

mr
VCb0< I - ^ ( l - e ) ^ (15.3-38)

Pp

That is the initial number of moles in the reservoir is not sufficient to saturate the
particle, the steady state concentration will be zero and the final adsorption front is

X o o = ( ^ r ) (15.3-39)

and the time it takes, for this case, to empty all adsorbate from the reservoir is:

(15.3-40)

15.3.3 Nonlinear Adsorption Isotherm

When the adsorption isotherm is nonlinear, for example the Langmuir equation

^ ^ bC

1 + bC
(15.3-41)

the mass balance equations (15.3-la), (15.3-41) for the particle and the mass balance
equation for the reservoir (15.3-4a) must be integrated numerically. The behaviour
of this solution will be between those described in the last two sections for the case
of linear and irreversible isotherms. For the parameter determination, the numerical
solution can be matched with the experimental data by using a nonlinear
optimisation to obtain the dynamic parameters.

15.4 Concluding Remarks

The batch adsorber method is a convenient method to obtain the dynamic
parameter. The ease of such determination has been shown with systems following
a linear isotherm or an irreversible isotherm. For systems following a nonlinear
isotherm, the model equations must be solved numerically and such numerical
solutions can be readily matched with the experimental data by using a nonlinear
optimisation procedure. Software for nonlinear optimisation is readily available
nowadays, and this will make the task of obtaining parameters easier. What we
have shown so far in this chapter are situations under isothermal conditions.
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Usually for the purpose of mass transfer parameter determination, care is always
exercised to eliminate the heat transfer, such as the third configuration as mentioned
in the introduction section (15.1).



Table of Contents of MatLab
Programs

Disclaimer

This book contains a number of computer programs written in Matlab version 5.1.

They are intended to use by the readers to understand the concepts of adsorption

better, and they are for educational and instructional purposes only. Use of these

programs for design purposes may be done at the owner's risk. Neither the author

nor the publisher will bear any responsibility for the accuracy obtained from the

enclosed programs

Program Program description

ADSORBO Adsorption kinetics of one species in a particle
1. Linear isotherm
2. Isothermal conditions

ADSORB1A Adsorption kinetics of one species in a particle
1. Langmuir or Toth
2. Isothermal conditions

ADSORB1B Adsorption kinetics of one species in a particle
1. Langmuir isotherm
2. Nonisothermal conditions

ADSORB1C Adsorption kinetics of one species in a crystal
1. Langmuir isotherm
2. Isothermal conditions

ADSORB1D Adsorption kinetics of one species in a crystal
1. Langmuir isotherm
2. Nonisothermal conditions
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ADSORB1E Adsorption kinetics of one species in a zeolite pellet composed of many
crystals
1. Langmuir isotherm
2. Nonisothermal conditions
3. Zeolite pellet = many crystals

ADSORB3A Adsorption kinetics of N species in a crystal under isothermal conditions
1. Extended Langmuir equation
2. Isothermal conditions
3. N species
4. Crystal

ADSORB5A Adsorption kinetics of N species in a cylindrical pore under isothermal
conditions
1. Extended Langmuir equation
2. Isothermal conditions
3. Cylindrical pore
4. N species
5. Viscous flow

ADSORB5B Adsorption kinetics of N species in a particle under isothermal
conditions
1. Extended Langmuir
2. Isothermal conditions
3. Porous particle
4. N species
5. Viscous flow and surface flow

ADSORB5C Adsorption kinetics of N species in a particle under non-isothermal
conditions
1. Extended Langmuir
2. Non-isothermal conditions
3. Particle
4. N species
5. Including viscous flow and surface flow

BIND Calculation of binary D^

CAPILL2 Steady state diffusion flux in a capillary
1. Knudsen flow
2. Molecular diffusion flow

E_VS_D Interaction energy versus half-width or pore radius

EIGENP Eigenvalue in a single particle
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FASTIAS Fast IAS theory

FOWLER Adsorption isotherm of Fowler-Guggenhein equation

HILL Adsorption isotherm of Hill-deBoer equation

HK Effective width of a slit pore as a function of reduced pressure using HK
method

IAS Ideal Adsorption Theory

ISO_FIT1 Pure component isotherm fitting

ISO_FIT2 Pure component fitting at multiple temperatures

MesoPSDl Mesopore size distribution using double gamma PSD

PI 043 Charac te r i s t i c s o f 1 0 4 3 potent ia l e n e r g y

PSD_MESO Statistical thickness as a function of reduced pressure for mesopore

STEFTUBE Stefan tube of a mixture of n species evaporating into an n-th species
medium

UPTAKEP Uptake calculation in a single particle

Most of these program can be run by typing the name of the program. For
programs which require optimization routines, the user will be prompted for the
guessing parameters and for approval whether the initial guess is acceptable. To
change the parameters in the program, the user simply open the m files using either
the NOTEPAD in Windows or the built-in m-editor of the MatLab version 5.1. The
built-in m-editor is recommended because it can tell the user whether the syntax
used is correct or not. In each program there is a section called "USER SUPPLY
SECTION". There is a nomenclature in each of the program so that the user knows
the meaning of each parameter. The user may change these parameters and save the
file before executing the program within the MatLab worksheet.

For example, if the user wants to simulate the adsorption kinetics of an
adsorbate in a particle under isothermal conditions and Langmuir isotherm, the user
simply opens the ADSORB 1A.M file, and will see the following "USER SUPPLY
SECTION"
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% USER
s
R
porosity
ci
cb
cO
b
emus
biot
Dp
Ds

SUPPLY SECTION
= 0;
= 0.2;
= 0.33;
= 0;
= le-6;
= le-6;
= Ie6;
= 5e-3;
= 1000;
= 0.1;
= le-5;

% particle shape factor
% particle radius (cm)
% particle porosity (-)
% initial gas concentration (mole/cc)
% bulk gas concentration (mole/cc)
% reference concentration (mole/cc)
% adsorption affinity (cc/mole)
% maximum adsorption capacity (mole/cc)
% biot number (-)
% pore diffusivity (cmA2/sec)
% surface diffusivity (cmA2/sec)

To change any of those parameters, for example the particle radius to 0.1, the user
simply replace R = 0.2 in the "USER SUPPLY SECTION" to R = 0.1. Next save
the file, and then return to the MatLab worksheet and execute the program by
simply typing ADSORB 1 A.

Supporting programs

All the programs enclosed with this book require a number of supporting programs
to run. Most of these programs are built-in programs within the MatLab version 5.1.
However, some programs such as the Newton-Raphson program for solving
nonlinear algebraic equations and collocation programs for solving boundary value
problems are enclosed with the diskette. The collocation programs were adapted
from algorithms developed by Villadsen and Michelsen (1978) (Chapter 3).
Readers must refer to this excellent treatise for further exposition of the orthogonal
collocation method.

Basic Instructions

Prior to running the programs enclosed in the diskette, the user should copy them
into a sub-directory in a hard drive and make sure that the paths of these programs
are added to the MatLab worksheet so that they can be executed.
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Symbol
in text

a

a™
A
b

b0

boo

B

CQll

Bo

Bi

BiH
c

cb

Ci

Co

CBET

Cp

c,
c.
c*
c*
c,.
Wo
d

D

Dapp

Dc

De

Dp

Ds

Du

Symbol in
MatLab

a

a(n)
am
A

b
bO
b_infmity
B
B

BO
Bi
BiH
c
cb
ci
cO
C_BET
Cp
Cf
emu
cmub
cmui
emus
cmuO
d

D
Dapp
D_combined

De
Dp
Ds
Dmu

Description

amount adsorbed
coefficient in expansion
projected area occupied by one molecule
adsorption potential (=RgTln(P0/P))
Langmuir affinity constant
Affinity constant at some reference temperature To

Affinity constant at infinite temperature
structural parameter in Dubinin equation
inverse diffusion coefficient matrix
viscous flow parameter, = 1̂ /8 for straight capillary
Biot number for mass transfer
Biot number for heat transfer
free species concentration
bulk concentration
initial concentration
reference concentration
constant in BET equation
heat capacity of solid

heat capacity of fluid
adsorbed concentration
adsorbed concentration in equilibrium with cb

adsorbed concentration in equilibrium with c{

saturation adsorbed concentration
adsorbed concentration in equilibrium with c0

pore half-width of slit shaped pore
driving force in M-S formulation for component j
diffusion coefficient
apparent diffusivity
combined diffusivity
effective diffusivity
pore diffusivity
surface diffusivity
diffusivity in adsorbed phase

Units

mole/cc

-
nmVmolecule
Joule/mole

kPa \Tor r l

kPa1, Torr1

kPa'\ Torr1

(mole/Joule)2

sec/m2

m2

-
-

mole/cc of gas
mole/cc of gas
mole/cc of gas
mole/cc of gas

-
Joule/kg/K
Joule/kg/K
mole/cc solid
mole/cc solid
mole/cc solid
mole/cc solid
mole/cc solid
nm

m2/sec
m2/sec
m2/sec
rrrVsec
nrVsec

rrrVsec
rrrVsec
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Symbol
in text

D,T

E

Ed

EL

E,
Eo

E,

f

f(C)

f(r)
f(x)
F

F
F(E)

G
h
H
J

kB

k

K
kd

K
kf

km

K
K
Kn(x)

Ko
Kn
L
L

Lc

LeBi

Symbol in
MatLab

DmuT
DmuO
DOmu

DOmuO

E

Ed
EL
Emu
EO
El

f
fO

fractional_up

take

h

J
kB

k_ads
k_des

km
K

KO

L
L
Lc
LeBi

Description

characteristic adsorbed diffusivity
diffusivity in adsorbed phase at reference To

corrected diffusivity

corrected diffusivity at reference temperature To

interaction energy between solid and adsorbing
molecule
activation energy for desorption
heat of liquefaction
activation energy for surface diffusion
characteristic energy used in Dubinin equation
interaction energy between solid and the first layer in
BET

fugacity

fugacity at standard state
functional form for the adsorption isotherm

pore size distribution
micropore size distribution
fractional uptake

Hemholtz free energy
interaction energy distribution
free energy
heat transfer coefficient
enthalpy

diffusive flux
Boltzmann constant, 1.38 x 10'23 Joule/molecule/K
parameter in Anderson's modified BET equation
rate constant for adsorption

rate constant for desorption
effective thermal conductivity

fluid thermal conductivity
mass transfer coefficient
Henry constant

Freundlich constant
eigenfunction
Knudsen flow parameter, =r/2 for straight capillary
Knudsen number
length of porous medium
radius of a crystallite
length of a capillary
Lewis-Biot number for heat transfer

Units

m2/sec
m2/sec
m2/sec

m2/sec

Joule/mole

Joule/mole
Joule/mole
Joule/mole
Joule/mole
Joule/mole

kPa, Torr
kPa, Torr
mole/cc of
solid
m-1

m1

-

Joule/mole
mole/Joule
Joule/mole
Joule/m2/sec/K
Joule/mole
mole/m2/sec
J/molecule/K
-

Joule/m/sec/K

Joule/m/sec/K
m/sec
-

-
m
-

m
m
m
_
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Symbol
in text

mp

M
M(t)
n
n

n
nc
N
N

NAV

NA,B

P
Pb

Pi

Po

Pads

Pdes

Po

PT

q
Q

qiso

qnct

r
r
r

rm

r0
ri,2

R

Rg

Ra

Rd

Ru

Symbol in
MatLab

mp
MW
M
n
n

n
ncomp
N
N

P
pb

Pi
pO

PO

PT

q
Q

r
r
r

R

Rg

Rmu

Description

mass of particle
molecular weight
amount adsorbed up to time t
exponent in DA equation
number of sites per adsorbed molecule in Nitta
equation
number of multilayer in multilayer BET equation
number of component in a mixture
molar flux

number of interior collocation point
Avogrado number
fluxes of component A and B
partial pressure
bulk pressure

initial pressure
reference pressure
pressure at which condensation occurs upon
adsorption
pressure at which condensation occurs upon
desorption
vapor pressure

total pressure
tortuosity factor
heat of adsorption
isosteric heat of adsorption
net heat of adsorption
radial coordinate
pore radius
distance between the centers of two atoms or
molecules
mean radius of curvature
distance between two atoms at which E12 is zero
principal radii of a curved interface
particle radius
gas constant
= 8.314 Joule/mole/K
= 1.987 cal/mole/K
= 82.05 cc-atm/mole/K
= 8.314 x lO^-cm^sec^mole1 K1

= 8.314 x 103 kg-irrW^gmor'K/1

rate of adsorption
rate of desorption
radius of microparticle

Units

g
g/mole
mole

-
-

-
-

mole/m2/sec
-

-
mole/m2/sec
kPa, Torr
kPa, Torr

kPa, Torr
kPa, Torr
kPa, Torr

kPa, Torr

kPa, Torr
kPa, Torr

-
Joule/mole
Joule/mole

Joule/mole
m
m
m

m
m
m

m

mole/sec
mole/sec
m
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Symbol

in text

s
s
S

Scxt

sg
t

t
t

t.ag

tO.5

T

Tb

Tj

To

u
u
V

vM

V,vT

V
V

vm
V P

w
W

Wo

X

X

X

y
z

z
z

Symbol in
MatLab

s
s
S
S_ext

Sg
t
t
t
tjag
half time
T

Tb
Ti

TO
u
u
V

vm

V
V

Vm
Vp
w
W

WO
X

X

X

y
z

z
z

Description

heterogeneity parameter in Unilan equation
particle shape factor
entropy
external surface area
specific surface area
time
parameter in Toth isotherm
average thickness of the adsorbed layer
time lag in the time lag analysis
half time in fractional uptake
temperature
bulk temperature
initial temperature

reference temperature
superficial velocity

pairwise adsorbate-adsorbate interaction energy
interstitial velocity
liquid molar volume
mean molecular speed

volume
volume of gas adsorbed
volume of gas adsorbed to fill a monolayer
specific pore volume
adsorbate-adsorbate interaction energy
specific amount adsorbed
limiting amount adsorbed

mole fraction in the adsorbed phase
coordinate
micropore half width
mole fraction in the gas phase
coordination number in adsorbate-adsorbate
interaction

coordinate
reduced spreading pressure

Units

-

-

Joule/mole/K
m2/g
m2/g

sec
-
nm

sec
sec
K
K
K
K
m/sec
Joule/mole

m/sec
cc/mole
m/sec

cc, m3

cc, m3

cc, m3

cc/g
Joule/mole
mole/g, cc/g
mole/g, cc/g

-
m
nm
-
-

m

mole/cc

Greek symbols
a alpha sticking coefficient
a al parameter for the Jacobi polynomial
a alpha exponent in the temperature dependence of Dp

P beta similarity coefficient
P beta heat transfer number = QC^o/pCpTo

P be parameter for the Jacobi polynomial in collocation
method
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Symbol
in text

P
X
8

8
8

So
8

%

£b

E|2

£j2

<t>
Y
Y
Y

X
X

xb
Xi

Xo

\l

Jl

r,

V

n

e
e
eb
©i

e
e
pP

PCP

<J12

a12

a2

T

T

CO

Symbol in
MatLab

delta

delta

deltaO
porosity
porosity_mu

porosityb

gamma
gammaE
gammaQ

lambda
lambda
lambdab
lambdai
lambdaO

viscosity

theta
theta
thetab
thetai

rho_p
rhomu
rhoCp
sigma
sigma 12

sigma 12
sigma2
tau

Description

slip friction coefficient of viscous flow
parameter, function
thermal expansion coefficient of the maximum
capacity
distance between two adjacent adsorption sites
ratio of surface to pore volume diffusion
ratio of surface to pore volume diffusion at To

macropore and mesopore porosity
micropore porosity
bed porosity
adsorption potential between two atoms or molecules
depth of the adsorption potential minimum
adsorption potential
activity coefficient
activation number = E^K^Y0

heat of adsorption number = Q/RgT0

eigenvalue
mean free path
Langmuir nondimensional parameter, = be, bp
bCb,bpb

bCi,bPi

bc0, bp0

chemical potential
viscosity
nondimensional distance
kinematic viscosity
spreading pressure

fractional loading
non-dimensional temperature
non-dimensional bulk temperature
non-dimensional initial temperature
angle of the liquid condensate at the solid
residence time
particle density
microparticle density
volumetric heat capacity
surface tension
parameter in continuum diffusion, = j _ / M , / M ,

average collision diameter
parameter in O'Brien and Myers equation
nondimensional time
tortuosity (=L/LC)
frequency

Units

-
1/K

m

-
-
-
-
-
Joule
Joule
Joule

-
-

-
-

m
-
-
-
-
Joule/mole

kg/m/sec
-

m2/sec
Joule/m3

-
-

-
-
radian

sec
g/cc
g/cc
Joule/cc/K
Joule/m2

-

m

-
-

-
1/sec
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Symbol Symbol in Description Units

in text MatLab

£n zai(n) n-th eigenvalue

*F Functional form, parameter

£ eigenvalue

A micropore half width variance nm

Ah{ enthalpy of immersion Joule/mole

f Gamma function

_A Function, defined in the Stefan-Maxwell equation sec/m2

Upperscript

a phase a
P phase P

_o interface a

Subscript

0 reference temperature To and pressure p0

b bulk condition

1 initial condition

D continuum diffusion

K Knudsen diffusion

s saturation

s surface

T total

vis viscous flow

u adsorbed phase
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SI prefixes

Prefix Symbol Multiplication factor

mega
kilo
deka
deci
centi
milli
micro
nano

M
k
da
d
c
m

106

103

10
101

io-2

io-3

I O 6

Gas Constants

1.987
8.314
82.057
8.314 x IO7

8.314 x IO3

8314.34

cal gmole1 K1

Joule gmole1 K1

cm3 atm gmole1 K"1

g-cm2 sec'2 gmole1 K1

kg m2 sec"2 kgmole1 K1

Pa m3 kgmole-1 K1

Length

cm
m
in
ft

cm
1
IO2

2.54
30.48

m

IO2

1
0.0254
0.3048

in
0.3937
39.37
1
12

ft
0.0328
3.281
0.08333
1
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Mass

g
kg
lbm

g
1

IO3

453.59

Volume

cm3

m3

in3

ft3

cm3

1

IO6

16.387

2.8317 x IO4

Force

g cm sec"2 (dynes)

kg m sec"2 (Newton)

lbm ft sec 2

kg lbm

IO3 2.2046 x

1 2.2046

0.45359 1

m3 in3

IO3

ft3

10"6 0.061 3.5315

1 61023.7 35.315

1.6387 x IO-5 1 5.787 x

0.028317 1728 1

g cm sec"2 (dynes) kg m sec"2 (Newton)

1 10'5

IO5 1

1.3826 x IO4 1.3826

Pressure

kg m"1 sec"2

lbf i n 2

Atmospheres

mm Hg

kg m"1 sec"2

(Newtons nr
1

6.8947 x IO3

1.0133 x IO5

1.3332 x IO2

Power

g cm2 sec2

kg m2 sec"2

cal

Btu

lbf i n 2 (psia)a

l)
1.4504 x IO4

1

14.696

1.9337 x 10"2

g cm2 sec"2 kg m2 sec"2 (J)

(ergs)

1

IO7

4.1840

1.0550

IO7

1

x IO7 4.1840

x IO10 1.0550 x IO3

x IO1

Atmospheres

(atm)

9.8692 x IO6

6.8046 x 10"2

1

1.3158 x IO3

cal

2.3901 x 10"8

2.3901 x IO1

1

2.5216 x IO2

x 10"5

IO-4

lbm ft sec2

7.233 x 10 s

7.233

1

mm Hg

7.5006 x IO3

5.1715 x IO1

760

1

Btu

9.4783 x 10""

9.4783 x IO-4

3.9657 x 10"3

1
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Viscosity

g cm1 sec1

kg m'1 sec1

lbm ft1 sec ]

g cm1 sec1

(poises)
1
10
1.4882 x 10'

kg m"1 sec1

101

1
1.4882

lbm ft1 sec !

6.7197 x 10"2

6.7197 x 101

1

Thermal1 conductivity

kg msec3 K1

lbm ft sec3 F1

cal sec1 cm"1 K"1

Btuhr'ftr1 F1

kg msec 3 K1

(watts m1 K1)
1
2.4886 >
4.1840>
1.7307

c 101

( 102

lbmftsec3 F1

4.0183
1
1.6813 x 103

6.9546

cal sec
K1

2.3901
5.9479
1
4.1365

1 cm"1

x 10"3

x 104

x 10"3

Btu h r !

5.7780 >

1.4379 >

2.4175 x

1

ft-i pi

10"1

10"1

: 102

Diffusivity

cm2 sec"1

m2 sec1

ft2 h r ]

cm2 sec"1

1

104

2.5807 x 101

m2 sec1

1

2.5807 x 10"5

ft2 h r [

3.8750

3.8750 x 104

1

Heat transfer coefficient

kg sec 3 K1

cal cm"2 sec"

Watts c m 2

Btu ft2 h r !

i K - i

K1

F1

kg sec3

(watts m
1
4.1840x
104

5.6782

K1
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4.8824 x 101

1.3562 x 10"4

101

1
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Appendix 3.1: Isosteric Heat of the Sips Equation (3.2-18)

The Sips equation is (from eqs. 3.2-18):

l + (bP)1/n

where

RgTj n n0

The isosteric heat is obtained from the van't Hoff equation:

- = I I ( A J . 1 -Z J

We let u = (bP)1/n, then the Sips equation written in terms of this new variable as

0 = - ^ - (A3.1-3)
1 + u

At constant loading, we have d0 = 0 and hence du = 0, that is:

du = n(bP) ln(bP) d [ - ] + bdP + Pdb = 0 (A3.1-4)

Using the temperature dependence of b and (1/n) given in eq. (A3.1-lb), we derive:
n#.T /"\

0 J"T Aim. \m. ^^ JT / A 1 1 ^"\

Ql uD = — D ul (A3.1-J)
T2 RgT2

Substitution eqs. (A3.1-5)into eq. (A3.1-4) and then into the van't Hoff equation
yields:
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(-AH) = Q - notRgTo ln(bP)

or in terms of the fractional loading

= Q-n 2aR gT o ln |
0

1-0

(A3.1-6)

(A3.1-7)

Appendix 3.2: Isosteric heat of the Toth equation (3.2-19)

The Toth equation is (eqs. 3.2-19)

bP

1 + 1

where

b = b^ ex = t n + a l 4

Eqn. (A3.2-la) can be written as:

(A3.2-la)

(A3.2-lb)

(A3.2-2)

Taking the total differentiation of eq. (A3.2-2) at constant loading 0, we get:

ln(bP) (bP)1 dt +1 (bP)1"1 d(bP)
0 l ln0dt =

u)2 (A3.2-3)

where u = (bP)1. Knowing the temperature dependence oft and b as in eq. (A3.2-
lb), we evaluate the above equation and substitute into the van't Hoff equation
(A3.1-2) to finally get:

ln(bP) - [l + (bP) * 1 In
bP

(A3.2-4)

or in terms of the fractional loading

(-AH) = Q- - (oR g T 0 ) In
0 ln0

(A3.2-5)
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Appendix 3.3: Isosteric heat of the Unilan equation (3.2-23)

The Unilan equation (3.2-23) is:

Q L l + besP - / A . . t ,
9 = —In (A3.3-la)

2s U b"spJ
where

b = b,, expl - 5 - ; s = - ^ L =
 E™* E™in (A3.3-lb)

\RgT) 2RgT 2RgT

First we rewrite eq. (A3.3-la) as follows:

_2s(8—1) c ' u*- / A o o ^>\

e v 7 = (A3.3-2)
e s + b P

Taking the total differentiation of the above equation, we get

2(6 - I)e2s<9-'>ds + 2se2s<9-"de = - ( 2 + e b P + C ? b P ) ds + ^ " ^ d C b P ) (A3.3-3)
(e s+bP)2 (e s+bP)2

At constant fractional loading (d0=O), we have:

(2 + esbP + e"s

(es + bP) (e s+bP)

From eq. (A3.3-lb), we obtain

bP
('•-'")

(A3.3-4)

AE E
ds = - d T ; d(bP) = bdP-bP ^dT (A3.3-5)

2RgT2 RgT2

Combining eqs. (A3.3-la), (A3.3-4), and (A3.3-5), we obtain:

(-AH) = RgT
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Appendix 6.1: Energy potential between a species and surface atoms

The 12-6 potential energy between the molecule A and one surface atom as
shown in the figure below is (eq. 6.10-lb):

<Pl2 = 4 8 1 2 lL
12

<*12

r
(A6.1-1)

dx

If the number of surface atom centers per unit area is n, the number of surface atom
centers in the annulus as shown in the figure is 2n7cxdx. Therefore, the potential
between the molecule and all the surface atom centers in that annulus is simply:

!7 V2 ( \6"
d(p1SLP = 2n7ixdxx4e*2 I——I -I—^-] (A6.1-2)

The potential between the molecule and the lattice plane of infinite extent is then
simply the integral with respect to x from 0 to infinity:

(A6.1-3)

We note that r2=x2 + z2, and substitute this into the above integral, we finally obtain:

<PI,SLP = (A6.1-4)
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Appendix 8.1: The momentum transfer of molecular collision

As a result of random motion of molecules distributed in space, molecule 1
collides with molecule 2. In such a collision, the momentum as well as the total
energy of the system of two particles are conserved. There are two extremes of the
collision. In one extreme, the collision is completely elastic, that is the kinetic
energy is conserved. The sum of the kinetic energies of the two molecules before
the collision is the same as that after the collision. In the other extreme, the two
particles stick together after the collision, the collision is called completely inelastic.

As we have indicated above, even though the momentum and energy are
conserved, the details of the motion after the collision are not determined, except for
the two cases, the completely inelastic case and the elastic case in one dimension.
Let us first investigate the case of completely inelastic, and then the other case of
elastic collision.

Case 1: Completely Inelastic:
When the two bodies approach each other and stick together after the collision,

the momentum and the total energy are conserved, that is:

vcix\xx + m2u2 = (mj + m2)u
f (A8.1-la)

— mx\x] + —m2u2 =—(111! + m2)(u') + Deformed energy (A8.1-lb)

where the prime denotes condition after the collision. Solving the conservation of
momentum equation will give the following equation for the velocity after collision:

m2

Substitute this final velocity into the total energy conservation equation to give the
following expression for the deformed energy:

Jui - u9)2V 1 ^
1 niimJui u9)

Deformed Energy = - 1 2V 1 ^— (A8.1-3)
2 mj + m2

With the final velocity u' given in eq. (A8.1-2), the momentum transferred from the
body 1 to the body 2 is (that is, the loss of momentum by the body 1):

/ .\ ( m1u1+m2u2
>l m ^ , v

m,(u, -u 1 ) = mJ u, L J —\= L " M u i - U 2J (A8.1-4)
V n^ + m2 ) mx + m2

 v '
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We see that the momentum transferred from the body 1 to the body 2 is
proportional to the velocities the collision. Similarly, the momentum transferred
from the body 2 to the body 1 is :

m 2 ( u 2 - u ' ) = m2 U 2 - m i u i + m 2 u 2 1 m i m 2 ( U 2 _ U i ) (A8.1-5)
V nij + m2 ) mj + m2

which is the same as that of eq. (A8.1-4), except a difference in sign; this is the
consequence of the momentum conservation.

Case 2: Elastic Collision
When two glassy bodies collide with each other in one dimensional, that is along the
line connecting the two centers of the two bodies. The motion after this collision is
also along the same line without rotation. The conservation of momentum and total
energy will give:

Tnlul + m2u2 = mjUj + m2u2 (A8.1-6a)

1 , 1 * 1 / • \2 / . \21 2 1 2 1 / • \2 / • \2

— mxMx + —m2u2 =—mJuj j +m 2 l u 2 j (A8.1-6b)

Solving these two equations for the two final velocities, we get:

+|_2EL_|Ul (A8.1-7b)
v ni + m )ml + m2 J v nij + m2

The transfer of momentum from the body 1 to the body 2 is:

m i ~ m 2
l

m1+m2

Similarly, the transfer of momentum from the body 2 to the body 1 is:

( u , - u 2 )(A8.1-8a)

/ ' \ I m 2 ~ m i I I ^ m i I 2 m i m 2 / w A n i n i \
m 2 (u 2 -u 2 ) = m2 u 2 - —2 1- u2 - !— u, = i—2- u 2 - u , (A8.1-8b)

[ ^ , + 1 ^ 2 ^ ^m1+m2y J rri! -f- m2
 v ;

Thus, we see again that the transfer of momentum from one body to the other is
again proportional to the difference of the two initial velocities, as we have observed
for the case of completely inelastic.

After considering the two cases of completely elastic and elastic collision in one
dimension, we see that the momentum transferred from the body 1 to body 2 is
proportional to the difference of the two initial velocities. If we now assume that
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molecules behave like a rigid body, the above analysis is applicable to the case of
collision between molecules. Thus, for the collision of two molecules of different
type, the momentum transferred from the molecule 1 to the molecule 2 is
proportional to their initial velocities before the collision. If the two molecules of
the same type collide, there will be no net loss of the momentum of the type 1
molecule as the momentum is conserved for the type 1 family. Hence, the
momentum lost by the type 1 depends only on the collision of the type 1 molecule
and the type 2 molecule. This is a rather important result in the understanding of
diffusion.

Appendix 8.2: Solving the Stefan-Maxwell equations (8.2-97 and 8.2-98)

The Stefan-Maxwell equation written in vector format can take the following
form written in terms of fluxes (eq. 8.2-97):

) (A8.2-1)

or it can be written in terms of mole fraction as follows (eq. 8.2-98):

dy
- = = A(N)y + \|/(N) (A8.2-2)
QZ ~~

The boundary conditions at two ends of the domain are:

z = 0; y = yo (A8.2-3a)

z = L; y = yL (A8.2-3b)

Using the matrix-vector method, we can integrate eq. (A8.2-2) to obtain (Cole,
1968):

y = yo + (exp[zA(N)] - 1 j{yQ + [A(N) ] " ' V ( N ) } (A8.2-4)

where £ is the identity matrix. Evaluating this equation at z = L, we get:

I L = Zo + {exP[LA=(N)] - l}{y0 + [A(N) ] " ' y (N) J (A8.2-5)

Combining these two equations yields:

y - yo = [exp(zA) - l][exp(LA) -1]" ' (yL - yQ) (A8.2-6)



832 Appendices

Differentiating the above equation with respect to z, we get the concentration
gradient vector:

dy

dz =

Thus, the gradients at two end points of the domain are:

-i l 'Vy -y )=J \A 2.0/ (A8.2-7)

dy

dz

dy

dz

z=0

z=L

= A[exp(LA)-ir(yL-yo) (A8.2-8)

(A8.2-9)

It is noted that the matrix A in the above two equations is a function of the flux

vector N . To solve for this flux vector, we consider eq. (A8.2-1), rewritten in the

form:

dz
(A8.2-10)

Evaluating eq. (A8.2-10) at two end points, we get the relations for the fluxes at the
two end points:

lz=0

-i dy

(A8.2-1U)

(A8.2-llb)
z=L

At steady state, the fluxes at two ends must be the same. Thus, we can use either of
the two equations to determine the flux through the medium. We take eq. (A8.2-
1 la) and substitute the gradient obtained in eq. (A8.2-8) to finally get:

(A8.2-12)

However, if we take (A8.2-1 lb) and substitute eq.(A8.2-9) into that equation, we get

H = c [i(yL)] ' A exp(LA)[exp(LA) -1]~' (yQ - y j (A8.2-13)

This equation is equivalent to eq.(A8.2-12).

Eqs. (A8.2-13) or (A8.2-12) represents n-1 nonlinear algebraic equations in
terms of the flux vector N . It can be solved quite readily with the Newton-Raphson
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method for the flux vector. The initial guess can be obtained from eq. (A8.2-10) by
approximating the matrix B as that evaluated at the mean concentration

<A8-2-14>

Thus, the initial guess is:

(A8.2-15)

(A8.2-16)

and the iteration formula is:

N<k+1> =N ( k ) - f j (N) ( k ) r ' f ( k )

where J is the Jacobian of the vector f, defined as:

f = N - c [gfyj]"'A[exp(LA) - l]"'(yo - y j (A8.2-17a)

or

f = N-c[B(yL)]"1Aexp(LA)[exp(LA)-l]"1(yo - y j (A8.2-17b)

For numerical computation, the Jacobian matrix is best obtained numerically.
Usually, it takes about a few iterations to converge the above nonlinear equation.

Appendix 8.3: Collocation analysis of eqs. (8.3-16) and (8.3-17)

Equations (8.3-16) and (8.3-17) for the Loschmidt tube system are:

Section I

dy d r * i i"1 dy
— < B (y ) ~ > (A8.3-la)

t*=0; y ^ y 1 ^ ) (A8.3-

lb)

dy1

TI, — 0; ^ - 0 (A8.3-lc)

! ! , = ! & T I 2 = 1 ; y1

Section II
d n / N2 r 9 n]

- = 7 - - —L | [B^ y I I^l ^ ^ [
2 crrl2 [ OT\2 J

(A8.3-2a)
t*=0; y I I=y I I(0) (A8.3-2b)

dy11

T]2 - 0; " - 0 (A8.3-2c)

= y"
T 1 2 = 1

(A8.3-ld)

(A8.3-le)
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Expanding the RHS of eqs.(A8.3-la) and (A8.3-2a), we have:

dr\x

2 a,.II -,5V
dr\\ dr\2 dr[2

(A8.3-3)

(A8.3-4)

Because of the symmetry at r|j = 0 and r ] 2 = 0 , we make the following

transformation:

u, =

u2 =

With these transformations, eqs.(A8.3-3) and (A8.3-4) become:

°y r * i r1

*- ISM 4u, + 4u

(A8.3-5a)

(A8.3-5b)

(A8.3-6)

and

-P-l %r = |B*(y") 4u,—^- + 2-=-

and the boundary conditions at the junction between the two sections (eqs. A8.3-ld
andA8.3-le)willbe

u{ = 1 & u2 = 1;
U 2 = l

u,=l

(A8.3-8)

(A8.3-9)

The collocation analysis is carried out in the Uj - domain and u2 - domain for Section
1 and Section 2, respectively. We choose N interior collocation points in Section 1,
and for simplicity we also choose the same number of interior collocation points in
Section 2.

Evaluating the mass balance equation in Section 1 (eq. A8.3-6) at the j-th
interior collocation point, we have:



Appendices 835

4ll. : =-
ay1
y

+ 2-= + 4u.
djL

V

\

U,=U, j /

(A8.3-10)

The derivatives at the collocation points are related to the functional values
according to the following collocation formulas (Villadsen and Michelsen, 1978):

Suf k=l

N+l

k=l

(A8.3-1U)

(A8.3-llb)

(A8.3-11C)

where A and B are first and second derivative matrices, 1978).

Substitution of eqs.(A8.3-l 1) into eq. (A8.3-10) yields:

dy1
 r i-iN+i fN+i l f

k=l Lk=l Lk=l

where
CJk=4uUBjk+2A jk

]
; (A8.3-12a)

(A8.3-12b)

We note that the summations in the above equation involve the boundary point at
N+l. Splitting the last terms of the above summations, we get:

dy1

IK—1

(A8.3-13)
forj = l ,2, . . . ,N.
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Applying the similar collocation analysis to the mass balance equation of
Section 2 (eq. A8.3-7), we obtain:

forj = 1,2, . . . ,N (A8.3-14)
At the interface between the two sections, we have the continuity of

concentration

-1 - - 1 1 - - (A8.3-15)

With

dyj
dt*

this,

-[a
eqs.(A8.3-13)

X

" N

I
k=

and

1

(A8. 3-14)

N+l

will
1

become:

4».J2:A
[k-i

forj = l ,2 , ...,N, and

j k y; +A j i N + Iv|(A8.3-16)

4u2 J
If
1̂ lk=l

^ yJ+AjfN+Ivj/[(A8.3-17)
J

forj = l ,2, . . . ,N.
The vector \|/ is determined from the continuity of flux conditions (eq. A8.3-9).

Written in terms of the collocation variables, we have:

ZAN+i,ky'k + A N + 1 I N + 1 V = - ^ J [ B * ( M / ) ] ' Z A N + i , k y" + A N + 1 J N + I V

(A8.3-18)

Cancelling B (v)/) and solving for \\i from the above equation, we get:
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V | / = -

Solution Procedure:

Eqs.(A8.3-16) and (A8.3-17) represent 2N (n-1) ordinary differential equations
with 2N (n-1) unknowns, where n is the number of components. They can be
numerically integrated.

For the purpose of programming this problem in MATLAB language, we define
the following concentration matrices for the two sections of the Loschmidt tube.

y'(2,2) y'(2,3) y'(2,N)

y !(n-2,2) y1(n-2,3) ... y ' (n-2 ,N)

y^n-U) y'Cn-U) ... y'(n-l,N)

(A8.3-20)

Yu =
yu(2,l) yn(2,2) y"(2,3)

yn(l ,N)
y"(2,N)

"(n-2, l ) y u (n-2 ,2) y"(n-2,3) ... y n ( n - 2 , N )

"(n- l , l ) y u (n- l ,2 ) y n (n- l ,3) ... y"(n- l ,N)

(A8.3-21)

With these definitions, we have the following notation in MATLAB language
Y(:,j) = mole fractions of all species at the j-th collocation point
Y(i,:) = mole fractions of species "i" at all N interior collocation points

In terms of these MATLAB notations, eqs.(A8.3-16) and (A8.3-17) will become:

dt

(A8.3-22)
and
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where:

LN+1,N+1

N

k=l

L

(A8.3-23)

(A8.3-24)

For numerical integration by method such as the Runge-Kutta method, we have
to put all the variables in the column format. This is done by defining a vector Q as
follows:

1 (iQ((i - 1)N + j) = Y1 (i, j) for j = 1, 2,..., N and i = 1, 2,.. . (n-1).

This column vector Q has 2(n-l)N elements, with the first (n-l)N elements for the
section I and the last (n-l)N elements for the section II. A programming code
LOSCHMID.M based on this algorithm is available with this book.

Appendix 8.4: Collocation analysis of eqs. (8.4-13) to (8.4-15).

The governing equations (8.4-13 to 8.4-15) are rewritten here for clarity:

dt*

dt dr)

= 0; y = y0

(A8.4-la)

(A8.4-lb)

(A8.4-lc)

(A8.4-ld)

(A8.4-le)
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Expanding the RHS of eq.(A8.4-la), we get:

(A8.4-2)

We now use N interior collocation points in the r| domain, and together with the
two boundary points (r) = 0 and r| = 1) we have N+2 interpolation points. The
derivatives at the j-th interpolation point are given by:

9y N+2

N+2

k=l

k=l

(A8.4-3a)

(A8.4-3b)

(A8.4-3c)

Evaluating eq.(A8.4-2) at the j-th interior collocation point, we get:

- i - l

J

(A8.4-4)
U=i

Eqs. (A8.4-lb) and (A8.4-lc), written in collocation variables, are:

dy r !-i N+2

4
dy r !-i
- 4 = cc0B*(yi)
at L J

k=l

-1 N+2

k=1

(A8.4-5)

(A8.4-6)

Eqs. (A8.4-4) to (A8.4-6) represent (n-l)(N+2) equations in terms of (n-
l)(N+2) unknown variables. We now define the following concentration matrix.

y(l,l) y(l,2) - . y(l,N + l) y(l,N + 2)

y(2,l) y(2,2) ... y(2,N + l) y(2,N + 2)

y(n-l ,2) ... y(n-l,N + l) y(n-l,N

(A8.4-7)
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with
Y(: j) = mole fractions of all species at the collocation point j
Y(i,:) = mole fractions of species i for all collocation points

Eqs. (A8.4-4) to (A8.4-6) will now become:

dt
(A8.4-8a)

k=i

f]"' I+ ZAjk[B*(Y(:,k))] x ZA jkY(:,k) (A8.4-8b)

forj = 2, 3,...,:

Ayr. is! . 9\ r . , - l N+2

y''\ -̂ = - a L | B (Y(:,N + 2))I x ^AN + 2 ) kY(:,k) (A8.4-8c)

The numerical integration of eqs. (A8.4-8) is done by the Runge-Kutta method, and
the column vector for the integration is:

2) + j ) = Y ( i J ) j - 1 , 2 N+2 ( A g 4 9 )

i = 1,2,..., n — 1

Appendix 8.5: The correct form of the Stefan-Maxwell equation

The use of the modified Stefan-Maxwell equation can be in three different
forms, written as below.
In terms of mole fraction:

dz fi cDy cDK>i

In terms of concentration:

L j ;y jN,-y1N J j ^
Dy D K i
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In terms of partial pressure:

1 dp- A y,-N: -VjN: N-
Z± = Y±L-1—li-± +—L. (A8.5-lc)

RgT dz ft Dij DKii

Haynes (1986) used the momentum argument to show that the correct form is
eq.(A8.5-lc), which uses the partial pressure gradient as the driving force. When
the system is isothermal, T is independent of z and hence eqs. (A8.5-lc) and (A8.5-
lb) are equivalent. When the system is isobaric, eqs.(A8.5-lc) and (A8.5-la) are
equivalent. And finally these three equations are only equivalent when the system is
isothermal and isobaric.

Using the momentum transfer method, the average collision number between
two types of molecule is:

2 |8TCKT
Z12 =af2n1n2 (A8.5-2)

V m

where nj and n2 are the molecular densities of the species 1 and species 2,
respectively, m12 is defined as:

m l +m2

The average collision between the molecule of type 1 and the surface of the pore is:

ZK 1 = - n , v , (A8.5-4)
K.1 4 1 1 V

where v, is the thermal velocity of the species 1, defined as follows:

(A8.5-5)

When two molecules of different types collide with each other, each will move after
the collision at a velocity, which is on average the same as the center of mass
velocity. The center of mass velocity is:

m2

Because of the change in the velocity, the change of the momentum of the species 1
by colliding with the molecules of the type 2 is:

mjVj - mjV* = m12(v! - v 2 ) (A8.5-7)
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Assuming the collision of molecule of the type 1 to the wall will result in a net zero
velocity in the direction along the pore (diffusive reflection), the transfer of
momentum as a result of such collison is simply

m ^ (A8.5-8)

The momentum balance along the pore coordinate z is:

-Z1 2(7tr2AzW2(v, - v2) - ZK ,(27crAz)m1v1 +7cr2p,| -7cr2p, =0(A8.5-9)
V / ' Iz z+Az

Simplifying the above equation and making appropriate substitution, we obtain the
following equation:

RgT dz D12 DKjl

suggesting that the partial pressure is the correct description for the driving force.

Appendix 8.6: Equivalence of two matrix functions

Here we need to prove the equivalence of the LHS and RHS of the following
equation:

(2)[(l)(2)Yw (A8.6-1)

where C is a square matrix.

Multiplying eq. (A8.6-1) by [c< 2 ) 1 from the left, we have:

[C<2»]"1C(1)[C(1)+C(2)]'1C(2» ? [C ( 1 )
+ C ( 2 ) ]" 'c ( 1 ) (A8.6-2)

Next, we left-multiply the above equation by C(1) + C (2) and obtain:

[C<1)
+C (2 )][C (2 )]"'C (1 )[C (1 )

+C (2 )]" IC (2 ) ? C (A8.6-3)

Now we multiply from the right with C^2 and get:

[C ( I )+C (2 )][C (2 )]"1C ( I>[C ( I )+C (2 )]"1 ? C(1)[C<2)]"' (A8.6-4)

We next multiply from the right with fc (1 ) + C (2) 1:

[ i l ) i 2 ) ] (A8.6-5)
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The LHS of the above equation is:

while the RHS is:

which is identical to the LHS. Thus

-c (2 )rc (2 )

-co

(2)

(A8.6-6)

(A8.6-7)

(A8.6-8)

Appendix 8.7: Alternative Derivation of the Basic equation for Bulk-Knudsen
and Viscous Flow

The diffusion flux equation written in vector form is:

r i dp

RgTl=wJ dz
(A8.7-la)

where the matrix B is given in eq. (8.8-1 la), rewritten here for clarity:

y.

f o r i = j

for i ^ j

(A8.7-lb)

and similarly the viscous flux in vector form is:

N =
B0PdP

y
R J H d z -

(A8.7-2)

Therefore, the combined flux in vector form is the summation of the above two
equations:

Using the relation of partial pressure

dz RgT \i d z -

= Py

(A8.7-3)

(A8.7-4)

eq.(A8.7-3) will become:
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where I is the identity matrix.

Now we multiply both sides of eq.(A8.7-5) by the matrix B, we get:

N = - J L ^ _ J _ ^ { I + M B ( y ) l y (A8.7.6)
- RgTdz R g T d [ = =yl\l

We consider the vector Blyly. The element i of this vector is:

Making use of the definition of the matrix B in eq.(A8.7-lb), we get:

A x̂ , YiYi v- A vy- v
yBiiYi = - Y - ^ + ̂ ^ + Y - ^ - = : - ^ ~ - (A8.7-8)
j=l j=l U i j UK,i j=i U i j UK,i

This means that:

g(y)y = Ay (A8.7-9)

where the matrix A is the diagonal matrix with its i-th element being the inverse of

the Knudsen diffusivity of the species i. Thus, eq. (A8.7-6) can now be written:

P d y l d P L W - ' (A8.7-10)
RgT dz RgT dz [-

which is identical to eq. (8.8-12).

Appendix 8.8: Derivation of Eq. (8.8-19a)

Starting from equation (8.8-6)

P Dy DKii RgT dz RgTl, nDKJdz

The diffusive flux is related to the flux and the total flux as:

dP
dz

(A8.8-2)
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Substituting eq. (A8.8-2) into eq. (A8.8-1), we have:

I^L (A8.8-3)
DK,i DK,i P Dy R g Tdz R g H M D K , J dz

Summing the above equation with respect to i from 1 to n, we get:

Du

(A8.8.3)
The third term in the LHS and the first term in the RHS are zero. Hence, we get:

tt DK,i T t ?D K > i RgTdz
L > ( A 8 . 8 . 4 )

Solving for the total flux from eq.(A8.8-4), we have:

A HP
(A8.8-5)

(A8.4-6)

n T

V Ji

g i y j d z

where

i=l DK,i

Substituting the total flux of eq. (A8.8-5) into eq. (A8.8-3), we have:

y; ¥ i VBOP O J
j dyj dz ^ Dfj

>i

P dYi Yi f B 0P "I dP
1 T

Multiplying the first term in the LHS by y, we have:

i

RgT dz

(A8.8-7)
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Simplifying the terms, we get:

l Y B 0 P ^ \\ dP P dy, y i ( B0P \ dP

jl j d R d H DJ dDKJI,RgTjl n yjdz RgT dz R g H nDKJ dz

Simplifying the above equation further by combining the two terms in the LHS, we
get:

Z ^
P dy, y.

where

ROT dz ROT

1 1

k=l

k=l

Note that Ay is symmetric, that is

A i j =A j i

— (A8.8-8)
dz

(A8.8-9)

(A8.8-10)

Summing eq. (A8.8-8) with respect to i from 1 to n would give zero as only (n-1)
equations are independent. Thus (n-1) equations of the form (A8.8-8) and the
following equation

n

will form a complete set of equations in terms of n variables Jj (i = 1, 2, ..., n).
Knowing these diffusive fluxes, the total flux is then calculated from eq. (A8.8-5).

Appendix 8.9: Collocation Analysis of Model Equation (eq. 8.9-10)

The mass balance equation describing the pressure variation inside a cylindrical
pore takes the following vector form (eq. 8.9-10):

dp

um(y) Po
(A8.9-1)
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where DT is the reference diffusivity, Po is the reference pressure and O is the non-
dimensional viscous flow strength number which is defined as follows:

* - B°P° (A8.9-2)

with Bo being the viscous flow parameter (Bo = rVS) and |LL0 is the reference

viscosity. For pure diffusion inside the cylindrical pore, H( p) = I (identity matrix).

Expanding the RHS of eq. (A8.9-1), we get:

[DTB(p)]

d2p
T-A

/_L
(A8.9-3)

in which we have ignored the term

(A8.9-4)

compared to the other terms in the second square bracket on the RJHS of eq. (A8.9-
3). This is reasonable if the viscosities of all components are not so much different.

The symmetry of the problem at r| = 0 suggests the following transformation:

u = r|2

With this transformation, eq. (A8.9-3) can be rewritten as follows:

f 2L (DTAJ

(A8.9-5)

[DTB(p)]~
du

(A8.9-6)
We now choose N interior interpolation points and together with the boundary

point we have N+l interpolation points. Evaluate eq. (A8.9-6) at the i-th interior
collocation point, we get:
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dp

r -1-

DTB(p )
L J

N+l

4Ui

N+1

j=l

(A8.9-7)
for i =1, 2, ..., N, where Ay, By are elements of the first and second derivative
matrices, and Cy is defined as follows:

C i j =4u i B i j +2A i j (A8.9-8)

The integration vector will contain the partial pressures of all components at N
interior collocation points and is defined as follows:

'p(U)

Q =

P(1,N)J

P(2,l)
P(2,2)

P(2,N)

p(nc,l)

P(nc,2)

p(nc,N)

partial pressure of the component 1 @ N interior collocation points

partial pressure of the component 2 @ N interior collocation points

partial pressure of the nc - th component @ N interior collocation pts

(A8.9-9)
The length of this Q array is (nc x N), and the time derivative of this integration

vector is given in eq. (A8.9-7). However to calculate the RHS of eq. (A8.9-7) we
need the total pressure as well as the mole fractions of all components at N interior
collocation points. This can be achieved with the following procedure which is
suitable for programming.

Given a Q array, we generate a matrix p with the i-th row and the j-th column

for the i-th component and the j-th collocation point as follows:



Appendices 849

P ~
p(2,2) p(2,3) p(2,N)

(A8.9-10)

p(nc,l) p(nc,2) p(nc,3) ••• p(nc,N)

Next we generate an augmented pressure matrix by adding the pressures at the bulk
to the (N+l)-th column

PbO)

P b ( 2 ) (A8.9-11)

i pb(n c)_
Summing all elements of each column to give the total pressure and putting the total
pressure as the last row of the matrix p as follows:

P =

P(U)
p(2,2)

P(IN) P b ( l )

p(2,N) pb(2)

p(nc,l) p(nc,2) ••• p(nc,N) pb(nc)

pT(l) pT(2) . - pT(N) pT(N + l

(A8.9-12)

where

(A8.9-13)

forj = l ,2 , ...,
Knowing the above pressure matrix, we generate a mole fraction matrix:

l,l) y(l,2) . - y(l,N) yb(l)

2,l) y(2,2) •-. y(2,N) yb(2)
Y = (A8.9-14)

where

y(nc,l) y(nc,2) ••• y(nc,N) yb(nc)

„,; A _ P ( J . J )

PT(J)
(A8.9-15)

fori= 1,2, . . . ,ncandj = 1,2, .. . ,N+1.
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The pressure matrix of eq. (A8.9-12) and the mole fraction matrix of eq. (A8.9-
14) are used to calculate the RHS of eq. (A8.9-7). The RHS of eq. (A8.9-7) is a
matrix of dimension (nc, N), which then can be integrated by the standard Runge-
Kutta method with the integration vector as defined in eq. (A8.9-9). A
programming code ADSORB5 A based on this algorithm is available with this book.

Appendix 9.1: Collocation Analysis of a Diffusion Equation (9.2-3)

The linear Fickian diffusion equation (9.2-3) has the form (written in
nondimensional form)

!V£ (£ ) < A 9 M )

subject to the following initial and boundary conditions:

T = 0; y = y i (A9.1-2)

x = 0; — = 0 (A9.1-3a)
dx

x = l ; y = yb (A9.1-3b)

This problem has a symmetry at x = 0 so it is useful to utilize this by making the
following transformation, u = x2. With this transformation, the mass balance
equation (A9.11) is:

The domain u e(0,l) is now represented discretely by N interior collocation points.
Taking the boundary point (u=l) as the (N+l)-th point, we have a total of N+l
interpolation points. According to the orthogonal collocation method, the first and
second derivatives at these interpolation points are related to the functional values at
all points as given below:

(A9.1-5)

(A9.1-6)
du2

H
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for i = 1, 2,..., N+l. The matrices A and B are constant matrices once N+l

interpolation points have been chosen.
The mass balance equation (A9.1-4) is valid at any point within the u domain.

Thus, evaluating that equation at the i-th interior collocation point we get:

rh/ N + 1

f^ICijyj (A9.1-7)

for i = 1, 2,..., N, where

C i j = 4 u i B i j + 2 ( l + s)Aij (A9.1-8)

Since yN + 1 = y b , the above equation becomes:

i c i j y j + C, , N t ,y b (A9.1-9)

or written in vector form:

dy

dx

where

... C N ) N + 1 ] T

The linear vector equation (A9.1-10) can be readily integrated. A programming
code ADSORBO is provided to solve this set of equations. It gives at each value of
time the solution for y , and the mean concentration <y> is calculated from the

Radau quadrature

< y > = w(l:N).y + wN+1yb (A9.1-13)

where Wj(j = 1,2, ..., N + 1) are Radau quadrature weights.

Alternative solution

There is another way of solving the mass balance equation especially when the
flux term
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dy
J = —y- (A9.1-14)

dx
is taking a more complicated form. We write the mass balance as follows:

|U-UL(x'J), (A9.1-15)
dx x dx

We make use of the transformation, u = x2, and eq. (A9.0-15) can be rewritten as
follows:

dx

where

du

Combine the above two equations, we get:

dx du.

where

du

Evaluating eq. (A9.1-18) at the i-th interior collocation point, we have:

( A 9 > 1 . 2 0 )

for i = 1, 2, ..., N. To evaluate the RHS of the above equation we need the value of
F at all interpolation points. This is done by evaluating eq. (A9.1-19) at the j-th
interpolation point:

N+l

k=l

Knowing yN+1= yb, eq. (A9.1-20) now is a set of N equations involving N unknowns
(vi V2 • • • YN)- This s e t men can be integrated and is done in the programming code
ADSORBO.
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Appendix 9.2: The first ten eigenvalues for the three shapes of particle

Slab

Bi->oo

1.5707 9633
4.7123 8898
7.8539 8163
10.9955 7429
14.1371 6694
17.2787 5959
20.4203 5225
23.5619 4490
26.7035 3756
29.8451 3021

Bi = 100
1.5552 4513
4.6657 6514
7.7763 7408
10.8871 3010
13.9980 8974
17.1093 0726
20.2208 3419
23.3327 1880
26.4450 0575
29.5577 3581

Bi=10
1.4288 7001
4.3058 0141
7.2281 0977
10.2002 6259
13.2141 8568
16.2593 6123
19.3270 3429
22.4108 4833
25.5063 8299
28.6105 8194

Cylinder

Bi->oo Bi = 100 Bi=10
2.4048 2556
5.5200 7811
8.6537 2791
11.7915 3444
14.9309 1771
18.0710 6397
21.2116 3663
24.3524 7153
27.4934 7913
30.6346 0647

2.3809 0166
5.4652 0700
8.5678 3165
11.6747 3543
14.7834 2086
17.8931 3665
21.0036 0098
24.1146 9932
27.2263 8726
30.3386 5250

2.1794 9660
5.0332 1198
7.9568 8342
10.9363 3020
13.9580 3045
17.0098 7821
20.0829 1063
23.1709 5712
26.2698 4148
29.3767 1749

Sphere

Bi ->oo Bi = 100 Bi=10
3.1415 92654
6.2831 8531
9.4247 7796
12.5663 7061
15.7079 6327
18.8495 5592
21.9911 4858
25.1327 4123
28.2743 3388
31.4159 2654

3.1101 8695
6.2204 3512
9.3308 0501
12.4413 5573
15.5521 4434
18.6632 2528
21.7746 4982
24.8864 6563
27.9987 1645
31.11144180

2.8363 0039
5.7172 4920
8.6587 0470
11.6532 0755
14.6869 3740
17.7480 6901
20.8282 2625
23.9217 9001
27.0250 1045
30.1353 5038
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Appendix 9.3: Collocation analysis of eq. (9.2-47)

The mass balance equation for the case of non linear adsorption isotherm given
in eqs. (9.2-47) is rewritten here for clarity

=) r Pwi
(A9.3-1)

(A9.3-2)

The boundary conditions of eq. (A9.3-1) are:

Expanding the RHS of eq. (A9.3-1), we get:

1 8 dy
dx\ dr\

(A9.3-3)

(A9.3-4)

The symmetry of the problem at r\ = 0 suggests the following transformation of the

independent variable (Rice and Do, 1995), u = r]2 . With this new variable, eq.

(A9.3-4) will become:

^ f + 2(1 + s ) ^ l - ^ (A9.3-5)

Similarly, the boundary condition written in terms of the new independent variable u
is:

.-* H (y,|=f(yb-y) (A9.3-6)

To apply the orthogonal collocation method, we choose N interior collocation points
in the spatial domain u, that is

0 < u , , u 2 , - " , u N < l

These N interior points together with the point at the boundary u = 1 will form N+l
interpolation points. Evaluating eq. (A9.3-5) at the j-th interior collocation point,
we get:

4u, d2y A dH(y) dy
+ 4U: ^^" —

&L u du

(A9.3-7)
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for j = 1, 2, 3, ..., N, Here y} is the value of y at the collocation point Uj, or, for
short, collocation point j . The first and second derivatives at any interpolation
points can be expressed in terms of the dependent variables y , as given below:

9vl N+1

IT = 2 > j k y k (A9.3-8a)
^ I U J k= l

j ( ) (A9.3-8C)
J k = l

where A and B are known constant matrices for a given set of N+l interpolation

points. Readers are referred to Villadsen and Michelsen (1978) or Rice and Do

(1995) for details.

Substitution of eqs. (A9.3-8) into eq. (A9.3-7) gives:

Qy N+l fN+1 V N + 1 ^
G(y j)-rL = H(y j)Xc jkyk +4UJ ZAJkH(yk) EAJkVk (A9.3-9)

01 k=i vk=i Ak=i J

forj = 1, 2, 3, ... ,N, where

C j k = 4 u j B j k + 2 ( l + s)Ajk (A9.3-10)

Eq. (A9.3-9) is valid for N interior collocation points. The equation for the (N+l)-
th interpolation point is given in eq. (A9-3-6). Written that equation in terms of the
collocation variables, we have:

N+lN+l /g.\

H(yN+i)ZAN+i,kVk = — (yb -
k=i v L J

from which we can solve for the concentration at the boundary (yN+1) in terms of
other dependent variables y,, y2, ..., yN. The above equation is a nonlinear algebraic
equation for yN+1 expressed in terms of N collocation values Vj (j=l, 2, ..., N) . It
can be solved by using the Newton-Raphson method, and the initial guess is:
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~ (A9.3-12)

Knowing this, eq. (A9.3-9) now represents a set of N coupled first order ordinary
differential equations in terms of y,, y2, ..., yN, which can be solved numerically by
using integration techniques such as the Runge-Kutta method. The programming
code for this problem is ADSORB 1A.M.

Appendix 9.4: Collocation analysis of eqs. (9.3-19)

The mass and heat balance equations for a single component system with a non
linear adsorption isotherm of eqs. (9.3-19) are rewritten here for clarity

(A9.4-la)
arj

§ = p f ^ l o + s) [H(y,e)^l - LeBi(0 - 0b) (A9.4-lb)

The boundary conditions of eq. (A9.4-1) are:

r] = 1; H(y,

Expanding the RHS of eq. (A9.4-la),

G (v 0^ -f~ G f v 0) — H(̂1 ' at ' a t

e)fj = Bi(yb-y)

we get:

, 9H(y,G) 5y

(A9.4-2a)

(A9.4-2b)

(A9.4-3)

The symmetry of the problem at r] = 0 suggests the following transformation of the

independent variable, u = r\2 . With this new variable, eqs. (A9.4-3) and (A9.4-lb)

will become:

f H ( y ) e ) ^ + 2(l + s ) f l
at [ du auj
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$-l -LeBi(e-9b) (A9.4-4b)

Similarly, the boundary condition written in terms of the new independent variable u
is:

u = l; H ( y ) 0 ) ^ = ̂ ( y b - y ) (A9.4-5)
<7U Z

To apply the orthogonal collocation method, we choose N interior collocation points
in the spatial domain u, 0 < u 1 , u 2 , - - - , u N < l . These N interior points together

with the point at the boundary u = 1 will form N+l interpolation points. Evaluating
eq. (A9.4-4a) at the j-th interior collocation point and using formulas (A9.3-8), we
get:

—^+G2(y j ,e)— = H(yj,e)Xc jkyk + 4Uj ]>>jkH(yk,e)
01 a k=l Vk=i /

(A9.4-6)
for j = 1, 2, 3, ..., N, where

C j k = 4 u j B j k + 2 ( l + s)Ajk (A9.4-7)

Eq. (A9.4-6) is valid for N interior collocation points. The equation at the (N+l)-th
interpolation point is given in eq. (A9.4-5). Written that equation in terms of the
collocation variables, we have:

H(yN+1,6) X A N + U y k = W ( y b -yN + I) (A9.4-8)
k=i v z J

from which we can solve for the concentration at the boundary (yN+1) in terms of
other dependent variables yl5 y2, ..., yN, and 0. Eq. (A9.4-8) is a nonlinear algebraic
equation in terms of yN+1 and it can be solved numerically by a Newton-Raphson
method and the initial guess for that method is:

y N + 1 = 1 ^ (A9.4-9)

Applying the collocation analysis to eq. (A9.4-4b), we get:

^ = 2(3 ^ (1 + s) H(yN+1,9) S A ^ j y j - LeBi(G - 0b) (A9.4-10)
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Eqs. (A9.4-6) and (A9.4-10) are N+l coupled ordinary differential equations in
terms of yls y2, ..., yN and 0, which can be solved numerically by using any
integration techniques. The programming code for this problem is ADSORB 1B.M.

Appendix 9.5: Mass Exchange Kinetics Expressions

The following expression can describe the mass exchange kinetics between the
fluid and adsorbed phases.

Rads " k a < ^

Kads ~ K a ^

l C0"

1 cj

[-(ai
i/t U

k d l

N n

-1J

(A9.5-la)

(A9.5-lb)

-j(A9.5-lc)

Equilibrium isotherm

" s i+ (bc ) 1 / n

^Sl + (bC)1/n

bC

[i+(bCy]

(Sips)

(Toth)

The corresponding equilibrium isotherm equations for these kinetic expressions are
listed in the above table.

Appendix 9.6: Collocation Analysis of Model Equation (eq. 9.5-26)

The mass balance equation (9.5-26) takes the following vector form:

dp H(p) d \ s \ eff i-i 9p | i ( ) i gpT

dx ns d r | j L T = - J 9r| um(y) Po dx\

H ( P ) d [ dpi
(A9.6-1)

Expanding the RHS of the above equation, we get:
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di

(A9.6-2)
The symmetry of the problem at r\ = 0 suggests the following transformation:

u = r|2 (A9.6-3)

With this transformation, eq. (A9.6-2) becomes:

| J = eH(p) [DTBeff(p)]"1 4u^-f -

Y
du ){du

au

+ (l-e)H(p)i G*(p) 4u—=- + 2(l + s)-^- +4u—f G*(p)]^i
" " " [ " " I du du) dul- - J&iJ

(A9.6-4)
We now choose N interior collocation points and together with the boundary point
at u = lwe have N+1 interpolation points. Evaluate eq. (A9.6-4) at the i-th interior
collocation point, we get:
dp. - l [ N + 1 N+1 N+1

N+1 I N + 1

XCijE.+

i=i J
ijG*(p.) SAijP.

for i = 1, 2, ..., N, where
(A9.6-5a)

(A9.6-5b)
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The integration vector will contain the partial pressures of all components at N
interior collocation points and is defined as follows:

~P(U)

partial pressures of the component 1 @ N interior collocation points

P(2,2)

P(2,N)

p(nc,l)
p(nc,2)

partial pressures of the component 2 @ N interior collocation points

partial pressures of the nc - th component @ N interior collocation pts

_p(nc,N)

(A9.6-6)
The length of this Q array is (nc x N), and the time derivative of this integration

vector is given in eq. (A9.6-5a). However to calculate the RHS of eq. (A9.6-5a) we
need the total pressure as well as the mole fractions of all components at N interior
collocation points. This can be achieved with the procedure suitable for
programming as described in Appendix 8.9 (eqs. A8.9-10 to A8.9-15). A
programming code ADSORB5B for this problem is provided with this book.

Appendix 9.7: Collocation Analysis of Eq. (9.6-24)

Expanding the mass balance equation (9.6-24a) gives:

5[DTB(y,PT,T)|- f̂ p + ^ Y _ L ^ ( D T A )

d2p s dp) dG*(p,9) dp

dr\2 T) dx\J dx\ dx\
(A9.7-1)
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The problem has a symmetry at rj=O. To make use of this, we make the following
transformation

u = r|2 (A9.7-2)

In terms of this new independent variable, the mass balance equation (A9.7-1)
becomes:

ax 9 ) -
9)R,T0

2
5f(p,T)

+ eH(p,e){[DTB(y,PT,T) 4u—=•
da2

5T

da

-^l(DT A ) U f 4 u ^ + 2(1 + S ) ^ L ] P + 4u f-L * L ¥ ^

d[DTB(y,PT,T
-1

du da da

(l-e)H(p,e)
(

G (p,9)
= I

) ^ + 4 u ^ =
daj da da

(A9.7-3)

Also in terms of the new independent variable, the heat balance equation (9.6-24b)
becomes:

Q

P(i-s)f Q
(1 + 0) r T0

-LeBi (e -0 b ) (A9.7-4)

u=l

In the orthogonal collocation method, the first and second derivatives at specific
interpolation points within the domain are given by:

% = Y A : : P : (A^a)
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N+l

(A9.7-5b)

Uj

Written in terms of the collocation variables, the mass and heat balance equations
are:

+ 6

(i+e)-i

H(p.,e){[DTB(yj,PT|,T)]

1 « N+l V N + 1 ^

—YAiiPx YAJJO
XTO j=i y V j=i >

P.

N+l N+l N+l

(A9.7-6)( l -6)H(p 5 ,9)

Note that

PTN+1=(Pb) (A9.7-7b)

where < > denotes the summation of all the elements of the vector.
Similarly applying the transformation of eq. (A9.7-2), the heat balance equation

(A9.7-4) can be written in terms of collocation variables as:

de

£-b

N+l

rT0 j=i
-LeBi(6-9b).(A9.7-8)
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Eqs. (A9.7-6) and (A9.7-8) represent ncxN + 1 equations for ncxN + 1 unknowns of
p. (j = 1, 2, ..., N) and 0. They can be readily integrated using any integration

routines. The procedure for programming these equations is illustrated in
Appendices A8.9 and A9.6. The integration vector for this problem is shown in the
following equation:

P(U)
P(U)

P(2,D
P(2,2)

P(2,N)

p(nc,l)
p(nc,2)

partial pressures of the first component at N collocation points

partial pressures of the second component at N collocation points

partial pressures of the nc - th component at N collocation points

p(nc,N)

0 Nondimensional temperature

A programming code ADSORB5C.M is provided with this book.

Appendix 10.1: Orthogonal Collocation Analysis of Eqs. (10.2-38) to (10.2-40)

The mass balance equations (10.2-38 to 10.2-40) are rewritten here for

convenience:

£=J_AL.H(x)^
ox t | s dx\ |_ dv\

The boundary conditions and initial condition are:

TJ = 1; x = 1

x = 0; x = 0

(AlO.l-la)

(AlO.l-lb)

(AlO.l-lc)

(AlO.l-ld)
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Due to the symmetry of the problem (eq. AlO.l-lb), we introduce the following
transformation u = r|2, and with this transformation, the mass balance equation will
become:

du

u = l ; x = l (A10.1-2b)

We choose N interior collocation points and the boundary point (u = 1) to form a set
of N+l interpolation points. Evaluating eq.(A10.1-2a) at the interior collocation
point j as the equation is not valid at the boundary point, we get:

N

U - ' (A10.1-3)

+ Aj,N+lxN+l |
_k=l

for j = 1, 2, 3, ..., N, with xN+1 = 1 by virtue of eq. (A10.1-2b). In obtaining eq.
(A10.1-3) we have used the collocation formulas (A9.3-8). Knowing the
concentration values x at N+l interpolation points, the average concentration <x> is
calculated from a Radau formula:

N+l

(x)=]Twkxk (A10.1-4)
k=i

where wk is the Radau quadrature weights. A programming code ADSORB 1C for
this problem is provided with this book.

Appendix 10.2: Orthogonal Collocation Analysis of Eqs. (10.3-8) to (10.3-10)

The mass and heat balance equations (10.3-8 to 10.3-10) for a nonisothermal
single crystal are:

§ ± A L | L | (A10.2.la)

dx dx

The boundary conditions are:

p ^ L B i 0 (A10.2-lb)
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(A10.2-lc)

= i; (A 10.2-Id)

The initial condition is:

x = 0; (A10.2-le)

Due to the symmetry of the problem, we introduce the following transformation u =
r|2, and with this transformation, the mass balance equation (A 10.2-la) will become:

4u-
ou

im (A10.2-2a)

u = 1; x L =
1 + ^ 9 )

(A10.2-2b)

1+A.n

We choose N interior collocation points and the boundary point (u=l) to form a set
of N+l interpolation points. Evaluating eq.(A10.2-2a) at the collocation point j , we
get:

^i=(p(e)H(x j) + ^j,N+lxN+l I +

N N

Lk=l JVk=l

where the boundary point xN+1 is a function of temperature, given by:

(A10.2-3a)

Me)
i + ;

XN+1 - ' (A10.2-3b)

The time derivative of the average concentration <x> in the heat balance
equation can be obtained from the mass balance equation (A 10.2-la) as:
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=2(l + s)cp(e)-H(xN+1)! i| (A10.2-4)
oul

Evaluating this equation using the collocation variables, we get:

^ = 2(l + s)(p(e).H(xN +j l | ]AN + l 5 kxk+AN + 1 > N + 1xN + 1 l (A10.2-5)

Substituting eq.(A10.2-5) into the heat balance equation (A10.2.-lb), we get:

d0 f N 1
— = 2(1 + s)P • q>(9) • H(xN+1)l X AN+i,kXk + AN+lfN+1xN+1 I - LeBi • 0 (A10.2-6)

Eqs.(A10.2-3a) and (A10.2-6) form the complete set of coupled ordinary differential
equations, from which they can be integrated to obtain the concentration profile as
well as temperature. The programming code ADSORB 1D.M was written in MatLab
language to solve this problem. The integration vector contains the first N elements
being the concentration at N interior collocation points and the last element is the
temperature:

Q = [xj x2 ••• xN 0]T (A10.2-7)

The rate of change of this integration vector with respect to time is:

dx [ dx dx dx dx J

The first N elements of this derivative vector are given in eq.(A10.2-3a), and the last
element is given in eq.(A 10.2-6).

Appendix 10.3: Order of Magnitude of Heat Transfer Parameters

Some typical values used in the simulation are given in the following table:

( 1 -

Ê

Q
cp
Tft

h

e M ) C M 0

PP

0.004 mmole/g

15,000 Joule/mole

30,000 Joule/mole
1 Joule/g/K

300 K

lOxlO" 4 Joule / cm2 / sec/K
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R

Q

Y =

a,

P,

2

iDpo

Q

g D

E

RgTo

( l-eM)C t

PP

hR eM+(

PP (

l 0(-AH)

CpT0

^peMDpo

0.05 cm
0.01 cmVsec

lx lO" 6 mole /cc

12

6

0.4

20

The following table gives the thermal properties of some systems

System k, k, Cp C f Q h

J/s/cm/K J/s/cm/K J/g/K J/g/K kJ/mole J/cm2/s/K

benzene/silica gel

water/silica gel

water/zeolite

CO2/zeolite 10A

benzene/charcoal

CCl2H2/carbon

heptane/zeolite 5A

References:

4-7xlO" 4

3xl0' 3

8.5 xlO"5

2xlO"3

1.3 xlO"3

1.3 xlO"3

0.75

1.05

0.8

0.8

1.2

0.963

1.88

1.88

0.85

2.2

42

43.5

18.7

41.57

3-lOOxlO"4

30x10^

2-7X10"4

Brunovska, Ilavsky and Kukurukova, Coll Czech Chem Commun, 50, 1341 (1985)
Haul and Stremming, J. Coll Inter Sci., 97, 348 (1984)

Haul and Stremming, in Characterization of porous solids, edited by Under (1988)
Ilavsky, Brunovska, and Klavacek, Chem Eng Sci., 35, 2475 (1980)
James and Phillips, J. Chem Soc 1066 (1954)
Kanoldt and Mersmann, in Fundamentals of adsorption (1986)
Meunier and Sun, J. Chem Soc Farad Trans I, 84, 1973 (1988)
Sun and Meunier, in Fundamentals of Adsorption, 1986.
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Appendix 10.4: Collocation Analysis of Eqs. (10.4-45)

The non-dimensional mass and heat balance equations (10.4-45) are:

(A10.4-U)

= F(y,0) (A10.4-lb)

( A 1 0 - 4 " l c )

| ^ B i ( y y b ) (A10.4-ld)

— = p — - LeBi (6 - 0b) (A10.4-le)
dx dx

The volumetric average concentrations are defined as follows:

(A10.4-2a)

X(T) = (l + s ) ^ r | s x(r),x) dr| (A10.4-2b)

The change in the average concentration in eq.(A10.4-lc) can be replaced by the

flux into the micro-particle. This is done as follows. Multiplying eq.(A10.4-la) by

C?* and integrating the result with respect to £, we get the following expression for

the mean adsorbed concentration along the pellet coordinate:

Combining eqs. (A10.4-lc) and the above equation, we have:

o ^ - + (l-a)y<p(9)(l + s ) H(x,9)— =( l + 6) a — — \ r \ s ^ - (A10.4-3)

Now we apply the orthogonal collocation method. Noting the symmetry at the
centers of the micro-particle and pellet, we make the following transformation:

v = C2; u = T]2 (A10.4-4)

With this transformation, eqs. (A 10.4-la) and (A 10.4-3) will become:
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H(x,9)
. d 2 x _.. N S x ] . 9 H ( x , 6 ) 9 x 1 / A 1 A / 1 C ,
4 v — + 2 1 + ŝ  — + 4 v — ^ 7 " ^ — (A10.4-5)

9v 9v dv dv\
—• )

(l + e) L f f + 2 (l + s)
\ I 9u ^

(A10.4-6)
The boundary conditions for the above equations are:

v = l; x = F(y,8) (A 10.4-7)

u = l; - ( l + e ) a - ^ = ̂ - ( y - y b ) (A10.4-8)
au 2

We now choose M interior collocation points in the micro-particle, and evaluate
eq.(A 10.4-5) at the interior collocation point k to get:

p, ( M+l fM+l VM+1 M

^=ycp(e ) H(xk>9)Xcfcx£+4vk 2AtH(x, f8) Z A w x d (A10-4"9)
m [ 1=1 \/=i /v^ i /J

for k = 1, 2, ..., M, where

C& =4vkB£, +2(l + ŝ )ASJ, (A 10.4-10)
The adsorbed concentration at the exterior surface of the micro-particle is in
equilibrium with the concentration in the macropore, that is:

xM + 1=F(y, 6) (A10.4-11)

Next we evaluate eq.(A 10.4-9) at the interior collocation point i along the pellet co-
ordinate and get:

dx [ M+1 fM+1 ^ fM+1 ^1
_ ^ = Ycp(6) H(xiik>0)Xcfcxif,+4vk X A t H ( x i . ^ ) ZAwxW

QT [ =̂1 V ^ = l J\t=\ J)

(A10.4-12)
for k = 1, 2, ..., M and i = 1, 2, ..., N+l. Here xik is the adsorbed concentration at
the k point along the micro-particle co-ordinate and the point i along the pellet co-
ordinate. Note that this equation is valid up to the point N+l in the pellet co-
ordinate. The adsorbed concentration at the exterior surface of the micro-particle at
the collocation i, xitM+1, can be calculated from eq. (A 10.4-11), that is

(A10.4-13)
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Next, we evaluate the mass balance equation along the pellet co-ordinate (A 10.4-6)
at the i-th collocation point::

H ^
M+l N+l

1=1

for i = 1,2, ..., N, where

Cy = 4u iB i j + 2(1 + s)Aij (A10.4-15)

The concentration at the exterior surface of the pellet is obtained from eq.(A 10.4-8),
that is:

yb-|d+e; "

y N + I =
 l- - ^ (A10.4-16)

The temperature equation written in terms of discrete variables is:

->* N+1 dx
L_r-n; / 'Q_e b ) (A10.4-17)

or
N+l M+l

d6 _ ,^,. xv- ../ "^'"+ l l X i i l-LeBi(8-eb)(A10.4-18)
i=l 1=1

Eqs. (A10.4-12), (A10.4-14) and (A10.4-18) form a set of (N+1)(M+1) equations in
terms of (N+1)(M+1) unknowns:

1. xik (i=l,2).
2. y, (i=l,2,...,N)
3. 9

Appendix 10.5: Orthogonal Collocation Analysis of Eq. (10.5-22)

The governing equation for the case of multicomponent diffusion in a zeolite
crystal (eq. 10.5-22) is:

^ 4 (A10.5-la)
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r| = 0; -J=±- = 0 (A10.5-lb)

r| = l; C^=C^b (A10.5-lc)

T = 0; C^=C^ (A10.5-ld)

We will solve this problem by using the method of orthogonal collocation (Rice and
Do, 1995). We first expand the RHS of eq. (A 10.5-la) to get:

dx dr\ dx\ dv\
(A10.5-2)

We note that the problem is symmetrical at r\ = 0, it is then logical to define a new

variable to account for this symmetry, u = r\2 . With this transformation, eq.

(A10.5-2) becomes:

+ 4u

The boundary condition for this equation is:

(A10.5-3)

(A10.5-4)

The domain {u e [0, 1]} of the particle is discretized with N interior collocation
points, and we use the point at the surface (u=l) as the additional point; thus, there
is a total of N+1 interpolation points. Using the Lagrangian interpolation
polynomial passing these N+1 points, we obtain the following relations for the first
and second derivatives, written in terms of the functional values:

ac,, N+1

k=l

N+1

k=l

N+1

k=l

(A10.5-5)
where A and B matrices are known matrices after the number of interpolation

points are chosen (Rice & Do, 1995).
Evaluating eq. (A 10.5-3) at the interior collocation points (j = 1, 2, ..., N), and

then substituting eqs. (A 10.5-5) into the resulting equation, we obtain the following:

x C C ^ I l 1 ^ ^ C J (A10.5-6)
~ JLk=l J U=l JJ Vk=l /
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where

C j k = 4 U j B j k + 2 ( l (A10.5-7)

The concentration vector at the interpolation point (N+l) is simply the concentration
at the boundary, that is:

C ^ N + i = ^ b (A10.5-8)

Substitute this equation into eq. (A10.5-6), we finally obtain (for j = 1,2,..., N):

dx

iN+1CMbJ (A10.5-9)

For the purpose of programming, we define a concentration matrix as follows:

CM(nc,n)

(A10.5-10)

where the i-th row represents the i-th species, and the j-th column represents the j-th
collocation point. Here nc is the number of components. We use the notation of
MATLAB to represent the concentration vector. There are two vectors to deal with:

Q (:,j) = concentrations of all species at the j-th collocation point (A10.5-11)

Q (i, :) = concentrations of component i at all collocation points (A 10.5-12)

With the notation of eqs. (A10.5-11) and (A10.5-12), the discretized mass balance
equation of eq. (A 10.5-9) can be rewritten as:

^jkQ(:,kj+ CjN + 1C^ +

(A10.5-13)

4UJ| g Ajk[x(Q(:,k))] + Aj>N+1[x(c,b)] I x g Ajk

Eqs. (A10.5-13) is coded in a program ADSORB3.M.
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Appendix 10.6: Orthogonal collocation analysis of eqs. (10.6-25)

The mass balance equations for the case of nonisothermal crystal is:

dC^ _ 1 d s

5x ris dr\
(A10.6-1)

dx\

c,=f(Pb.(

(A10.6-2a)

(A10.6-2b)

It is now noted that the boundary condition at the surface is no longer constant
because of the variation of the isotherm f with respect to temperature.

The heat balance equation is:

**L = pi, \ - W _ L e B i (0 _ e ) (A10.6-3)
dx - dx

where (C ) is the volumetric average concentration, defined as:

SC (r|,T)dr| (A10.6-4)

Using the mass balance equation (eq. A 10.6-1), we evaluate the rate of change of
the mean concentration and substitute it into the heat balance equation (A 10.6-3) to
give:

ax — on
- L e B i ( 6 - 0 b ) (A10.6-5)

Using the transformation u = r\2 because of symmetry, the mass and heat balance
equations will become:

(Cu,9)

d0

dx

4u-
da2 - + 2(l + s)

a,
+ 4u-=-

du. du
£- (A10.6-6a)

du
u=l

-LeBi(6-6 b) (A10.6-6b)

The interpolation points are chosen with N interior collocation points and the point
at the boundary (u=l). Evaluating the mass balance equation (eq. A10.6-6a) at the
interior point j , we get:
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dC

dx

Appendices

j
M_nfJ ,e)

" N

k=

4u
k=l k=l

(A 10.6-7)
The concentration vector at the boundary u=l is given in eq. (A10.6-2b), that is

We have completed the collocation analysis of the mass balance equation, now we
turn to the heat balance equation:

dx
P • l x ( c ( l f N + I , e ) ^ A N + 1 > k c M +AN + l f N + 1cM f N + I l I -LeBi (0-0 b )

(A10.6-8)
Eqs. (A10.6-8) and (A10.6-9) represent nc.N + 1 equations in terms of nc.N+1
unknowns C -(j = 1,2,---,N) and 6. To help with the coding, we introduce the

following matrix:

eqs. (A10.6-7) and (A10.6-8) become:
' N

(A 10.6-9)

dx

+ 4 u J
I k = l

dx
A N + i , k « ( : . k ) + A N + I , N + I C M f N + 1

k=l

(A10.6-10)

-LeBi(e-9b)

(A10.6-11)
where Q(:,j) is the j-th column vector of the matrix Q (eq. A 10.6-9).
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Appendix 12.1: Laplace Transform for the Finite Kinetic Case

The mass balance equations for the case of finite kinetics and the final
equilibrium isotherm is linear are (eqs. 12.5-2 and 12.5-8):

< A 1 2 M b )

where ka is the rate of adsorption and K is the Henry constant.
The initial and boundary conditions for the case of adsorption and diffusion in

an initially clean porous medium are:

t = 0; C = C^ = 0

x = 0; C = C0

x = L; C » 0

Taking the Laplace transform of the mass balance eq. (A12.1-lb), we get:

from which we obtain the adsorbed concentration in terms of the gas phase
concentration as follows:

s + k a / K

Next taking the Laplace transform of eq. (A12.1-la) and making use of eq. (A 12.1-
3), we obtain the following second order ODE in terms of the gas phase
concentration:

^f-a2(s).C = 0
dx

where a(s) is defined as follows:

(l-B)sk.
ES + -

a 2 s + k a / K

eDp

The boundary conditions for eq. (A 12.1-4) in the Laplace domain are:
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x = 0; C = —2-
s (A12.1-6)

x = L; C * 0

Solving the ODE of eq. (A12.1-4) subject to boundary conditions (A12.1-6), we
obtain the following solution for the gas phase concentration written in terms of the
hyperbolic functions:

- Cn sinhfa(s)(L-x)l
C = - 5 - \ r / u 1 (A12.1-7)

s sinn[a(s)LJ
One can obtain the inverse for the gas phase concentration by the method of
residues, but if we are mainly interested in the amount collected at the outgoing
surface of the porous medium, we just simply obtain the amount collected in the
Laplace domain and then find its inverse by using the method of residues.

The flux at the exit and the amount collected at the exit are given by:

Q L = A j j L d t (A12.1-8)
o

respectively. Taking the Laplace transform of the amount collected (eq. A12.1-8),
we get:

(A 12.1-9)

Taking the derivative of eq. (A 12.1-7) with respect to x and putting the result into
eq. (A12.1-9), we get the following solution for the amount collected at the outgoing
surface in the Laplace transform domain:

The inverse of this function can be found by the method of residues. The poles are
zero, and

ct(sn)L = jn7t (A12.1-11)

To find the residue at the pole zero, we simply find the behaviour of the solution
when s approaches zero. Using the Taylor series, we get:
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^ r /, Wl"2 Vs f, 1 (l-E)K2

a ( s ) « e + l l - e l K . <l

Thus:

a(s) . 1

s2sinh[a(s)L] Ls2 [ 6 eDp

Therefore, the residue corresponding to the zero pole is:

A ( E D P ) C 0 L

Residue(s = 0) = V p) \ t - —
L [ 6

\ t \
L [ 6 eDp J

This is basically the long time bahaviour of the amount collected in the outgoing
reservoir.
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Index

A
Adsorbed film thickness

Adsorbent
Activated carbon
Alumina

Silica gel
Zeolite

Adsorption
Potential
Processes

alpha-method
Aranovich isotherm

B
BDDT classification
BET isotherm

Characteristics
Surface area determination

BET n-layers
Biot number
BLK approach

c
Capillary

Converging & diverging

126

4
3
3
6

154, 156
7

147
101

94
84

89
91
96

534, 536

268

391
359

parallel capillaries
Characteristic energy
Chromatography

response quality
Cohan equation

Cranston-Inkley method

D
Darcy equation
Darken relation
de Boer method
Differential adsorption bed

Procedure
Diffusion

Bimodal

Heterogeneous
Knudsen
Molecular
Parallel diffusion

Surface
Diffusion cell

Diffusivity
Apparent
Corrected
Combined
Knudsen

362, 372, 487
155
775
784

117
136

374
412

140
689
690

634

679
348
387
521

399
755

523
606
525
354
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Pore 522
Surface 354

Dispersive force 151
Distribution function

Exponential 264
Gamma 264
Gaussian 265
Log-normal 265
Rayleigh 265
Shifted Gamma 265
Uniform 264

Weibull 156
Dubinin-Astakhov 159

Heterogeneity parameter n 161
Theoretical basis 171
Water adsorption 163

Dubinin-Radushkevich 77, 156

Isosteric heat 80, 168
Super-critical adsorbates 162

Dubinin-Serpinski 164
Dubinin-Stoeckli 185

E
Energy distribution 257, 264

Enthalpy of immersion 168

Extended Langmuir equation 191

Equilibrium approach 195

Kinetics approach 191

F
Fast IAS theory 222

Algorithm 231
FHH isotherm 107
Fractional uptake 537, 609
Freundlich

Isotherm 50

Isosteric heat 57
Frisch method 718

Graham law of diffusion 367,482
Graphite slit pore

Number density per unit area 286
Number density per unit volume 289

Gurvitch rule 157

H
Harkins-Jura isotherm 31, 103
Heat transfer coeficient 565, 570
Heterogeneous adsorption isotherm

BLK approach 268
Hobson approach 270
Isosteric heat 265
Langmuir 252

Horvath & Kawazoe method 315

Hypothetical pure component pressure 203
Hysteresis loop 112, 142

I
Ideal Adsorption Solution Theory 198

Algorithm 208
Basic theory 198

Interaction energy 282
one lattice layer 284
one lattice layer with sub-layers 309
one slab 287

two lattice layers 290
two lattice layers with sublayers 310
two slabs 296

Irreversible isotherm 551
Isotherms

Aranovich 101
BET 84
BET - n layers 96
Dubinin-Astakhov 159

Dubinin-Radushkevich 77
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Gibbs
Fowler-Guggenheim
Freundlich

Harkins-Jura 31,
Hill-de Boer
Jovanovich
KST
Langmuir

Nitta
O'Brien-Myers
Sips
Temkin
Toth
Unilan
Volmer
VSM-Wilson
VSM-Flory-Huggin

Isotherm types

K
Kelvin equation

Generalized equation

L
Langmuir

Isotherm
Isosteric heat

LeVan-Vermeulen approach

Lewis relationship

Loschmidt

M
Maxwell-Stefan approach

Capillary
Loschmidt tube
Molecular diffusion

Molecular-Knudsen diffusion

21
26
50

103
24
82

76
13
35

222
57
82
64
70
22
43
44
94

113
115

13
17

234

205
449

475
449
415

470

Molecular-Knudsen-viscous
Non-ideal fluids
Stefan tube

Two bulbs method
Media

Consolidated
Unconsolidated

Micropore
Volume filling

Mixture isotherm
Extended Langmuir
IAS theory
Potential theory
RAS theory

P
Pore

Closed pore
Dead end pore
Through pore

Pore size
IUPAC classification

Distribution of mesopore
Distribution of micropore

R
Real Adsorption Solution theory

Redhead isotherm

s
Separation

Equilibrium

Kinetics
Steric

Sips isotherm
Isosteric heat

temperature dependence

flow 495
462
431
457

367

365,376

150

191

198
246
240

758
758
758

2

119
177,183

240
108

1
1
1

57

63
61
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Multicomponent systems
Statistical film thickness
Stefan tube
Surface diffusion

Diffusivity

Temperature dependence
Models

T
t-method
Thermal velocity
Thermodynamics

Correction factor
Surface phase

Time lag
Topography

Patch wise
Random

Tortuosity
Tortuosity factor
Toth isotherm

Isosteric heat
Temperature dependence

u
Unilan isotherm

Isosteric heat
Temperature dependence

V
Viscous flow

Viscous flow parameter
Volmer equation

Volume filling

w
Wheeler-Schull's method

215
126, 137
343,431

399
403

404
406

143
349

606
18

701

257
257
338
364

64

67
66

70
73
72

369
369

22
150

130

Wicke-Kall;

z
Zeolite

Crystal
Pellet

634
634
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